Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = CA-dToF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2825 KB  
Article
Expression Profiles of Growth-Related Genes in CRISPR/Cas9-Mediated MRF4-Crispant Nile Tilapia
by Zahid Parvez Sukhan, Yusin Cho, Doohyun Cho, Cheol Young Choi and Kang Hee Kho
Fishes 2026, 11(1), 52; https://doi.org/10.3390/fishes11010052 - 14 Jan 2026
Viewed by 132
Abstract
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle gene expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using [...] Read more.
Genome editing of late myogenic regulators provides a way to dissect the mechanisms through which transcriptional programs and growth-related signaling pathways shape muscle gene expression programs in farmed fish. This study disrupted myogenic regulatory factor 4 (MRF4) in Nile tilapia using CRISPR/Cas9 to examine downstream transcriptional changes in fast skeletal muscle across the trunk, belly, and head regions. Adult F0 crispants carried a frameshift mutation that truncated the basic helix–loop–helix domain and showed an approximate 80–85% reduction in MRF4 mRNA across the trunk, belly, and head muscles. The expression of 23 genes representing myogenic regulatory factors, MEF2 paralogs, structural and contractile components, non-myotomal regulators, cell adhesion and fusion-related transcripts, and growth-related genes within the GH–IGF–MSTN axis was quantified and compared between wild-type and MRF4-crispants. Expressions of major structural genes remained unchanged despite MRF4 depletion, whereas MyoG and MyoD were upregulated together with MEF2B and MEF2D, indicating strong transcriptional compensation. Twist1, ID1, PLAU, CDH15, CHRNG, NCAM1, MYMK, GHR, and FGF6 were also significantly elevated, while IGF1 was reduced, and MSTN remained stable. Together, these results show that MRF4 loss is associated with coordinated transcriptional changes in regulatory and growth-related pathways, while major fast-muscle structural and contractile transcript levels remain stable, thereby highlighting candidate transcriptional targets for future studies that will evaluate links to muscle phenotype and growth performance in Nile tilapia. Full article
(This article belongs to the Special Issue Genetics and Breeding of Fishes)
Show Figures

Figure 1

39 pages, 14025 KB  
Article
Degradation-Aware Multi-Stage Fusion for Underwater Image Enhancement
by Lian Xie, Hao Chen and Jin Shu
J. Imaging 2026, 12(1), 37; https://doi.org/10.3390/jimaging12010037 - 8 Jan 2026
Viewed by 276
Abstract
Underwater images frequently suffer from color casts, low illumination, and blur due to wavelength-dependent absorption and scattering. We present a practical two-stage, modular, and degradation-aware framework designed for real-time enhancement, prioritizing deployability on edge devices. Stage I employs a lightweight CNN to classify [...] Read more.
Underwater images frequently suffer from color casts, low illumination, and blur due to wavelength-dependent absorption and scattering. We present a practical two-stage, modular, and degradation-aware framework designed for real-time enhancement, prioritizing deployability on edge devices. Stage I employs a lightweight CNN to classify inputs into three dominant degradation classes (color cast, low light, blur) with 91.85% accuracy on an EUVP subset. Stage II applies three scene-specific lightweight enhancement pipelines and fuses their outputs using two alternative learnable modules: a global Linear Fusion and a LiteUNetFusion (spatially adaptive weighting with optional residual correction). Compared to the three single-scene optimizers (average PSNR = 19.0 dB; mean UCIQE ≈ 0.597; mean UIQM ≈ 2.07), the Linear Fusion improves PSNR by +2.6 dB on average and yields roughly +20.7% in UCIQE and +21.0% in UIQM, while maintaining low latency (~90 ms per 640 × 480 frame on an Intel i5-13400F (Intel Corporation, Santa Clara, CA, USA). The LiteUNetFusion further refines results: it raises PSNR by +1.5 dB over the Linear model (23.1 vs. 21.6 dB), brings modest perceptual gains (UCIQE from 0.72 to 0.74, UIQM 2.5 to 2.8) at a runtime of ≈125 ms per 640 × 480 frame, and better preserves local texture and color consistency in mixed-degradation scenes. We release implementation details for reproducibility and discuss limitations (e.g., occasional blur/noise amplification and domain generalization) together with future directions. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

23 pages, 30920 KB  
Article
A Surface Defect Detection System for Industrial Conveyor Belt Inspection Using Apple’s TrueDepth Camera Technology
by Mohammad Siami, Przemysław Dąbek, Hamid Shiri, Tomasz Barszcz and Radosław Zimroz
Appl. Sci. 2026, 16(2), 609; https://doi.org/10.3390/app16020609 - 7 Jan 2026
Viewed by 241
Abstract
Maintaining the structural integrity of conveyor belts is essential for safe and reliable mining operations. However, these belts are susceptible to longitudinal tearing and surface degradation from material impact, fatigue, and deformation. Many computer vision-based inspection methods are inefficient and unreliable in harsh [...] Read more.
Maintaining the structural integrity of conveyor belts is essential for safe and reliable mining operations. However, these belts are susceptible to longitudinal tearing and surface degradation from material impact, fatigue, and deformation. Many computer vision-based inspection methods are inefficient and unreliable in harsh mining environments characterized by dust and variable lighting. This study introduces a smartphone-driven defect detection system for the cost-effective, geometric inspection of conveyor belt surfaces. Using Apple’s iPhone 12 Pro Max (Apple Inc., Cupertino, CA, USA), the system captures 3D point cloud data from a moving belt with induced damage via the integrated TrueDepth camera. A key innovation is a 3D-to-2D projection pipeline that converts point cloud data into structured representations compatible with standard 2D Convolutional Neural Networks (CNNs). We then propose a hybrid deep learning and machine learning model, where features extracted by pre-trained CNNs (VGG16, ResNet50, InceptionV3, Xception) are classified by ensemble methods (Random Forest, XGBoost, LightGBM). The proposed system achieves high detection accuracy exceeding 0.97 F1 score in the case of all proposed model implementations with TrueDepth F1 score over 0.05 higher than RGB approach. Applied cost-effective smartphone-based sensing platform proved to support near-real-time maintenance decisions. Laboratory results demonstrate the method’s reliability, with measurement errors for defect dimensions within 3 mm. This approach shows significant potential to improve conveyor belt management, reduce maintenance costs, and enhance operational safety. Full article
(This article belongs to the Special Issue Mining Engineering: Present and Future Prospectives)
Show Figures

Figure 1

10 pages, 274 KB  
Article
Cognitive Dysfunction in Fibromyalgia: Prevalence and Independent Predictors—A Case–Control Study Using the Montreal Cognitive Assessment Scale
by Sofia Ferreira Azevedo, Inês Genrinho, Joana Saldanha and Inês Cunha
Brain Sci. 2026, 16(1), 68; https://doi.org/10.3390/brainsci16010068 - 1 Jan 2026
Viewed by 568
Abstract
Background: Cognitive dysfunction is a frequent but under-recognized feature of fibromyalgia (FM). Its prevalence varies widely across studies, and independent clinical predictors remain uncertain. This study aimed to determine the prevalence of cognitive dysfunction in FM patients compared with healthy controls and identify [...] Read more.
Background: Cognitive dysfunction is a frequent but under-recognized feature of fibromyalgia (FM). Its prevalence varies widely across studies, and independent clinical predictors remain uncertain. This study aimed to determine the prevalence of cognitive dysfunction in FM patients compared with healthy controls and identify independent associated factors. Methods: We conducted a case–control study including 47 adult female patients with FM (2016 ACR criteria) and 19 age- and sex-matched healthy controls. Sociodemographic and clinical data were collected. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA), with cognitive dysfunction defined as MoCA < 26. Pain (VAS), fatigue (VAS and FACIT-F), anxiety and depression (HADS), sleep quality (PSQI), and disease impact (FIQ-P) were assessed. Univariate analysis was followed by binary logistic regression to identify independent predictors of cognitive dysfunction and multiple linear regression to explore associations with MoCA score. Results: Cognitive dysfunction was present in 72.3% of FM patients versus 5.3% of controls (p < 0.001). FM patients had significantly worse pain scores, fatigue levels, psychological distress, sleep quality, and quality of life (all p < 0.001). In FM patients, MoCA scores correlated inversely with pain (r = −0.34), anxiety (r = −0.34), depression (r = −0.48), disease impact (r = −0.43), and sleep disturbance (r = −0.48), and positively with FACIT-F (r = 0.37) and EQ-5D-5L (ρ = 0.60). In multivariate analysis, higher FIQ-P scores were independently associated with cognitive dysfunction [adjusted OR1.18; 95% CI (1.06–1.30); p < 0.01]. Pain severity [adjusted B = −0.40; 95%CI (−0.64–0.15; p < 0.01)] and depression [adjusted B = −2.60; 95% CI (−4.12–1.04; p = 0.001)] were independently associated with lower MoCA scores. Conclusions: Cognitive dysfunction is highly prevalent in FM and is independently associated with pain severity, depressive symptoms, and disease impact. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
16 pages, 2620 KB  
Article
Estimation of Effective Cation Exchange Capacity and Exchangeable Iron in Paddy Fields After Soil Flooding
by Ledemar Carlos Vahl, Roberto Carlos Doring Wolter, Antônio Costa de Oliveira, Filipe Selau Carlos, Robson Bosa dos Reis and Rogério Oliveira de Sousa
Soil Syst. 2026, 10(1), 7; https://doi.org/10.3390/soilsystems10010007 - 31 Dec 2025
Viewed by 226
Abstract
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized [...] Read more.
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized and precipitated during the extraction process used in traditional CEC methods. This procedure underestimates the exchangeable portion of these cations and, consequently, the CEC value of the flooded soil. We introduce a pH-gradient-based model to predict ECEC and exchangeable Fe2+ in flooded soils, circumventing oxidation artifacts inherent in conventional methods. The objective of this study is to propose an alternative to estimate the exchangeable Fe2+ and the effective CEC (ECEC) of flooded soils. To achieve this goal, 21 surface samples (0–20 cm) of soil from rice fields were collected and distributed in the cultivation regions of southern Brazil. The soils were flooded for 50 days. The soil solution was collected on the first day and after 50 days of flooding and pH, Na, K, Ca, Mg, Fe and Mn were determined. In these samples, exchangeable cations (K, Na, Ca, Mg, Mn, Al and H + Al) were determined to calculate ECEC and CEC at pH 7 of unflooded soil and after 50 days of flooding. There was a wide range of variation in the exchangeable cation contents among the soil samples. The K contents ranged from 0.12 to 0.54 cmolc kg−1, the Na contents from 0.00 to 1.18 cmolc kg−1, the Ca contents from 0.48 to 37.31 cmolc kg−1, the Mg contents from 0.10 to 15.53 cmolc kg−1, the Mn contents from 0.01 to 0.36 cmolc kg−1, the Al contents from 0.10 to 1.74 cmolc kg−1 and the H + Al contents from 2.01 to 8.42 cmolc kg−1. The results were used to develop models to predict ECEC and exchangeable Fe content after 50 days of flooding. Estimating the ECEC after flooding using the pH gradient before and after flooding yielded values closer to CEC pH 7.0, correcting for the possible underestimation of the ECEC during flooding. The amount of exchangeable Fe estimated was higher than the exchangeable Fe determined, correcting the possible underestimation of these quantities determined during flooding. It is concluded that the estimations of ECEC after flooding through the equation ECECafter=ECEC+pHsol.after pHsol.before × (CECpH7 ECEC)(7 pHsol.before), where pHsol.before is pre-flooding soil pH, pHsol.after is after flooding pH, ECECafter is effective CEC after flooding and the exchangeable Fe2+ after flooding through the equation Feexc.after.estimated=ECECafter Ca+Mg+K+Na+Mn where Feexc.after.estimated is estimated exchangeable Fe2+ after flooding corrected the problem of underestimating the values of these variables by analytical methods, demonstrating its viability for use in flood-prone soils. Full article
Show Figures

Figure 1

22 pages, 5599 KB  
Article
Calmodulin Interaction Interface with Plasma Membrane Ca2+-ATPase Isoforms: An Integrative Bioinformatic Analysis
by Miguel Martínez-Fresneda, Esteban Lizano, Gabriela Echeverría-Garcés, Andres Herrera-Yela, Danna Feijóo, Grecia Victoria Vivas-Colmenares, Alvaro López-Zaplana, Leda Pedelini, Marta Mendoza, Juan Carlos Navarro and Jose Ruben Ramírez-Iglesias
Int. J. Mol. Sci. 2025, 26(23), 11750; https://doi.org/10.3390/ijms262311750 - 4 Dec 2025
Viewed by 540
Abstract
Plasma membrane Ca2+-ATPases (PMCA) are activated by calmodulin (CaM) via a C-terminal calmodulin-binding domain, CaMBD. Although specific mutations in this domain have been linked to disease, the broader impact of alternative substitutions across the interface remains unexplored. We applied an integrative [...] Read more.
Plasma membrane Ca2+-ATPases (PMCA) are activated by calmodulin (CaM) via a C-terminal calmodulin-binding domain, CaMBD. Although specific mutations in this domain have been linked to disease, the broader impact of alternative substitutions across the interface remains unexplored. We applied an integrative in silico workflow to test six substitutions within CaMBD positions 1–18, L5R, N6I, I8T, V14E/D, and F18S, across PMCA isoforms 1–4. CaMBD sequences were aligned across isoforms, and candidates for substitutions were selected by conservation and nucleotide feasibility, prioritizing conserved or co-evolutionarily relevant sites, with substitutions possible by single-nucleotide change. PolyPhen-2 screened the impact of the substitutions on the protein functionality, the DisGeNET database was used to contextualize ATP2B genes with clinical phenotypes, and structural models plus binding free energy changes were estimated with AlphaFold3, FoldX, and MutaBind2. Effects were isoform and subregion dependent, with the strongest weakening toward the CaMBD C-terminus. V14E/D and F18S showed the largest and consistent predicted destabilization, consistent with disruption of conserved hydrophobic anchors. I8T and L5R had mixed outcomes depending on isoform, while N6I presented various scenarios with no clear effect. PolyPhen-2 classified most tested substitutions as damaging. Gene-disease evidence linked ATP2B to neurological, endocrine, and oncologic phenotypes, consistent with roles in Ca2+ homeostasis. Overall, CaMBD appears highly sensitive to perturbation, with distal positions 14–18 particularly vulnerable to substitutions that can destabilize CaM binding and potentially impair PMCA-mediated Ca2+ clearance in susceptible tissues. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

19 pages, 3969 KB  
Article
Surface Plasmon Resonance and Reduced Graphene Oxide for Optical Ion Monitoring in Water: A Numerical Modeling
by Talia Tene, Edison Patricio Villacres Cevallos, María de Lourdes Palacios Robalino, Lorenzo S. Caputi, Salvatore Straface and Cristian Vacacela Gomez
Photonics 2025, 12(12), 1162; https://doi.org/10.3390/photonics12121162 - 26 Nov 2025
Viewed by 427
Abstract
In this work, we analyze how the coupling prism governs the performance of reduced-graphene-oxide (rGO)-assisted surface plasmon resonance (SPR) sensors for trace heavy-metal detection in water. A Kretschmann multilayer at 633 nm with a fixed Cu/Si3N4/rGO stack (45.0/5.00/1.41 nm) [...] Read more.
In this work, we analyze how the coupling prism governs the performance of reduced-graphene-oxide (rGO)-assisted surface plasmon resonance (SPR) sensors for trace heavy-metal detection in water. A Kretschmann multilayer at 633 nm with a fixed Cu/Si3N4/rGO stack (45.0/5.00/1.41 nm) is modeled by transfer-matrix methods while varying the prism material among CaF2, BK7, SiO2, and SF6. Performance optimization is carried out using angular sensitivity, full width at half maximum (FWHM), figure of merit (FoM), detection accuracy (DA), quality factor (QF), and a practical limit of detection (LoD). The analyte is represented by refractive-index typical of clean and contaminated water (n = 1.330 and 1.340). SF6 yields the narrowest angular resonances but compresses analyte-induced angle spacing; CaF2 provides larger analyte separations and consequently higher FoM and lower LoD under angle-encoded readout. The rGO interlayer enhances surface interaction across all prisms when co-tuned with the Cu and Si3N4 thicknesses. The sensitivity peaks around 310–320°·RIU−1 for CaF2. These results highlight the prism as a primary design variable in rGO-enhanced SPR sensing and position CaF2-coupled architectures as promising for compact water-quality monitoring. Full article
Show Figures

Figure 1

13 pages, 4036 KB  
Article
Thermal Analysis and Crystallization of Bioactive Glass “1d” in the SiO2-CaO-MgO-P2O5-CaF2-Na2O Compositional System
by Valentina Rigano, Dilshat U. Tulyaganov, Konstantinos Dimitriadis, Simeon Agathopoulos and Francesco Baino
Ceramics 2025, 8(4), 145; https://doi.org/10.3390/ceramics8040145 - 26 Nov 2025
Viewed by 629
Abstract
The crystallization behavior of the bioactive silicate glass “1d” was analyzed using non-isothermal conditions through differential scanning calorimetry (DSC). The plots carried out at different heating rates showed only one crystallization peak. The activation energy for crystallization was calculated through the equations proposed [...] Read more.
The crystallization behavior of the bioactive silicate glass “1d” was analyzed using non-isothermal conditions through differential scanning calorimetry (DSC). The plots carried out at different heating rates showed only one crystallization peak. The activation energy for crystallization was calculated through the equations proposed in the Kissinger and Matusita–Sakka models. The Johnson–Mehl–Avrami coefficient (n) was estimated by applying Ozawa and Augis–Bennet methods, resulting in a two-dimensional crystal growth. Crystalline phases which developed during high-temperature treatment were analyzed by X-ray diffraction and scanning electron microscopy. The activation energy for viscous flow was estimated to be 513 kJ/mol, which is lower than the activation energy for crystallization (539 kJ/mol). The Malek test highlighted that the crystallization process was more complex than a simple nucleation-growth mechanism. The sinterability parameter and Hruby coefficient showed the high stability of 1d glass against crystallization, which makes this bioactive material highly appealing for producing well-sintered products of biomedical interest, such as bioactive porous scaffolds for bone regeneration. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

35 pages, 15734 KB  
Article
Demonstration of 3D-Printed Concrete Containing Fine Recycled Concrete Aggregates (fCAs) and Recycled Concrete Powder (RCP): Rheology, Early-Age, Shrinkage, Mechanical, and Durability Performance
by Pawel Sikora, Karol Federowicz, Szymon Skibicki, Mateusz Techman, Marcin Hoffmann, Joao Nuno Pacheco, Mehdi Chougan, Daniel Grochała, Krzysztof Cendrowski, Daniel Sibera, Jarosław Błyszko, Bartosz Budziński, Guan Lin and Aleksandra Ludwiczak-Sarzała
Buildings 2025, 15(23), 4255; https://doi.org/10.3390/buildings15234255 - 25 Nov 2025
Viewed by 756
Abstract
The paper presents a comprehensive analysis of cement-based composites incorporating both fine recycled concrete aggregates (fRAs) and recycled concrete powder (RCP), which were used for 3D concrete printing. The study evaluates properties ranging from fresh-state behaviour to hardened properties, durability, and microstructural characteristics. [...] Read more.
The paper presents a comprehensive analysis of cement-based composites incorporating both fine recycled concrete aggregates (fRAs) and recycled concrete powder (RCP), which were used for 3D concrete printing. The study evaluates properties ranging from fresh-state behaviour to hardened properties, durability, and microstructural characteristics. In the final stage, a life cycle assessment (LCA) was conducted. A study found that it is feasible to print a composite containing up to 100% fRA as a replacement for natural river sand. Notably, an increase in fRA content enhances the buildability of the mix, as confirmed by green strength tests. However, the open time of mixes containing fRA and RCP was shortened. Incorporation of RCP and fRA led to a decrease in shrinkage within the first 24 h of hydration. Mechanical studies reported a significant reduction in compressive strength (up to 55%) when RCP and fRA were introduced to the mix. Despite the reduction in mechanical properties in specific configurations, all mixes—including 100% fRA and 10% RCP—exhibited compressive strengths above 30 MPa, demonstrating their potential suitability for use in the construction industry. The durability properties of mixes modified with fRA show that there is a statistically significant reduction in flexural strength after 25 and 50 freeze–thaw cycles. In terms of compressive strength, cast specimens did not exhibit any notable reduction in mechanical performance after freezing and thawing cycles. The LCA results demonstrate the high potential for using fRA and RCP derived from concrete waste in the additive manufacturing industry. Full article
(This article belongs to the Special Issue Advanced Studies in Cement-Based Materials)
Show Figures

Figure 1

22 pages, 4157 KB  
Article
Physiological and Metabolic Challenges of Flocculating Saccharomyces cerevisiae in D-Lactic Acid Fermentation Under High-Glucose and Inhibitory Conditions
by Dianti Rahmasari, Prihardi Kahar, Filemon Jalu Nusantara Putra and Chiaki Ogino
Processes 2025, 13(11), 3723; https://doi.org/10.3390/pr13113723 - 18 Nov 2025
Viewed by 762
Abstract
Lactic acid is an important biobased chemical widely used in the production of biodegradable plastics, food, and pharmaceuticals. However, the application of flocculant Saccharomyces cerevisiae remains limited in addressing stresses such as high-glucose and inhibitor-rich conditions derived from biomass, particularly in D-lactic acid [...] Read more.
Lactic acid is an important biobased chemical widely used in the production of biodegradable plastics, food, and pharmaceuticals. However, the application of flocculant Saccharomyces cerevisiae remains limited in addressing stresses such as high-glucose and inhibitor-rich conditions derived from biomass, particularly in D-lactic acid (D-LA) production. This study investigates two genetically engineered S. cerevisiae F118 strains, ΔCYB2::LpDLDH and ΔPDC1::LpDLDH, for D-LA production under high-glucose and inhibitor-stress conditions that mimic lignocellulosic hydrolysates in shake-flask fermentation. At 150 g/L glucose, ΔCYB2::LpDLDH produced 41 ± 0.73 g/L D-LA, whereas ΔPDC1::LpDLDH yielded 80 ± 1.78 g/L, corresponding to 27% and 53% of the theoretical yield, respectively. Calcium carbonate (CaCO3) supplementation enhanced glucose consumption and strengthened flocculation in ΔPDC1::LpDLDH. The addition of 5% inhibitory chemical compounds (ICCs) consisting of furfural, HMF, and weak acids redirected carbon flux in ΔCYB2::LpDLDH toward D-LA formation and reduced ethanol byproduct accumulation. Transcriptomic analysis revealed the upregulation of stress-response genes (HOG1, TPS1) and cell-wall remodeling genes (CRH1, SCW10) in response to high-glucose stress. The strongly flocculent F118ΔCYB2::LpDLDH strain exhibited greater tolerance to weak acids and furfural than the weakly flocculent F118ΔPDC1::LpDLDH strain. Metabolomic profiling indicated that under inhibitor stress, carbon flux was diverted from the TCA cycle toward lactate synthesis to maintain redox balance. These findings highlight the multifaceted benefits of flocculation in enhancing strain robustness and D-LA productivity under harsh fermentation environments, providing insights for developing resilient yeast platforms for lignocellulosic bioprocessing. Full article
(This article belongs to the Special Issue Advances in Synthetic Biological Approaches to Microbial Engineering)
Show Figures

Figure 1

16 pages, 11146 KB  
Article
Preparation and Study of Bright Orange-Yellow Long Persistent Luminescent Ca2LuScGa2Ge2O12:Pr3+ Phosphor
by Xiaoman Shi, Huimin Li, Ruiping Deng, Su Zhang and Hongjie Zhang
Photochem 2025, 5(4), 38; https://doi.org/10.3390/photochem5040038 - 18 Nov 2025
Viewed by 485
Abstract
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow [...] Read more.
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow long-persistent phosphors Ca2LuScGa2Ge2O12:xPr3+ (CLSGGO:xPr3+, x = 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05) are prepared and systematically investigated through its crystal structural information, photoluminescence, and persistent luminescence properties. Under ultraviolet light excitation, these phosphors exhibit orange-yellow emission stemming from the 3P0 and 1D2 multiple electron transitions in the 4f level of Pr3+ ion. In addition, the material exhibits bright persistent luminescence. The complex garnet matrix structure of Ca2LuScGa2Ge2O12 provides excellent conditions for the formation of traps. Through the testing of thermoluminescence curve and function fitting, the density and depth of traps are studied; also, the storage and release process of carriers in the material are calculated in detail. A reasonable persistent luminescence mechanism is proposed for CLSGGO:0.01Pr3+. This work enriches the research content of photoluminescence and long persistent luminescence of Pr3+-doped garnet-based phosphors and paves the way for the future research of long persistent luminescent materials doped with rare earth ions. Full article
Show Figures

Figure 1

26 pages, 4662 KB  
Article
Effect of Simulated Gastrointestinal Digestion on the Phenolic Composition and Bioactivity of Cymbopogon flexuosus Extracts
by Ana Alimpić Aradski, Danijel D. Milinčić, Mirjana B. Pešić, Milena Milutinović, Eisuke Kuraya, Akiko Touyama and Danka Bukvički
Foods 2025, 14(22), 3868; https://doi.org/10.3390/foods14223868 - 12 Nov 2025
Viewed by 633
Abstract
This study characterized leaf extracts of Cymbopogon flexuosus (Ryukyu Lemongrass Corporation, Okinawa, Japan) and evaluated the bioaccessibility and bioactivities of phenolic compounds following a simulated in vitro gastrointestinal model of digestion (in vitro GID) of plant material. Undigested (controls, AqC, EtC) and digested [...] Read more.
This study characterized leaf extracts of Cymbopogon flexuosus (Ryukyu Lemongrass Corporation, Okinawa, Japan) and evaluated the bioaccessibility and bioactivities of phenolic compounds following a simulated in vitro gastrointestinal model of digestion (in vitro GID) of plant material. Undigested (controls, AqC, EtC) and digested aqueous (AqD) and ethanolic (EtD) extracts were analyzed. Control extracts contained higher total phenolics and flavonoids than digested ones, with EtC showing the highest values. UHPLC-QToF-MS (ultra-high-performance liquid chromatography system coupled to a quadrupole time-of-flight mass spectrometer) identified 32 compounds, including phenolic acids, flavone aglycones, C-glycosides, and derivatives. Hydroxybenzoic acids, coumaric acid, caffeic esters, flavones, tricin derivatives, vitexin, and isoorientin exhibited reduced recovery, while coumaric acid hexoside, ferulic acid hexoside, and isoschaftoside/schaftoside exceeded 100% recovery, suggesting release from the matrix. Some compounds were absent from AqD, and many were found in the pellet, indicating potential colonic metabolism. Antioxidant activity (DPPH, reducing power, β-carotene/linoleic acid) was stronger in controls but always weaker than BHT/ascorbic acid. Extracts mildly inhibited α-amylase but more strongly inhibited α-glucosidase as shown with applied enzyme inhibition assays, especially EtD (76.93% at a concentration of 10 mg/mL), which showed stronger activity than controls but remained below acarbose (87.74% at 1 mg/mL). All extracts promoted HaCaT keratinocyte growth and reduced HCT-116 colon cancer cell viability at 250 µg/mL, with the strongest effects in AqC and AqD. Overall, GID decreased antioxidant activity but enhanced antidiabetic potential, confirming the safety and selective anticancer effects of C. flexuosus extracts. Full article
Show Figures

Figure 1

18 pages, 2255 KB  
Article
Performance Evaluation of Black Phosphorus and Graphene Layers Using Surface Plasmon Resonance Biosensor for the Detection of CEA Antigens
by Rajeev Kumar, Prem Kumar, Tae Soo Yun and Mangal Sain
Photonics 2025, 12(11), 1105; https://doi.org/10.3390/photonics12111105 - 9 Nov 2025
Cited by 1 | Viewed by 801
Abstract
The biomarker carcinoembryonic antigen (CEA) plays an important role in the diagnosis and monitoring of cancer, like breast, surveillance, colon, and liver cancer. The highly sensitive surface plasmon resonance (SPR) sensor presented in this work uses two-dimensional (2D) materials: BP/graphene, and the franckeite [...] Read more.
The biomarker carcinoembryonic antigen (CEA) plays an important role in the diagnosis and monitoring of cancer, like breast, surveillance, colon, and liver cancer. The highly sensitive surface plasmon resonance (SPR) sensor presented in this work uses two-dimensional (2D) materials: BP/graphene, and the franckeite layer integrated in a Kretschmann configuration. The sensor structure, which includes a copper (Cu) layer and a CaF2 prism, is intended to detect CEA in aqueous solutions with high accuracy. The proposed sensor’s performance was assessed using the transfer matrix method (TMM), with particular attention paid to important metrics like sensitivity, figure of merit (FoM), detection accuracy (DA), and penetration depth (PD). The proposed sensor achieved a sensitivity of 307.50 deg/RIU and a FoM of 61.62/RIU at a Rmin value of 4.20 × 10−5 a.u. at a 40 nm Cu thickness, operating at a wavelength of 633 nm. The maximum sensitivity of 348.07 deg/RIU was achieved at 47 nm Cu thickness with BP layer, while the graphene layer yielded maximum sensitivity of 314.32 deg/RIU at the same Cu thickness. The results show that adding 2D layered materials to symmetric SPR sensors greatly improves detection performance, providing a promising foundation for the detection of clinical biomarkers in the future. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

27 pages, 5439 KB  
Article
320 × 240 SPAD Direct Time-of-Flight Image Sensor and Camera Based on In-Pixel Correlation and Switched-Capacitor Averaging
by Maarten Kuijk, Ayman Morsy, Thomas Lapauw, Thomas Van den Dries, Wannes Nevens, Mohamed A. Bounouar, Hans Ingelberts and Daniel Van Nieuwenhove
Sensors 2025, 25(21), 6772; https://doi.org/10.3390/s25216772 - 5 Nov 2025
Viewed by 1438
Abstract
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished [...] Read more.
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished by sampling two orthogonal triangle waves that are synchronized with short light pulses illuminating the scene. Using small switched-capacitor circuits, exponential moving averaging (EMA) is applied to the sampled voltages, delivering two analog voltages (VQ2, VI2). These contain the phase delay, or the time of flight between the light pulse and photon’s time of arrival (ToA). Uncorrelated ambient photons and dark counts are averaged out, leaving only their associated shot noise impacting the phase precision. The QVGA camera allows for capturing depth-sense images with sub-cm precision over a 6 m range of detection, even with a small PDE of 0.7% at an 850 nm wavelength. Full article
Show Figures

Figure 1

13 pages, 1856 KB  
Article
Influence of CYP2D6, CYP3A, and ABCG2 Genetic Polymorphisms on Ibrutinib Disposition in Chinese Healthy Subjects
by Kejia Fu, Yao Wang, Lingyan Duan, Zhenyuan Zhang, Jialing Qian, Xijing Chen, Yi Liang, Chengcan Lu and Di Zhao
Pharmaceuticals 2025, 18(11), 1615; https://doi.org/10.3390/ph18111615 - 26 Oct 2025
Viewed by 653
Abstract
Objectives: This study aimed to elucidate the determinants of interindividual variability in the pharmacokinetics of ibrutinib among healthy Chinese subjects, focusing on the influence of demographic characteristics, dietary conditions, and genetic polymorphisms on CYP enzymes and ABC transporters. Methods: Thirty-two participants [...] Read more.
Objectives: This study aimed to elucidate the determinants of interindividual variability in the pharmacokinetics of ibrutinib among healthy Chinese subjects, focusing on the influence of demographic characteristics, dietary conditions, and genetic polymorphisms on CYP enzymes and ABC transporters. Methods: Thirty-two participants were randomly assigned to either a fasting (n = 16) or fed (n = 16) group, each receiving a single 140 mg oral dose of ibrutinib. Plasma concentrations were quantified using a validated UPLC–MS/MS method. Genetic polymorphisms in CYP3A4, CYP3A5, CYP2D6, and ABCG2 were identified by Sanger sequencing. Pharmacokinetic parameters, including apparent clearance (CL/F), maximum plasma concentration (Cmax), area under the plasma concentration–time curve (AUC0-t), and time to maximum concentration (Tmax), were estimated by non-compartmental analysis and statistically evaluated for associations with demographic, dietary, and genetic variables. Results: Food intake significantly affected ibrutinib pharmacokinetics, with postprandial administration resulting in reduced CL/F and increased Cmax and AUC0-t (p < 0.01). Gender differences were also observed, as females exhibited higher CL/F, lower Cmax, and AUC0-t than males (p < 0.05). The CYP2D6 c.100C>T polymorphism significantly decreased CL/F and increased exposure in fasting and male subjects (p < 0.05), but this effect was absent under fed conditions. Conversely, the ABCG2 c.421C>A variant was associated with increased CL/F and decreased AUC0-t (p < 0.05), while other genotypes exerted negligible effects. Conclusions: Ibrutinib pharmacokinetics are significantly modulated by dietary status, gender, and genetic polymorphisms, particularly CYP2D6 c.100C>T and ABCG2 c.421C>A. These findings underscore the importance of integrating pharmacogenetic and physiological factors into individualized dosing strategies to optimize therapeutic efficacy and minimize adverse effects. Full article
Show Figures

Graphical abstract

Back to TopTop