Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,450)

Search Parameters:
Keywords = CES1A2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 47839 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 (registering DOI) - 30 Aug 2025
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
15 pages, 5574 KB  
Article
Development of a TaN-Ce Machine Learning Potential and Its Application to Solid–Liquid Interface Simulations
by Yunhan Zhang, Jianfeng Cai, Hongjian Chen, Xuming Lv and Bowen Huang
Metals 2025, 15(9), 972; https://doi.org/10.3390/met15090972 (registering DOI) - 30 Aug 2025
Abstract
This study develops a machine learning potential (MLP) based on the Moment Tensor Potential (MTP) method for the TaN-Ce system. This potential is employed to investigate the interfacial structure and wetting behavior between liquid Ce and solid TaN. Molecular dynamics (MDs) simulations reveal [...] Read more.
This study develops a machine learning potential (MLP) based on the Moment Tensor Potential (MTP) method for the TaN-Ce system. This potential is employed to investigate the interfacial structure and wetting behavior between liquid Ce and solid TaN. Molecular dynamics (MDs) simulations reveal that liquid Ce exhibits significant wetting on the TaN surface at high temperatures. The interfacial region undergoes pre-melting and component interdiffusion, forming an amorphous transition layer. Nitrogen atoms display high diffusivity, leading to surface mass loss, while tantalum atoms demonstrate excellent thermal stability and penetration resistance. These findings provide theoretical support for the design of interfacial materials and corrosion control in high-temperature metallurgy. Full article
Show Figures

Figure 1

23 pages, 10645 KB  
Article
Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel
by Liqiang Xue, Xiangyu Li, Tao Wang, Qi Zhao, Haozheng Wang, Jia Wang, Wanming Lin, Xiaofeng Niu, Wangzhong Mu and Chao Chen
Crystals 2025, 15(9), 779; https://doi.org/10.3390/cryst15090779 (registering DOI) - 30 Aug 2025
Abstract
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon [...] Read more.
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon alloy in Ruhrstahl-Heraeus (RH) unit, different pouring time in tundish, and continuous casting slab. This study systematically examined the morphology, composition, and size distribution of inclusions throughout the smelting process of non-oriented silicon steel by scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS), and thermodynamic analysis at liquid steel temperature and thermodynamic analysis of equilibrium solidification. The research results demonstrated that the rare earth treatment ultimately modifies the original Al2O3 inclusions in the non-oriented silicon steel into REAlO3 and RE2O2S inclusions, while also aggregating AlN inclusions to form composite inclusions. After rare earth modification, the average size of the inclusions decreases. In the RH treatment process, the inclusions before the addition of rare earth ferrosilicon alloy are mainly AlN and Al2O3. After the addition of rare earth ferrosilicon alloy, the inclusions are mainly RES and REAlO3. In the tundish and continuous casting, the rare earth content decreased, and the rare earth inclusions transform into RE2O2S and REAlO3. For the size of inclusions, after adding rare earth ferrosilicon alloy, the average size of inclusions rapidly decreased from 16.15 μm to 2.65 μm and reach its minimum size 2.16 μm at the end of RH treatment. When the molten steel entered the tundish, the average size of inclusions increased slightly and gradually decreased with the progress of pouring. The average size of inclusions in the slab is 5.79 μm. Phase stability diagram calculation indicates the most stable rare earth inclusion is Ce2O2S in molten steel. Thermodynamic calculations indicated that Al2O3, Ce2O2S, Ce2S3, AlN, and MnS precipitate sequentially during the equilibrium solidification process of molten steel. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 2663 KB  
Article
From Gene Networks to Therapeutics: A Causal Inference and Deep Learning Approach for Drug Discovery
by Sudhir Ghandikota and Anil G. Jegga
Pharmaceuticals 2025, 18(9), 1304; https://doi.org/10.3390/ph18091304 (registering DOI) - 30 Aug 2025
Abstract
Background/Objectives: Drug discovery is a lengthy and expensive process, taking an average of 10 years and more than USD 2 billion from target discovery to drug approval. It is even more challenging in complex diseases due to disease heterogeneity and limited knowledge about [...] Read more.
Background/Objectives: Drug discovery is a lengthy and expensive process, taking an average of 10 years and more than USD 2 billion from target discovery to drug approval. It is even more challenging in complex diseases due to disease heterogeneity and limited knowledge about the underlying mechanisms. We present a novel computational framework that integrates network analysis, statistical mediation, and deep learning to identify causal target genes and repurposable small-molecule candidates. Methods: We applied weighted gene co-expression network analysis (WGCNA) and bidirectional mediation analysis (causal WGCNA) to transcriptomic data from idiopathic pulmonary fibrosis (IPF) patients to identify genes causally linked to the disease phenotype. These genes were used as a phenotypic signature for deep learning-based compound screening using the DeepCE model. Results: Using RNA-seq data from 103 IPF patients and 103 controls, we identified seven significantly correlated modules and 145 causal genes. Five of these genes (ITM2C, PRTFDC1, CRABP2, CPNE7, and NMNAT2) were predictive of disease severity in IPF. Our compound screening identified several promising candidates, such as Telaglenastat (GLS1 inhibitor), Merestinib (MET kinase inhibitor), and Cilostazol (PDE3 inhibitor), with significant inverse correlation with the IPF-specific gene signature. Conclusions: This study demonstrates the utility of combining causal inference and deep learning for drug discovery. Our framework identified novel gene targets and therapeutic candidates for IPF, offering a scalable strategy for phenotype-driven drug discovery and repurposing. Full article
(This article belongs to the Special Issue Computational Methods in Drug Development)
Show Figures

Figure 1

17 pages, 270 KB  
Review
Single-Port vs. Multi-Port Robotic Surgery in Urologic Oncology: A Comparative Analysis of Current Evidence and Future Directions
by Stamatios Katsimperis, Lazaros Tzelves, Georgios Feretzakis, Themistoklis Bellos, Konstantinos Douroumis, Nikolaos Kostakopoulos and Andreas Skolarikos
Cancers 2025, 17(17), 2847; https://doi.org/10.3390/cancers17172847 (registering DOI) - 29 Aug 2025
Abstract
The evolution of robotic surgery in urologic oncology has led to the emergence of single-port (SP) robotic systems as a potential alternative to the widely adopted multi-port (MP) platforms. This narrative review provides a comprehensive comparison between SP and MP robotic systems, the [...] Read more.
The evolution of robotic surgery in urologic oncology has led to the emergence of single-port (SP) robotic systems as a potential alternative to the widely adopted multi-port (MP) platforms. This narrative review provides a comprehensive comparison between SP and MP robotic systems, the former of which received FDA approval in 2018 and CE marking in 2024, focusing on their application across radical prostatectomy, partial and radical nephrectomy, and radical cystectomy. Drawing from the most current literature, we examine perioperative outcomes, oncologic efficacy, postoperative recovery, and complication rates. The review highlights the technical challenges unique to SP surgery, including restricted triangulation, limited instrumentation, and a defined learning curve, while also emphasizing innovations such as transvesical prostatectomy and the Supine Anterior Retroperitoneal Access (SARA) approach. Additionally, we explore the potential impact of emerging technologies—such as artificial intelligence, augmented reality, and telesurgery—on the future of SP platforms. Despite early limitations, SP systems have demonstrated comparable safety and effectiveness in selected cases and may offer unique advantages in specific anatomical scenarios. Continued innovation, structured training, and robust long-term outcome data will be essential for the broader adoption and integration of SP robotic surgery in clinical practice. Full article
(This article belongs to the Special Issue Robot-Assisted Surgery for Urologic Cancer)
20 pages, 3620 KB  
Article
Optimization of Phenolic Compounds Extraction from Crataegi Fructus
by Florin Daniel Stamin, Carmen Mihaela Topală, Ivona Cristina Mazilu, Georgiana Ileana Badea, Loredana Elena Vijan and Sina Cosmulescu
Appl. Sci. 2025, 15(17), 9525; https://doi.org/10.3390/app15179525 (registering DOI) - 29 Aug 2025
Abstract
Growing interest in the medicinal and nutraceutical uses of hawthorn highlights the need to improve the extraction of bioactive compounds in order to produce high-value products. This study aimed to refine extraction methods to improve the quality and quantity of phenolic compounds, flavonoids, [...] Read more.
Growing interest in the medicinal and nutraceutical uses of hawthorn highlights the need to improve the extraction of bioactive compounds in order to produce high-value products. This study aimed to refine extraction methods to improve the quality and quantity of phenolic compounds, flavonoids, and tannins in Crataegi fructus extracts while preserving their integrity and minimizing the impact of impurities. Phenolic compounds and flavonoids were extracted using ethanol, tannins and water via unconventional ultrasound-assisted extraction protocols. According to the results, significant variations in the total phenolic (TPC), total flavonoid (TFC), and total tannin (TTC) content were observed in correlation with the genotype and the extraction time. The optimal extraction time for TPC and TFC was 150 min of sonication of the samples, while the optimal extraction time for TTC was 30 min of sonication at 99 °C. Ten phenolic compounds, acids (chlorogenic, gallic and syringic acids) and flavonoids (epicatechin, catechin, procyanidin B2, hyperoside, quercetin, isoquercetin and vitexin), were identified in hawthorn fruits extracts by HPLC. Among them, the most abundant were epicatechin, chlorogenic acid, procyanidin B2, catechin and gallic acid. By comparing the maximum contents of phenolic compounds, flavonoids, and tannin extracted from the two species of Crataegi fructus, Crataegus monogyna presented a lower amount of phenolic compounds and tannins, but higher amount of flavonoids, compared to C. pentagyna (1222.15 mg GAE 100 g−1 TPC, 502.47 mg GAE 100 g−1 TTC, and 723.48 mg CE 100 g−1 TFC in C. monogyna vs. 1240.01 mg GAE 100 g−1 TPC, 709.61 mg GAE 100 g−1 TTC, and 549.67 mg CE 100 g−1 TFC in C. pentagyna). Since the climate can influence both the content of bioactive compounds in plants and their extractability, the importance of this study lies in the description for the first time in the literature of hawthorn genotypes selected in Olt County, Romania, in a continental temperate climate with subtropical influences. The results of the study help obtain valuable genotypes for high-quality drugs and food supplements. Full article
Show Figures

Figure 1

13 pages, 2361 KB  
Article
Grazing-Induced Changes in circRNAs, miRNAs and mRNAs Expression in Tibetan Sheep Biceps Femoris
by Xiong Ma, Shaobin Li, Zhanzhao Chen, Zhaohua He, Jianming Ren, Shiyu Tao, Lan Zhang and Pengfei Zhao
Biology 2025, 14(9), 1143; https://doi.org/10.3390/biology14091143 - 29 Aug 2025
Abstract
The present study is aimed at investigating the effects of grazing on the meat quality of Tibetan sheep, as well as the associated molecular mechanisms. A total of ten Tibetan sheep were utilized and equally allocated into two groups: grazing and pen-feeding. To [...] Read more.
The present study is aimed at investigating the effects of grazing on the meat quality of Tibetan sheep, as well as the associated molecular mechanisms. A total of ten Tibetan sheep were utilized and equally allocated into two groups: grazing and pen-feeding. To assess the intramuscular fat (IMF) content, Soxhlet extraction was performed on the biceps femoris muscle. Additionally, transcriptome sequencing was carried out to evaluate the expression profiles of RNAs, facilitating the construction of a ceRNA regulatory network. The results demonstrated that the IMF content in the grazing group was significantly higher compared to the pen-feeding group, implying that grazing might foster the formation of Type I muscle fibers, thereby enhancing meat quality. Moreover, the expression levels of circRNAs, such as novel_circ_001331, novel_circ_012918, novel_circ_029843, and novel_circ_059962, were markedly up-regulated in the grazing group. These circRNAs may alleviate the inhibitory effects on genes like COL8A1, MYLK3, and NOX4 by interacting with miR-381-y, miR-7144-x, miR-16-z, miR-8159-x, novel-m0040-3p, novel-m0092-5p, and oar-miR-329a-3p. These circRNAs and miRNAs are predominantly involved in the MAPK, Wnt, and VEGF signaling pathways and could be implicated in biological processes such as muscle fiber type switching and energy metabolism. This research offers valuable insights for improving the meat quality of Tibetan sheep and provides a foundation for exploring the role of circRNA and miRNA in the regulation of meat quality under grazing conditions. Full article
(This article belongs to the Special Issue Bioinformatics in RNA Modifications and Non-Coding RNAs)
Show Figures

Figure 1

20 pages, 6101 KB  
Article
Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals
by Jiajia Dong, Peng Li, Yalei Du, Lingling Cao and Zhiqiang Yan
Biology 2025, 14(9), 1141; https://doi.org/10.3390/biology14091141 - 29 Aug 2025
Abstract
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the [...] Read more.
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the common bloom-forming cyanobacterium Microcystis aeruginosa, explored the anti-algal mechanism of the active fraction, analyzed its secondary metabolites using liquid chromatography–high-resolution mass spectrometry (LC-HRMS), and screened the potential allelochemicals. The results showed that the crude extract of A. argyi leaves (CE) exhibited significant inhibitory effects on M. aeruginosa. Among several solvent fractions of CE, the dichloromethane extract (DE) demonstrated the strongest inhibitory effect, with a 7-day IC50 of 70.43 mg/L. After treatment with DE, the contents of chlorophyll a (Chl a), carotenoids, and phycobiliproteins (PBPs) in M. aeruginosa were significantly reduced. Meanwhile, an excessive accumulation of reactive oxygen species (ROS), reduction of catalase (CAT) activity, increase in malondialdehyde (MDA) content, and shrinkage of the membrane were found in M. aeruginosa cells under DE treatments. There were 81 secondary metabolites annotated in DE by LC-HRMS. Among them, hispidulin, jaceosidin, 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone, and eupatilin possessed strong inhibitory activities, with 7-day IC50 values of 26.23, 27.62, 32.02, and 34.98 mg/L, respectively. These results indicated that the A. argyi extracts possess significant allelopathic activities on M. aeruginosa, and DE was identified as the primary active fraction. It inhibits algae growth by suppressing photosynthesis and inducing peroxidation, ultimately leading to cell death. Flavonoids in DE were the main allelochemicals responsible for the inhibition on algae of A. argyi extracts. Full article
Show Figures

Figure 1

25 pages, 1232 KB  
Article
A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds
by Paul Ndubuisi Anyiam, Pipat Tangjaidee, Wanli Zhang and Saroat Rawdkuen
Foods 2025, 14(17), 3046; https://doi.org/10.3390/foods14173046 - 29 Aug 2025
Abstract
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, [...] Read more.
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, compared to conventional alkaline extraction (CE). EAE was performed with viscozyme (2%, pH 8, 50 °C, 2 h) and papain (1%, pH 7, 50 °C, 1 h), UAE at 40% amplitude (20 kHz, 20 min), and MAE at 800 W (50 °C, 90 s). All methods significantly improved extraction yield (14.60–30.08%), protein content (80.47–86.61%), solubility (40.78–60.09% at pH 10), and techno-functional properties over CE. However, MAE slightly reduced solubility. Phytates (0.83–0.49 g/100 g) and trypsin inhibitor activity significantly decreased (4.48–1.92 U/mg). In vitro protein digestibility improved (p < 0.05) across all samples (88.11–93.81%), with hydrolysis patterns supporting the enhanced digestibility. Structural modifications were indicated by altered surface hydrophobicity and thermal properties. SDS-PAGE showed consistent major protein bands at 17, 25, and 48–63 kDa, with EAE showing reduced intensity at ~63 kDa. While UAE and MAE achieved high protein yield and purity, EAE offered the best balance of functionality and digestibility, making it the most promising method for producing high-quality MSPI. These findings are relevant for guiding the selection of extraction methods for MSPI recovery for food applications. Full article
26 pages, 2512 KB  
Article
Potential Antioxidant and Neuroprotective Effect of Polysaccharide Isolated from Digüeñe Cyttaria espinosae
by Claudia Pérez, Fabián A. Figueroa, Ignacio Tello, Roberto T. Abdala-Díaz, Manuel Marí-Beffa, Viviana Salazar-Vidal, José Becerra, Javiera Gavilán and Jorge Fuentealba
J. Fungi 2025, 11(9), 637; https://doi.org/10.3390/jof11090637 - 29 Aug 2025
Abstract
Alzheimer’s disease (AD) is a significant global health challenge, further exacerbated by the anticipated increase in prevalence in the coming years. The accumulation of β-amyloid peptide plays a critical role in the onset of AD; however, emerging evidence suggests that soluble oligomers of [...] Read more.
Alzheimer’s disease (AD) is a significant global health challenge, further exacerbated by the anticipated increase in prevalence in the coming years. The accumulation of β-amyloid peptide plays a critical role in the onset of AD; however, emerging evidence suggests that soluble oligomers of β-amyloid may primarily drive the neuronal impairments associated with this condition. Additionally, neurodegenerative diseases like AD are linked to oxidative stress and reduced antioxidant capacity in the brain. Natural products, particularly polysaccharides extracted from mushrooms, have garnered interest due to their neuroprotective properties and the potential to enhance the value of natural sources in addressing human diseases. This study examines the antioxidant and neuroprotective properties of polysaccharides derived from Cyttaria espinosae Lloyd (CePs), a relatively underexplored fungus native to Chile. Using Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS), we characterized CePs. We assessed their antioxidant capacity using DPPH and ABTS assays, yielding maximum inhibition rates of 32.14% and 19.10%, respectively, at a concentration of 10 mg mL−1. CePs showed no toxicity in zebrafish embryos and maintained high cell viability in PC-12 cells exposed to amyloid β peptide (Aβ). Our findings suggest that CePs exhibit significant antioxidant and neuroprotective properties against Aβ peptide toxicity while remaining non-toxic to zebrafish embryos. This underscores the potential of the polysaccharides from this mushroom to serve as functional foods that mitigate oxidative stress and warrant further investigation into their mechanisms in the context of the physiopathology of Alzheimer’s disease. Full article
(This article belongs to the Special Issue Advances in Mushroom Bioactive Metabolites)
Show Figures

Figure 1

14 pages, 2868 KB  
Article
Effects of Ca Substitution in Single-Phase Sr1-xCaxTi0.8Fe0.2O3-ẟ Oxygen Transport Membranes and in Dual-Phase Sr1-xCaxTi0.8Fe0.2O3-ẟ-Ce0.8Gd0.2O2 Membranes
by Veronica Nigroni, Yuning Tang, Stefan Baumann, Doris Sebold, Enrico Malgrati and Paolo Fedeli
Membranes 2025, 15(9), 258; https://doi.org/10.3390/membranes15090258 - 29 Aug 2025
Abstract
Oxygen transport membranes (OTMs) have gained a lot of attention for their application in different innovative fields, but the development of new materials able to combine high oxygen permeability and good chemical stability is crucial to boost the exploitation of such membrane-based technologies. [...] Read more.
Oxygen transport membranes (OTMs) have gained a lot of attention for their application in different innovative fields, but the development of new materials able to combine high oxygen permeability and good chemical stability is crucial to boost the exploitation of such membrane-based technologies. Perovskite oxides are widely studied as mixed ionic-electronic conductors for the realization of OTMs. In this article, we focus on Sr1-xCaxTi0.8Fe0.2O3-ẟ (SCTF) perovskites and investigate the effect of Ca content on the A-site of the permeation properties, both in single-phase SCTF membranes and in dual-phase membranes obtained by combining SCTF and the ionic conductor Ce0.8Gd0.2O2 (CGO). In single-phase samples, we observed that the substitution of 40% Ca preserves the permeation performances of the non-substituted SrTi0.8Fe0.2O3−ẟ membrane while allowing for a substantial decrease in the sintering temperature, thus facilitating membrane manufacturing. In dual-phase membranes, the increase in the Ca content in the perovskite causes an increase in grain size. The permeation is, at least partially, controlled by the kinetics of the surface exchange reactions. This limitation can be overcome by the addition of an activation layer; however, the permeance of activated CGO-SCTF membranes still remains lower compared to the single-phase parent perovskitic membranes. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

14 pages, 2443 KB  
Article
Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency
by Akbar I. Inamdar, Amol S. Salunke, Jyoti V. Patil, Sawanta S. Mali, Chang Kook Hong, Basit Ali, Supriya A. Patil, Nabeen K. Shrestha, Sejoon Lee and Sangeun Cho
Materials 2025, 18(17), 4052; https://doi.org/10.3390/ma18174052 - 29 Aug 2025
Abstract
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam [...] Read more.
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam substrates via a hydrothermal technique and employed for their catalytic activity in an alkaline electrolyte. For comparison, binary counterparts (CoMo, CoCe, and MoCe) were also fabricated under similar conditions. The synthesized catalysts’ electrodes exhibited diverse surface architectures, including microporous-flake hybrids, ultrathin flakes, nanoneedle-assembled microspheres, and randomly oriented hexagonal structures. Among them, the ternary CoMoCe-oxide electrode exhibited outstanding bifunctional electrocatalytic activity, delivering low overpotentials of 124 mV for the hydrogen evolution reaction (HER) at −10 mA cm−2, and 340 mV for the oxygen evolution reaction (OER) at 100 mA cm−2, along with excellent durability. Furthermore, in full water-splitting configuration, the CMC||CMC and RuO2||CMC electrolyzers required cell voltages of 1.69 V and 1.57 V, respectively, to reach a current density of 10 mA cm−2. Remarkably, the CMC-based electrolyzer reached an industrially relevant current density of 1000 mA cm−2 at a cell voltage of 2.18 V, maintaining excellent stability over 100 h of continuous operation. These findings underscore the impact of an optimized electronic structure and surface architecture on design strategies for high-performance ternary metal oxide electrocatalysts. Herein, a robust and straightforward approach is comprehensively presented for fabricating highly efficient ternary metal-oxide catalyst electrodes, offering significant potential for scalable water splitting. Full article
Show Figures

Figure 1

24 pages, 1222 KB  
Article
Integrating Circular Economy (CE) Principles into Construction Waste Management (CWM) Through Multiple Criteria Decision-Making (MCDM)
by Thilina Ganganath Weerakoon, Janis Zvirgzdins, Sanda Lapuke, Sulaksha Wimalasena and Peteris Drukis
Sustainability 2025, 17(17), 7770; https://doi.org/10.3390/su17177770 - 29 Aug 2025
Abstract
The construction sector is a major contributor to global waste output, with construction and demolition waste (CDW) producing substantial environmental, economic, and logistical challenges. Traditional methods for handling waste in developing countries have failed to implement sustainability concepts successfully, resulting in inefficient resource [...] Read more.
The construction sector is a major contributor to global waste output, with construction and demolition waste (CDW) producing substantial environmental, economic, and logistical challenges. Traditional methods for handling waste in developing countries have failed to implement sustainability concepts successfully, resulting in inefficient resource consumption and increasing landfill reliance. This study develops an Analytic Hierarchy Process (AHP) framework to integrate circular economy (CE) principles into construction waste management (CWM). The framework evaluates four criteria under economic, environmental, social, and technological categorization and applies expert-based pairwise comparisons to prioritize alternative strategies. To ensure reliability, the results were further validated through sensitivity analysis and cross-validation using complementary MCDM methods, including the TOPSIS, WSM, and WPM. The research attempted to determine the most successful waste management approach by examining critical economic, social, technical, and environmental issues in the setting of Sri Lanka as a case study. A hierarchical model was built, and expert views were gathered using pairwise comparisons to assess the relative importance of each criterion. The results showed that environmental considerations had the greatest relative importance (41.6%), followed by economic (38.4%), technical (12.6%), and social aspects (7.4%). On-site waste segregation appeared as the most suitable method owing to its immediate contribution to sustainability, while off-site treatment, prefabrication, modular construction, and waste-to-energy conversion followed. The research underlines the significance of organized decision-making in waste management and advises incorporating real-time data analytics and artificial intelligence to boost adaptable and sustainable construction practices. Full article
Show Figures

Figure 1

25 pages, 338 KB  
Article
Means and Meanings in Circular Economy: An MDA-Based Exploratory Analysis
by Federico Barnabè and Riccardo Santoni
Sustainability 2025, 17(17), 7768; https://doi.org/10.3390/su17177768 - 29 Aug 2025
Abstract
This study aims to examine how organizations disclose Circular Economy (CE) information through multimodal communication. While conventional reporting often fails to capture the complexity of CE, we adopt a Multi-Discourse Analysis (MDA) framework that integrates textual, numerical, visual, spatial, and sensory dimensions. The [...] Read more.
This study aims to examine how organizations disclose Circular Economy (CE) information through multimodal communication. While conventional reporting often fails to capture the complexity of CE, we adopt a Multi-Discourse Analysis (MDA) framework that integrates textual, numerical, visual, spatial, and sensory dimensions. The methodology involves a qualitative content analysis of non-financial reports from 13 Italian electronics firms, a sector with a high environmental impact and low circularity. Key findings show a dominance of textual narratives and increasing use of numerical indicators aligned with the European Union Taxonomy. Visual elements are underutilized and largely symbolic, reflecting a product-centric rather than systemic view of circularity. The spatial dimension, operationalized through ESRS E5 categories, reveals fragmented CE integration and limited forward-looking financial disclosures. The sensory dimension, assessed via integrated thinking, highlights a polarization between firms that embed CE into strategy and those that do not. Recommendations are provided to enhance the clarity, comparability, and strategic relevance of CE disclosures, with implications for corporate practice, regulatory development, and future research. Overall, this study advances the understanding of CE by applying MDA to reveal the interplay of communicative modes, the gaps in systemic representation, and the degree of strategic integration in sustainability reporting. Full article
19 pages, 1089 KB  
Article
Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods
by Lucía López-Salas, Xavier Expósito-Almellón, Anderson Valencia-Isaza, Alejandro Fernández-Arteaga, Rosa Quirantes-Piné, Isabel Borrás-Linares and Jesús Lozano-Sánchez
Foods 2025, 14(17), 3030; https://doi.org/10.3390/foods14173030 - 29 Aug 2025
Abstract
The present study focuses on recovering phenolic compounds and terpenes from olive leaves, which are generated as by-products during olive oil processing. To this end, conventional extraction/maceration (CE) and advanced extraction techniques such as subcritical water extraction (SWE), pressurized fluid extraction (PLE) and [...] Read more.
The present study focuses on recovering phenolic compounds and terpenes from olive leaves, which are generated as by-products during olive oil processing. To this end, conventional extraction/maceration (CE) and advanced extraction techniques such as subcritical water extraction (SWE), pressurized fluid extraction (PLE) and ultrasound-assisted extraction (UAE) were employed to compare and determine the most effective procedure. The phenolic and terpenoid composition of the extracts revealed a total of 33 compounds in HPLC-QTOF-MS analysis. According to these findings, the optimal extraction techniques for the maximum recovery of secoiridoids from olive leaves were PLE and UAE, with no significant difference between them (21.9891 ± 2.5521 mg/g DW and 21.0888 ± 1.3494 mg/g DW, respectively). Regarding to flavonoids, UAE was the most effective extraction technique, yielding 4.9837 ± 0.6739 mg/g DW. However, SWE recovered the highest amount of phenolic alcohols (7.4201 ± 0.9848 mg/g DW), which could be due to degradation of the secoiridoids during extraction. Conversely, UAE was more successful than the other techniques for the extraction of the terpene family (0.7373 ± 0.0601 mg/g DW). The present study therefore focuses on comparing different extraction techniques for revalorizing olive leaves as a source of bioactive compounds, specifically polyphenols and terpenes, due to their beneficial health properties. Full article
Show Figures

Figure 1

Back to TopTop