Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Extraction of Polyphenols, Terpenes, and Other Polar Compounds from Olive Leaves
2.3.1. Conventional Extraction (CE)
2.3.2. Subcritical Water Extraction (SWE)
2.3.3. Pressurized Liquid Extraction (PLE)
2.3.4. Ultrasound Assisted Extraction (UAE)
2.4. Determination of Extraction Yield
2.5. HPLC–QTOF Analysis
2.6. Statistical Analysis
3. Results
3.1. Identification of Phenolic and Terpenic Compounds by HPLC–QTOF-MS
3.2. Quantification of Phenolic and Terpenic Compounds by HPLC–QTOF-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polari, J.J.; Garcí-Aguirre, D.; Olmo-García, L.; Carrasco-Pancorbo, A.; Wang, S.C. Impact of Industrial Hammer Mill Rotor Speed on Extraction Efficiency and Quality of Extra Virgin Olive Oil. Food Chem. 2018, 242, 362–368. [Google Scholar] [CrossRef]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive Oil and Prevention of Chronic Diseases: Summary of an International Conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Gallardo-Gomez, M.; Simal-Gandara, J.; Carpena, M.; Lorenzo, J.M.; Lourenço-Lopes, C.; Barba, F.J.; Prieto, M.A. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S.J. Chemistry and Health of Olive Oil Phenolics. Crit. Rev. Food Sci. Nutr. 2009, 49, 218–236. [Google Scholar] [CrossRef]
- Buus, N.H.; Hansson, N.C.; Rodriguez-Rodriguez, R.; Stankevicius, E.; Andersen, M.R.; Simonsen, U. Antiatherogenic Effects of Oleanolic Acid in Apolipoprotein e Knockout Mice. Eur. J. Pharmacol. 2011, 670, 519–526. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2012/432/oj (accessed on 26 August 2025).
- López-Salas, L.; Díaz-Moreno, J.; Ciulu, M.; Borrás-Linares, I.; Quirantes-Piné, R.; Lozano-Sánchez, J. Monitoring the Phenolic and Terpenic Profile of Olives, Olive Oils and By-Products throughout the Production Process. Foods 2024, 13, 1555. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Box-Behnken Experimental Design for a Green Extraction Method of Phenolic Compounds from Olive Leaves. Ind. Crops Prod. 2020, 154, 112741. [Google Scholar] [CrossRef]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front. Nutr. 2022, 8, 782693. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Olive Tree (Olea europaea L.) Leaf as a Waste by-Product of Table Olive and Olive Oil Industry: A Review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef]
- Difonzo, G.; Squeo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Caponio, F. The Challenge of Exploiting Polyphenols from Olive Leaves: Addition to Foods to Improve Their Shelf-Life and Nutritional Value. J. Sci. Food Agric. 2021, 101, 3099–3116. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Z.; Yang, X.; Liu, L.; Ahn, K.S. An Updated Review on the Potential Antineoplastic Actions of Oleuropein. Phyther. Res. 2022, 36, 365–379. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espiń, J.C.; Wichers, H.J. Oleuropein and Related Compounds. J. Sci. Food Agric. 2000, 80, 1013–1023. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, Toxicity, and Clinical Applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A Natural Compound with Promising Pharmacological Activities. J. Biotechnol. 2020, 309, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Forbes-Hernández, T.Y.; Varela-López, A.; Puentes, J.G.; Sánchez-González, C.; Sumalla-Cano, S.; Battino, M.; García-Ruiz, R.; Sánchez, S.; et al. Effect of Olive Leaf Phytochemicals on the Anti-Acetylcholinesterase, Anti-Cyclooxygenase-2 and Ferric Reducing Antioxidant Capacity. Food Chem. 2024, 444, 138516. [Google Scholar] [CrossRef]
- Borghini, F.; Tamasi, G.; Loiselle, S.A.; Baglioni, M.; Ferrari, S.; Bisozzi, F.; Costantini, S.; Tozzi, C.; Riccaboni, A.; Rossi, C. Phenolic Profiles in Olive Leaves from Different Cultivars in Tuscany and Their Use as a Marker of Varietal and Geographical Origin on a Small Scale. Molecules 2024, 29, 3617. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Granados, M.; Saurina, J.; Sentellas, S. Olive Tree Leaves as a Great Source of Phenolic Compounds: Comprehensive Profiling of NaDES Extracts. Food Chem. 2024, 456, 140042. [Google Scholar] [CrossRef]
- Sánchez-Quesada, C.; López-Biedma, A.; Warleta, F.; Campos, M.; Beltrán, G.; Gaforio, J.J. Bioactive Properties of the Main Triterpenes Found in Olives, Virgin Olive Oil, and Leaves of Olea Europaea. J. Agric. Food Chem. 2013, 61, 12173–12182. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, Z.J.S.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021, 10, 1057. [Google Scholar] [CrossRef]
- Masala, V.; Jokić, S.; Aladić, K.; Molnar, M.; Tuberoso, C.I.G. Exploring Phenolic Compounds Extraction from Saffron (C. Sativus) Floral By-Products Using Ultrasound-Assisted Extraction, Deep Eutectic Solvent Extraction, and Subcritical Water Extraction. Molecules 2024, 29, 2600. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Sumere, B.R.; de Souza, M.C.; dos Santos, M.P.; Bezerra, R.M.N.; da Cunha, D.T.; Martinez, J.; Rostagno, M.A. Combining Pressurized Liquids with Ultrasound to Improve the Extraction of Phenolic Compounds from Pomegranate Peel (Punica granatum L.). Ultrason. Sonochem. 2018, 48, 151–162. [Google Scholar] [CrossRef]
- de O.X. Machado, T.; Portugal, I.; de A.C. Kodel, H.; Fathi, A.; Fathi, F.; Oliveira, M.B.P.P.; Dariva, C.; Souto, E.B. Pressurized Liquid Extraction as an Innovative High-Yield Greener Technique for Phenolic Compounds Recovery from Grape Pomace. Sustain. Chem. Pharm. 2024, 40, 101635. [Google Scholar]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Aminzai, M.T.; Yabalak, E.; Akay, S.; Kayan, B. Recent Developments in Subcritical Water Extraction of Industrially Important Bioactive Substances from Plants, Microorganisms, and Organic Wastes. Biomass Convers. Biorefinery 2024, 15, 17927–17949. [Google Scholar] [CrossRef]
- Khizrieva, S.S.; Borisenko, S.N.; Maksimenko, E.V.; Borisenko, N.I.; Minkin, V.I. Study of the Composition and Anti-Acetylcholinesterase Activity of Olive Leaf (Olea europea L.) Extracts Obtained in Subcritical Water. Russ. J. Phys. Chem. B 2021, 15, 1286–1290. [Google Scholar] [CrossRef]
- Ilgaz, C.; Kelebek, H.; Kadiroglu, P. Bioactivity, DNA Damage Protecting, and Aroma Potential of Oleuropein Enriched Olive Leaf Extract by Optimization of Ultrasound-Assisted Process. eFood 2024, 5, e134. [Google Scholar] [CrossRef]
- Cea Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of “Sikitita” Olive Leaves by HPLC-DAD-TOF-MS. Comparison with Its Parents “Arbequina” and “Picual” Olive Leaves. LWT 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Ghomari, O.; Sounni, F.; Massaoudi, Y.; Ghanam, J.; Drissi Kaitouni, L.B.; Merzouki, M.; Benlemlih, M. Phenolic Profile (HPLC-UV) of Olive Leaves According to Extraction Procedure and Assessment of Antibacterial Activity. Biotechnol. Rep. 2019, 23, e00347. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative Screening of Phenolic Compounds in Olive Leaf Extracts by Hyphenated Liquid Chromatography and Preliminary Evaluation of Cytotoxic Activity against Human Breast Cancer Cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline Chloride Derivative-Based Deep Eutectic Liquids as Novel Green Alternative Solvents for Extraction of Phenolic Compounds from Olive Leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Šimat, V.; Skroza, D.; Tabanelli, G.; Čagalj, M.; Pasini, F.; Gómez-Caravaca, A.M.; Fernández-Fernández, C.; Sterniša, M.; Smole Možina, S.; Ozogul, Y.; et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants 2022, 11, 1656. [Google Scholar] [CrossRef]
- Taamalli, A.; Sánchez, J.L.; Jebabli, H.; Trabelsi, N.; Abaza, L.; Carretero, A.S.; Cho, J.Y.; Román, D.A. Monitoring the Bioactive Compounds Status in Olea Europaea According to Collecting Period and Drying Conditions. Energies 2019, 12, 947. [Google Scholar] [CrossRef]
- Duque-Soto, C.; Quirantes-Piné, R.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, J.; Yang, J. Optimization of Ultrasound-Assisted Aqueous Two Phase Extraction of Polyphenols from Olive Leaves. Prep. Biochem. Biotechnol. 2021, 51, 821–831. [Google Scholar] [CrossRef]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The Optimization of Extraction of Antioxidants from Apple Pomace by Pressurized Liquids. J. Agric. Food Chem. 2009, 57, 10625–10631. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of Drying Process and Pressurized Liquid Extraction for Recovery of Bioactive Compounds from Avocado Peel By-Product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- López-Salas, L.; Borrás-Linares, I.; Quirantes-Piné, R.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Enhancing the Production of the Phenolic Extracts of Asparagus Using an Advanced Green Process. Metabolites 2022, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Katsinas, N.; Bento Da Silva, A.; Enríquez-De-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Kasapoğlu, E.D.; Kahraman, S.; Tornuk, F. Optimization of Ultrasound Assisted Antioxidant Extraction from Apricot Pomace Using Response Surface Methodology. J. Food Meas. Charact. 2021, 15, 5277–5287. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Li, F.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Zeng, W. Optimization of Ultrasound-Assisted Water Extraction of Flavonoids from Psidium Guajava Leaves by Response Surface Analysis. Prep. Biochem. Biotechnol. 2019, 49, 21–29. [Google Scholar] [CrossRef]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of Major Bioactive Compounds from Olive Leaf. LWT 2015, 64, 431–438. [Google Scholar] [CrossRef]
- Liu, M.; Yong, Q.; Yu, S. Efficient Bioconversion of Oleuropein from Olive Leaf Extract to Antioxidant Hydroxytyrosol by Enzymatic Hydrolysis and High-Temperature Degradation. Biotechnol. Appl. Biochem. 2018, 65, 680–689. [Google Scholar] [CrossRef]
- Gonzalez-Ortega, R.; Di Mattia, C.D.; Pittia, P.; Natasa, P.U. Effect of Heat Treatment on Phenolic Composition and Radical Scavenging Activity of Olive Leaf Extract at Different PH Conditions: A Spectroscopic and Kinetic Study. J. Sci. Food Agric. 2023, 103, 2047–2056. [Google Scholar] [CrossRef]
- Martínez-Navarro, M.E.; Cebrián-Tarancón, C.; Oliva, J.; Salinas, M.R.; Alonso, G.L. Oleuropein Degradation Kinetics in Olive Leaf and Its Aqueous Extracts. Antioxidants 2021, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.J.; Huang, L.X.; Zhang, C.H. Stability of Oleuropein in Olive Leaves Extracts and Its Chelating Action to Ferrous Ions. Sci. Technol. Food Ind. 2013, 04, 133–136. [Google Scholar]
- da Rosa, G.S.; Martiny, T.R.; Dotto, G.L.; Vanga, S.K.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-Friendly Extraction for the Recovery of Bioactive Compounds from Brazilian Olive Leaves. Sustain. Mater. Technol. 2021, 28, 3–8. [Google Scholar] [CrossRef]
- Lin, S.; Simal-Gandara, J.; Cao, H.; Xiao, J. The Stability and Degradation Products of Polyhydroxy Flavonols in Boiling Water. Curr. Res. Food Sci. 2023, 6, 100509. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of Ultrasound-Assisted Extraction of Flavonoids from Olive (Olea europaea) Leaves, and Evaluation of Their Antioxidant and Anticancer Activities. Molecules 2018, 23, 2513. [Google Scholar] [CrossRef]
- Mushtaq, H.; Piccolella, S.; Mendiola, J.A.; Montero, L.; Ibáñez, E.; Pacifico, S. Recovery of Bioactive Constituents from Olive Leaf Pruning Waste of Five Different Cultivars: A Comparison of Green Extraction Techniques to Maximize Health Benefits. Foods 2025, 14, 297. [Google Scholar] [CrossRef]
- Vetrova, E.V.; Maksimenko, E.V.; Borisenko, S.N.; Lekar, A.V.; Borisenko, N.I.; Minkin, V.I. Extraction of Rutin and Quercetin Antioxidants from the Buds of Sophora Japonica (Sophora japonica L.) by Subcritical Water. Russ. J. Phys. Chem. B 2017, 11, 1202–1206. [Google Scholar] [CrossRef]
- Cavaca, L.A.S.; Rodrigues, C.A.B.; Simeonov, S.P.; Gomes, R.F.A.; Coelho, J.A.S.; Romanelli, G.P.; Sathicq, A.G.; Martínez, J.J.; Afonso, C.A.M. Valorization of Oleuropein via Tunable Acid-Promoted Methanolysis. ChemSusChem 2018, 11, 2300–2305. [Google Scholar] [CrossRef]
- Papageorgiou, C.S.; Lyri, P.; Xintaropoulou, I.; Diamantopoulos, I.; Zagklis, D.P.; Paraskeva, C.A. High-Yield Production of a Rich-in-Hydroxytyrosol Extract from Olive (Olea europaea) Leaves. Antioxidants 2022, 11, 1042. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Li, Y.; Jiang, Y.; Zhao, C. Hydroxytyrosol Permeability Comparisons and Strategies to Improve Hydroxytyrosol Stability in Formulations. Int. J. Pharm. 2024, 661, 124434. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and Consequences of Non-Covalent Interactions between Flavonoids and Macronutrients in Foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef]
- Câmara, J.S.; Perestrelo, R.; Ferreira, R.; Berenguer, C.V.; Pereira, J.A.M.; Castilho, P.C. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications—A Comprehensive Overview. Molecules 2024, 29, 3861. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Yuan, S.; Li, L.; Zheng, J.; Zhao, D.; Wang, C.; Wang, H.; Liu, X.; Liu, J. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation 2023, 9, 119. [Google Scholar] [CrossRef]
Extraction Technique 1 | Extraction Time (min) | Extraction Temperature | Extraction Pressure |
---|---|---|---|
CE | 480 | Room temperature | Atmospheric pressure |
SWE | 30 | 220 °C | 2.4 MPa |
PLE | 5 | 105 °C | 8.96 MPa |
UAE | 5 | <40 °C | Atmospheric pressure |
Extraction Technique 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Peak | Proposed Compound | Molecular Formula | RT 1 (min) | m/z (exp) | m/z (theor) | Error (ppm) | CE | PLE | SWE | UAE * |
1 | Glucuronic acid | C6H12O7 | 3.09 | 195.0511 | 195.0510 | −0.3 | ✓ | ✓ | ✓ | ✓ |
2 | Sucrose | C12H22O11 | 3.78 | 341.1077 | 341.1089 | 3.7 | ✓ | ✓ | ✓ | ✓ |
3 | Oxidized hydroxytyrosol isomer 1 | C8H8O3 | 5.28 | 151.0398 | 151.0401 | 1.7 | ✓ | ✓ | ✓ | ✓ |
4 | UK 3 1 | C9H13O6 | 6.52 | 217.0715 | 217.0718 | 1.2 | ✓ | ✓ | ✓ | ✓ |
5 | Loganic acid isomer 1 | C16H24O10 | 8.15 | 375.1311 | 375.1297 | −3.7 | ✓ | ✓ | ✓ | ✓ |
6 | Hydroxytyrosol glucoside | C14H20O8 | 8.68 | 315.1087 | 315.1085 | −0.6 | ✓ | ✓ | ✓ | ✓ |
7 | Oleoside/secologanoside isomer 1 | C16H22O11 | 8.86 | 389.1095 | 389.1089 | −1.4 | ✓ | ✓ | ✓ | ✓ |
8 | Loganic acid isomer 2 | C16H24O10 | 9.00 | 375.1286 | 375.1297 | 10.5 | ✓ | ✓ | ✓ | ✓ |
9 | Hydroxytyrosol | C8H10O3 | 9.40 | 153.0553 | 153.0557 | 3.1 | ✓ | ✓ | ✓ | ✓ |
10 | Glucopyranosyl acyclodihydroelenolic acid | C17H28O11 | 10.26 | 407.1575 | 407.1559 | −3.9 | ✓ | ✓ | ✓ | ✓ |
11 | 7-Epiloganin | C17H26O10 | 11.10 | 389.1468 | 389.1453 | −3.8 | ✓ | ✓ | ✓ | ✓ |
12 | Tyrosol | C8H10O2 | 12.00 | 137.0617 | 137.0608 | −6.2 | ✓ | ✓ | ✓ | ✓ |
13 | Oxidized hydroxytyrosol isomer 2 | C8H8O3 | 12.39 | 151.0402 | 151.0401 | −0.8 | ✓ | ✓ | ✓ | ✓ |
14 | Oleoside/secologanoside isomer 2 | C16H22O11 | 12.43 | 389.1079 | 389.1089 | 2.5 | ✓ | ✓ | ✓ | ✓ |
15 | Oleoside methyl ester/secologanoside methyl ester/elenolic acid glucoside | C17H24O11 | 12.53 | 403.1238 | 403.1246 | 2.0 | ✓ | ✓ | ✓ | ✓ |
16 | UK 3 2 | C21H33O10 | 13.44 | 445.2068 | 445.2079 | 2.4 | ✓ | ✓ | ND | ✓ |
17 | Lamiol | C16H26O10 | 14.75 | 377.1436 | 377.1453 | 4.6 | ✓ | ✓ | ✓ | ✓ |
18 | Hydroxyoleuropein | C25H32O14 | 15.42 | 555.1699 | 555.1719 | 4.0 | ✓ | ✓ | ✓ | ✓ |
19 | Verbascoside | C29H36O15 | 16.15 | 623.1844 | 623.1971 | −3.0 | ✓ | ✓ | ✓ | ✓ |
20 | Coumaric acid | C9H8O3 | 16.42 | 163.0382 | 163.0401 | 11.0 | ✓ | ✓ | ✓ | ✓ |
21 | Luteolin-7-glucoside isomer 1 | C21H20O11 | 18.03 | 447.0915 | 447.0933 | 7.0 | ✓ | ✓ | ✓ | ✓ |
22 | Luteolin glucoside isomer 2 | C21H20O11 | 18.58 | 447.0924 | 447.0933 | 1.0 | ✓ | ✓ | ✓ | ✓ |
23 | Luteolin glucoside isomer 3 | C21H20O11 | 18.85 | 447.0927 | 447.0933 | 1.1 | ✓ | ✓ | ND | ✓ |
24 | Rutin | C27H30O16 | 19.79 | 609.1421 | 609.1461 | 6.6 | ✓ | ✓ | ✓ | ✓ |
25 | Oleuropein isomer 1 | C25H32O13 | 20.52 | 539.1737 | 539.1770 | 6.1 | ✓ | ✓ | ND | ✓ |
26 | Oleuropein diglucoside | C31H42O18 | 21.19 | 701.2289 | 701.2298 | 12.3 | ✓ | ✓ | ✓ | ✓ |
27 | Oleuropein isomer 2 | C25H32O13 | 21.48 | 539.1735 | 539.1770 | 6.5 | ✓ | ✓ | ✓ | ✓ |
28 | Oleuropein isomer 3 | C25H32O13 | 22.80 | 539.1742 | 539.1770 | 5.2 | ✓ | ✓ | ND | ✓ |
29 | Luteolin glucoside isomer 4 | C21H20O11 | 23.32 | 447.0924 | 447.0933 | 2.0 | ✓ | ✓ | ✓ | ✓ |
30 | Ligstroside isomer 1 | C25H32O12 | 23.81 | 523.1791 | 523.1821 | 5.7 | ✓ | ✓ | ND | ✓ |
31 | Oleuropein isomer 4 | C25H32O13 | 23.94 | 539.1737 | 539.1770 | 6.2 | ✓ | ✓ | ✓ | ✓ |
32 | Ligstroside isomer 2 | C25H32O12 | 24.54 | 523.1806 | 523.1821 | 2.8 | ✓ | ✓ | ✓ | ✓ |
33 | Ligstroside isomer 3 | C25H32O12 | 24.70 | 523.1802 | 523.1821 | 3.6 | ✓ | ✓ | ND | ✓ |
34 | Oleuropein isomer 5 | C25H32O13 | 24.89 | 539.1745 | 539.1770 | 4.6 | ✓ | ✓ | ✓ | ✓ |
35 | Oleuropein isomer 6 | C25H32O13 | 25.01 | 539.1725 | 539.1770 | 8.3 | ✓ | ✓ | ✓ | ✓ |
36 | UK 3 3 | C27H38O15 | 25.97 | 601.2106 | 601.2138 | 5.3 | ✓ | ✓ | ✓ | ✓ |
37 | Luteolin | C15H10O6 | 26.35 | 285.0372 | 285.0405 | 11.6 | ✓ | ✓ | ✓ | ✓ |
38 | Apigenin | C15H10O5 | 26.43 | 269.0425 | 269.0455 | 11.3 | ✓ | ✓ | ND | ✓ |
39 | Maslinic acid | C30H48O4 | 27.16 | 471.3470 | 471.3480 | 2.2 | ✓ | ✓ | ND | ✓ |
Extraction Technique | Yield (%) | Total Bioactive Compound 1 (mg Compound/g Olive Leaf DW 2) |
---|---|---|
CE | 26 ± 1 a | 23 ± 3 b |
PLE | 19 ± 2 b | 33 ± 4 a |
SWE | 29 ± 5 a | 12 ± 1 c |
UAE | 24 ± 1 ab | 33 ± 3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Salas, L.; Expósito-Almellón, X.; Valencia-Isaza, A.; Fernández-Arteaga, A.; Quirantes-Piné, R.; Borrás-Linares, I.; Lozano-Sánchez, J. Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods. Foods 2025, 14, 3030. https://doi.org/10.3390/foods14173030
López-Salas L, Expósito-Almellón X, Valencia-Isaza A, Fernández-Arteaga A, Quirantes-Piné R, Borrás-Linares I, Lozano-Sánchez J. Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods. Foods. 2025; 14(17):3030. https://doi.org/10.3390/foods14173030
Chicago/Turabian StyleLópez-Salas, Lucía, Xavier Expósito-Almellón, Anderson Valencia-Isaza, Alejandro Fernández-Arteaga, Rosa Quirantes-Piné, Isabel Borrás-Linares, and Jesús Lozano-Sánchez. 2025. "Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods" Foods 14, no. 17: 3030. https://doi.org/10.3390/foods14173030
APA StyleLópez-Salas, L., Expósito-Almellón, X., Valencia-Isaza, A., Fernández-Arteaga, A., Quirantes-Piné, R., Borrás-Linares, I., & Lozano-Sánchez, J. (2025). Eco-Friendly Extraction of Olive Leaf Phenolics and Terpenes: A Comparative Performance Analysis Against Conventional Methods. Foods, 14(17), 3030. https://doi.org/10.3390/foods14173030