Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Culture
2.2. Extracts of A. argyi, Compounds
2.3. Anti-Algal Bioassay
2.4. Pigment Contents
2.5. Determination of pH and EC, Morphological Characterization
2.5.1. Measurements of pH and EC
2.5.2. SEM
2.6. Determination of Oxidative Stress Levels and Antioxidant Enzyme Activities
2.6.1. Sample Preparation
2.6.2. TP
2.6.3. MDA
2.6.4. H2O2
2.6.5. CAT Activity
2.7. LC-HRMS
2.8. Statistical Analyses
3. Results
3.1. Effects of Extracts of A. argyi Leaves on M. aeruginosa
3.2. Influence of DE on Photosynthetic Pigment Contents in M. aeruginosa Cells
3.3. Oxidative Stress of DE on M. aeruginosa
3.4. Effects of DE on Cell Permeability of M. aeruginosa
3.5. LC-HRMS Analysis of Secondary Metabolites in DE
3.6. The Inhibitory Effects of Main Flavonoids in DE on M. aeruginosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CyanoHABs | harmful cyanobacterial blooms |
LC-HRMS | high-resolution mass spectrometry |
CE | crude ethanol extract of A. argyi leaves |
PEE | petroleum ether extract of A. argyi leaves |
DE | dichloromethane extract of A. argyi leaves |
EE | ethyl acetate extract of A. argyi leaves |
WP | water phase of A. argyi leaves |
IC50 | half-maximal inhibitory concentration |
Chl a | chlorophyll a |
PBPs | phycobiliproteins |
PCD | programmed cell death |
MC-LR | microcystin-leucine-arginine |
IR | inhibition rate |
PC | phycocyanin |
APC | allophycocyanin |
PE | phycoerythrin |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
GC-MS | gas chromatography–mass spectrometry |
PSII | photosystem II |
EC | electrical conductivity |
MDA | malondialdehyde |
SEM | scanning electron microscopy |
CAT | catalase |
TP | total protein |
References
- Song, L.; Jia, Y.; Qin, B.; Li, R.; Carmichael, W.W.; Gan, N.; Sukenik, A. Harmful cyanobacterial blooms: Biological traits, mechanisms, risks, and control strategies. Annu. Rev. Environ. Resour. 2023, 48, 123–147. [Google Scholar] [CrossRef]
- Sun, R.; Sun, P.; Zhang, J.; Esquivel-Elizondo, S.; Wu, Y. Microorganisms-based methods for harmful algal blooms control: A review. Bioresour. Technol. 2018, 248, 12–20. [Google Scholar] [CrossRef]
- Chen, J.; Gang, P. Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide. J. Appl. Phycol. 2012, 24, 1183–1189. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 2021, 401, 123403. [Google Scholar] [CrossRef]
- Li, B.; Yin, Y.; Kang, L.; Feng, L.; Liu, Y.; Du, Z.; Tian, Y.; Zhang, L. A review: Application of allelochemicals in water ecological restoration—Algal inhibition. Chemosphere 2021, 267, 128869. [Google Scholar] [CrossRef]
- Mohamed, Z.A. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—A review. Limnologica 2017, 63, 122–132. [Google Scholar] [CrossRef]
- Mowe, M.A.D.; Song, Y.; Sim, D.Z.H.; Lu, J.; Mitrovic, S.M.; Tan, H.T.W.; Yeo, D.C.J. Comparative study of six emergent macrophyte species for controlling cyanobacterial blooms in a tropical reservoir. Ecol. Eng. 2019, 129, 11–21. [Google Scholar] [CrossRef]
- Amorim, C.A.; Moura-Falcão, R.H.; Valença, C.R.; Souza, V.R.; Moura, A.D. Allelopathic effects of the aquatic macrophyte Ceratophyllum demersum L. on phytoplankton species: Contrasting effects between cyanobacteria and chlorophytes. Acta Limnol. Bras. 2019, 31, e21. [Google Scholar] [CrossRef]
- Le Rouzic, B.; Thiébaut, G.; Brient, L. Selective growth inhibition of cyanobacteria species (Planktothrix agardhii) by a riparian tree leaf extract. Ecol. Eng. 2016, 97, 74–78. [Google Scholar] [CrossRef]
- Li, L.; Jing, X.; Wang, L.; Li, J.; Zhang, Q.; Lu, Y.; Zhang, Y. The extract of aquatic macrophyte Carex cinerascens induced colony formation in bloom-forming cyanobacterium Microcystis aeruginosa. Environ. Sci. Pollut. Res. 2020, 27, 42276–42282. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, L.; Wang, Y. Isolating and identifying organic acids from Portulaca oleracea and determining their anti-cyanobacterial activity. Ecol. Environ. Conserv. 2017, 23, 490–496. [Google Scholar] [CrossRef]
- Kong, C.H.; Wang, P.; Zhang, C.X.; Zhang, M.X.; Zhou, J. Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res. 2006, 46, 290–295. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, H.; Ge, Z.; Rounge, T.B.; Shi, J.; Xu, X.; Li, R.; Chen, Y. A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): Characterization and comparison of their anti-cyanobacterial activities. Environ. Microbiol. 2014, 16, 1238–1251. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Dong, P.; Zhang, L.; Tang, H.; Han, Y.; Xie, G. Allelopathy of p-coumaric acid on Limnothrix sp., a bloom-forming cyanobacteria. Algal Res. 2023, 75, 103268. [Google Scholar] [CrossRef]
- Hou, X.; Huang, J.; Tang, J.; Wang, N.; Zhang, L.; Gu, L.; Sun, Y.; Yang, Z.; Huang, Y. Allelopathic inhibition of juglone (5-hydroxy-1,4-naphthoquinone) on the growth and physiological performance in Microcystis aeruginosa. J. Environ. Manag. 2019, 232, 382–386. [Google Scholar] [CrossRef]
- Yin, L.; Shi, K.; Yin, Y.; Zhang, Y.; Xu, L.; An, J.; Peng, C.; Wang, C.; He, H.; Yang, S.; et al. Long-term suppression of Microcystis aeruginosa by tannic acid: Risks of microcystin pollution and proteomic mechanisms. J. Hazard. Mater. 2025, 487, 137205. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Chen, H.; Cai, H.; Zhang, J.; Zhang, Y.; Zhang, Y.; Chen, J. Comprehensive review of botanical characteristics, artificial cultivation methods, quality evaluation, genome research, and potential applications of Artemisia argyi Lévl. et Van. Med. Plant Biol. 2024, 3, e002. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Chen, Q.; Guo, Z.; Sun, Y.; Chen, J.; Li, J. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Sci. Rep. 2021, 11, 4303. [Google Scholar] [CrossRef]
- Li, J.; Zhao, T.; Chen, L.; Chen, Q.; Guo, Z.; Sun, Y.; Chen, J.; Li, J. Artemisia argyi allelopathy: A generalist compromises hormone balance, element absorption, and photosynthesis of receptor plants. BMC Plant Biol. 2022, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.J.; Guo, T.; Xue, G.M.; Li, M.Y.; Zhang, S.X.; Li, J.Q. Artemisia argyi H. Lév. & Vaniot: A comprehensive review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev. 2024, 23, 821–862. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yu, D.; Li, Y.; Liu, Y.; Zhang, Y. A review of the research progress on Artemisia argyi Folium: Botany, phytochemistry, pharmacological activities, and clinical application. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7473–7500. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Wang, F.; Xu, R.; Yang, M.; Ci, Z.; Wu, Z.; Zhang, D.; Lin, J. From longevity grass to contemporary soft gold: Explore the chemical constituents, pharmacology, and toxicology of Artemisia argyi H.Lév. & Vaniot essential oil. J. Ethnopharmacol. 2021, 279, 114404. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.X.; Zhu, Y.Y.; Guo, L.J.; Ji, R.; Miao, Y.N.; Guo, L.P.; Du, H.T.; Liu, D. Weed suppression and molecular mechanisms of isochlorogenic acid A isolated from Artemisia argyi extract via an activity-guided method. J. Agric. Food Chem. 2022, 70, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Zhu, Y.; Guo, L.; Ji, R.; Miao, Y.; Guo, L.; Du, H.; Liu, D. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Front. Plant Sci. 2022, 12, 802198. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Bai, J.; Qiu, Y.; Peng, L.; Yue, M.; Wang, S.; Gao, X. Stress effects of allelopathic aqueous extracts in Artemisia argyi on Microcystis aeruginosa. Pol. J. Environ. Stud. 2024. [Google Scholar] [CrossRef]
- Abelson, J.N.; Simon, M.I. Phycobiliproteins in cyanobacteria. In Methods in Enzymology; Lester, P., Alexander, N.G., Eds.; Academic Press: London, UK, 1988; Volume 167, pp. 291–303. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.D.; Nunes, M.G.I.F.; Francisco, J.P.; dos Santos, E.H. Potential allelopathic effect of species of the Asteraceae family and its use in agriculture. In Vegetation Dynamics, Changing Ecosystems and Human Responsibility; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Araújo, C.A.; Morgado, C.S.; Gomes, A.K.C.; Gomes, A.C.C.; Simas, N.K. Asteraceae family: A review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguésia 2021, 72, e01622020. [Google Scholar] [CrossRef]
- Xu, F.Q.; He, W.; Zheng, X.; Zhang, W.H.; Cai, W.W.; Tang, Q. Inhibitory effect of Artemisia lavandulaefolia and its organic extracts on Microcystis aeruginosa growth. Acta Ecol. Sin. 2010, 30, 745–750. [Google Scholar] [CrossRef]
- Tebaa, L.; Douma, M.; Tazart, Z.; Manaut, N.; Mouhri, K.H.; Loudiki, M. Assessment of the potentially algicidal effects of Thymus satureioides Coss. and Artemisia herba alba L. against Microcystis aeruginosa. Appl. Ecol. Environ. Res. 2018, 16, 903–912. [Google Scholar] [CrossRef]
- Ni, L.; Hao, X.; Li, S.; Chen, S.; Ren, G.; Zhu, L. Inhibitory effects of the extracts with different solvents from three Compositae plants on cyanobacterium Microcystis aeruginosa. Sci. China Chem. 2011, 54, 1123–1129. [Google Scholar] [CrossRef]
- Ni, L.; Acharya, K.; Hao, X.; Li, S. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 2012, 88, 1051–1057. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, F.; He, W.; Zheng, X.; Cai, W.; Tang, Q. Inhibitive effects of three Compositae plants on Microcystis aeruginosa. Front. Environ. Sci. Eng. China 2009, 3, 48–55. [Google Scholar] [CrossRef]
- Shao, J.H.; Li, R.H.; Lepo, J.E.; Gu, J.D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manag. 2013, 125, 149–155. [Google Scholar] [CrossRef]
- Cao, J.G.; Dong, Z.Z.; Zhao, H.Y.; Duan, S.H.; Cao, X.L.; Liu, H.L.; Yang, Z.Z. Allelopathic Effect of Rhubarb Extracts on the Growth of Microcystis aeruginosa. Water Sci. Technol. 2020, 82, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Tan, L.; Lu, X.; Lin, S.; Lin, W. Photosynthetic toxicological effects of organic extracts from Zanthoxylum bungeanum leaves on controlling the Microcystis aeruginosa blooms. Curr. Microbiol. 2025, 82, 48. [Google Scholar] [CrossRef]
- Li, D.; Li, P.; Yan, Z.; Li, N.; Yao, L.; Cao, L. Allelopathic inhibition of the extracts of Landoltia punctata on Microcystis aeruginosa. Plant Signal. Behav. 2022, 17, 2058256. [Google Scholar] [CrossRef]
- Wu, X.; Wu, H.; Ye, J.; Zhong, B.; Li, R. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environ. Sci. Pollut. Res. 2015, 22, 18994–19001. [Google Scholar] [CrossRef] [PubMed]
- Budzałek, G.; Śliwińska-Wilczewska, S.; Klin, M.; Wiśniewska, K.; Latała, A.; Wiktor, J.M. Changes in growth, photosynthesis performance, pigments, and toxin contents of bloom-forming cyanobacteria after exposure to macroalgal allelochemicals. Toxins 2021, 13, 589. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, H.Y.; Sakoda, A.; Sagehashi, M. Effects of allelochemical gramine on photosynthetic pigments of cyanobacterium Microcystis aeruginosa. World Acad. Sci. Eng. Technol. 2010, 47, 831–835. [Google Scholar] [CrossRef]
- Yu, S.; Li, C.; Xu, C.; Effiong, K.; Xiao, X. Understanding the inhibitory mechanism of antialgal allelochemical flavonoids from genetic variations: Photosynthesis, toxin synthesis and nutrient utility. Ecotoxicol. Environ. Saf. 2019, 177, 18–24. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Weston, L.A.; Mathesius, U. Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 2013, 39, 283–297. [Google Scholar] [CrossRef]
- Zhao, Q.M.; Zhong, J.J.; He, P.M.; Shao, L. Study on inhibitory effects of flavonoids on Microcystis aeruginosa. Environ. Sci. Technol. 2022, 45, 1–7. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Shi, L.; Zhang, Y.; Zhang, Y. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. Environ. Sci. Pollut. Res. 2019, 26, 22389–22399. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, R.; Shi, Y.; Shen, A.; He, P.; Shao, L. Allelopathic inhibition and mechanism of quercetin on Microcystis aeruginosa. Plants 2023, 12, 1808. [Google Scholar] [CrossRef]
- Li, J.; Cao, L.; Guo, Z.; An, G.; Li, B.; Li, J. Time- and dose-dependent allelopathic effects and mechanisms of kaempferol on toxigenic Microcystis growth. Ecotoxicol. Environ. Saf. 2021, 222, 112508. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, X.; Ghadouani, A.; Wu, J.; Nie, Z.; Peng, C.; Xu, X.; Shi, J. Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins 2015, 7, 66–80. [Google Scholar] [CrossRef]
- Xu, C.; Yu, S.; Hu, J.; Effiong, K.; Ge, Z.; Tang, T.; Xiao, X. Programmed cell death process in freshwater Microcystis aeruginosa and marine Phaeocystis globosa induced by a plant derived allelochemical. Sci. Total Environ. 2022, 838, 156055. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xu, C.; Tang, T.; Zhang, Y.; Effiong, K.; Hu, J.; Bi, Y.; Xiao, X. Down-regulation of iron/zinc ion transport and toxin synthesis in Microcystis aeruginosa exposed to 5,4′-dihydroxyflavone. J. Hazard. Mater. 2023, 460, 132396. [Google Scholar] [CrossRef]
- Xiong, Z.Z.; Bi, Y.H. Inhibitory effect of salicylic acid on Cladophora growth. Asian J. Ecotoxicol. 2021, 16, 304–312. [Google Scholar] [CrossRef]
- Hu, L.J.; Tong, G.X.; Huang, G.H.; Wei, Q.S.; Yang, H.; Qin, Z.J. Allelopathic inhibition of salicylic acid on Microcystis aeruginosa. J. South. Agric. 2017, 48, 169–173. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Chen, C.; Li, J.; He, Y.; Xiao, H. Algal inhibiting effects of salicylic acid sustained-release microspheres on algae in different growth cycles. Int. J. Environ. Res. Public Health 2022, 19, 6320. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, J.; Ding, N.; Du, Y.; Xiao, H.; Wu, Y.; Wang, W. Antialgal effects of α-linolenic acid on harmful bloom-forming Prorocentrum donghaiense and the antialgal mechanisms. Environ. Sci. Pollut. Res. 2018, 25, 24798–24806. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, J.; Li, Y. Effect of azelaic acid of mangrove root exudates on Prorocentrum micans. Acta Oceanol. Sin. 2013, 35, 239–245. [Google Scholar] [CrossRef]
No. | Proposed Compounds | Molecular Formula | MW | Mass Error (ppm) | Main Fragment MS2 | RT (min) | Relative Content (%) |
---|---|---|---|---|---|---|---|
1 | Esculetin | C9H6O4 | 178.0264 | −1.15 | 177.0191 | 23.043 | 0.623 |
2 | Camphor | C10H16O | 152.1199 | −1.17 | 152.012, 109.1344, 95.2021, 81.0131, 69.0119 | 24.898 | 0.937 |
3 | 7-Hydroxycoumarin | C9H6O3 | 162.0315 | −1.07 | 162.0317 | 25.069 | 3.474 |
4 | Scopoletin | C10H8O4 | 192.0421 | −1.02 | 193.0492, 178.0261, 133.0658, 176.9143, 148.0137, 161.0233, 150.0305, 122.035 | 25.153 | 5.537 |
5 | Isofraxidin | C11H10O5 | 222.0525 | −1.36 | 220.8, 191 | 25.388 | 2.342 |
6 | Atractylenolide I | C15H18O2 | 230.1304 | −1.27 | 213.1259, 185.1321, 105.0701, 79.0548 | 26.228 | 2.009 |
7 | Azelaic acid | C9H16O4 | 188.1047 | −0.9 | 187.0974, 142.0039, 99.9256 | 26.343 | 0.655 |
8 | Arglabin | C15H18O3 | 246.1252 | −1.57 | 247.1358 | 26.773 | 4.001 |
9 | Salicylic acid | C7H6O3 | 138.0315 | −1.46 | 93.0344 | 26.898 | 2.154 |
10 | Linderane | C15H16O4 | 260.1045 | −1.56 | 243.1012, 261.1117 | 27.601 | 1.822 |
11 | Abscisic acid | C15H20O4 | 264.1358 | −1.45 | 219.1389, 204.1154 | 28.272 | 0.605 |
12 | Dehydrocostus lactone | C15H18O2 | 230.1304 | −1.27 | 231.1377, 232.1044, 233.1448 | 28.62 | 0.719 |
13 | Eupafolin | C16H12O7 | 316.0579 | −1.19 | 168.0537 | 28.903 | 1.377 |
14 | 7-Methoxycoumarin | C10H8O3 | 176.0471 | −1.27 | 145.0287, 135.0442, 117.034 | 29.638 | 0.823 |
15 | Linderalactone | C15H16O3 | 244.1095 | −1.76 | 245.1168 | 29.659 | 2.024 |
16 | Hispidulin | C16H12O6 | 300.0629 | −1.59 | 301.0712, 286.1991, 258.0529, 241.1807, 169.1003, 133.1023, 299.0557 | 30.941 | 4.377 |
17 | Iristectorigenin B | C17H14O7 | 330.0734 | −1.72 | 316.0132 | 30.95 | 0.805 |
18 | 5,7,3′-Trihydroxy-6,4′,5′-trimethoxyflavone | C18H16O8 | 360.0839 | −1.73 | 361.0911 | 31.252 | 6.754 |
19 | Jaceosidin | C17H14O7 | 330.0734 | −1.76 | 316.0912, 301.1475 | 31.423 | 14.614 |
20 | Eupatilin | C18H16O7 | 344.0889 | −2.06 | 297.0838, 284.2992 | 34.216 | 25.187 |
21 | Chrysosplenetin B | C19H18O8 | 374.0994 | −2 | 375.1066, 397.0884, 771.1879 | 35.316 | 8.442 |
22 | α-Linolenic acid | C18H30O2 | 278.224 | −2.22 | 279.0944, 149.0236, 123.1172, 109.1066, 137.1324, 135.1166, 121.0283 | 42.933 | 0.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Li, P.; Du, Y.; Cao, L.; Yan, Z. Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals. Biology 2025, 14, 1141. https://doi.org/10.3390/biology14091141
Dong J, Li P, Du Y, Cao L, Yan Z. Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals. Biology. 2025; 14(9):1141. https://doi.org/10.3390/biology14091141
Chicago/Turabian StyleDong, Jiajia, Peng Li, Yalei Du, Lingling Cao, and Zhiqiang Yan. 2025. "Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals" Biology 14, no. 9: 1141. https://doi.org/10.3390/biology14091141
APA StyleDong, J., Li, P., Du, Y., Cao, L., & Yan, Z. (2025). Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals. Biology, 14(9), 1141. https://doi.org/10.3390/biology14091141