Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,191)

Search Parameters:
Keywords = C4Q

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13445 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
18 pages, 6369 KiB  
Article
Gestational GenX Exposure Induces Maternal Hepatotoxicity by Disrupting the Lipid and Bile Acid Metabolism Distinguished from PFOA-Induced Pyroptosis
by Jin-Jin Zhang, Yu-Kui Chen, Ya-Qi Chen, Qin-Yao Zhang, Yu Liu, Qi Wang and Xiao-Li Xie
Toxics 2025, 13(8), 617; https://doi.org/10.3390/toxics13080617 - 24 Jul 2025
Abstract
Perfluorooctanoic acid (PFOA) and its replacement, GenX, are per- and polyfluoroalkyl substances (PFASs) widely used in industrial and consumer applications. Pregnant women are a vulnerable population to environmental pollutants. The maternal effects of GenX and PFOA exposure during pregnancy have not been fully [...] Read more.
Perfluorooctanoic acid (PFOA) and its replacement, GenX, are per- and polyfluoroalkyl substances (PFASs) widely used in industrial and consumer applications. Pregnant women are a vulnerable population to environmental pollutants. The maternal effects of GenX and PFOA exposure during pregnancy have not been fully elucidated. In this study, pregnant mice received daily oral doses of GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water (control) throughout gestation. Histopathological analyses revealed significant liver abnormalities in both exposure groups, including hepatocyte swelling, cellular disarray, eosinophilic degeneration, karyopyknosis, lipid vacuolation, and increased inflammatory responses. Through transcriptomics analyses, it was found that multiple metabolic and inflammatory pathways were enriched in both exposure groups. In the GenX group, overexpression of CYP4A, c-Myc, and Oatp2 proteins and decreased expression of EGFR and β-catenin in the liver suggested disruption of lipid and bile acid metabolism. In the PFOA group, significantly upregulated protein levels of NLRP3, GSDMD, caspase-1, IL-18, and IL-1β indicated hepatic pyroptosis. Despite these distinct pathways, both compounds triggered inflammatory cytokine release in the liver, consistent with the results of the transcriptomics analysis, suggesting shared mechanisms of inflammatory liver injury. Taken together, our findings provided novel insights into the hepatotoxicity mechanisms of GenX and PFOA exposure during pregnancy, underscoring the potential health risks associated with PFAS exposure. Full article
34 pages, 2332 KiB  
Review
Treatment of KRAS-Mutated Pancreatic Cancer: New Hope for the Patients?
by Kamila Krupa, Marta Fudalej, Emilia Włoszek, Hanna Miski, Anna M. Badowska-Kozakiewicz, Dominika Mękal, Michał P. Budzik, Aleksandra Czerw and Andrzej Deptała
Cancers 2025, 17(15), 2453; https://doi.org/10.3390/cancers17152453 - 24 Jul 2025
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation [...] Read more.
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation of the Ras pathway, making them the primary focus in oncologic drug development. Selective KRAS G12C inhibitors (e.g., sotorasib, adagrasib) have demonstrated moderate efficacy in clinical trials; however, this mutation is infrequent in PDAC. Emerging therapies targeting KRAS G12D and G12V mutations, such as MRTX1133, PROTACs, and active-state inhibitors, show promise in preclinical studies. Pan-RAS inhibitors like ADT-007, RMC-9805, and RMC-6236 compounds provide broader coverage of mutations. Their efficacy and safety are currently being investigated in several clinical trials. A major challenge is the development of resistance mechanisms, including secondary mutations and pathway reactivation. Combination therapies targeting the RAS/MAPK axis, SHP2, mTOR, or SOS1 are under clinical investigation. Immunotherapy alone has demonstrated limited effectiveness, attributed to an immunosuppressive tumor microenvironment, although synergistic effects are noted when paired with KRAS-targeted agents. Furthermore, KRAS mutations reprogram cancer metabolism, enhancing glycolysis, macropinocytosis, and autophagy, which are being explored therapeutically. RNA interference technologies have also shown potential in silencing mutant KRAS and reducing tumorigenicity. Future strategies should emphasize the combination of targeted therapies with metabolic or immunomodulatory agents to overcome resistance and enhance survival in KRAS-mutated PDAC. Full article
Show Figures

Figure 1

15 pages, 2118 KiB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

22 pages, 1781 KiB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 938 KiB  
Article
Altered Behavior and Neuronal Activity with Paternal Snord116 Deletion
by Daniel S. Scott, Violeta Zaric, Carol A. Tamminga and Ryan K. Butler
Genes 2025, 16(8), 863; https://doi.org/10.3390/genes16080863 - 24 Jul 2025
Abstract
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One [...] Read more.
Background/Objectives: Prader–Willi Syndrome (PWS) is a neurodevelopmental disease associated with multiple behavioral features, including a prevalence for psychosis. The genetic causes of PWS are well characterized and involve the silencing or deletion of the paternal copy of a region of chromosome 15q11–13. One gene within this region, Snord116, a non-coding RNA, has been determined to have a determinant role in the manifestation of PWS. However, it remains unclear as to how the deletion of this allele can affect activity in the brain and influence psychosis-like behaviors. Methods: In this study, we assessed the effects of the microdeletion of the paternal copy of Snord116 on regional neural activity in psychosis-associated brain regions and psychosis-like behaviors in mice. Results: The results suggest that Snord116 deletion causes increased c-Fos expression in the hippocampus and anterior cingulate cortex. Snord116 deletion also results in behavioral phenotypes consistent with psychosis, most notably in stressful paradigms, with deficits in sensorimotor gating and augmented contextual as well as cued fear conditioning. Conclusions: These results implicate the targets of Snord116 in the presentation of a psychosis-like state with regional specificity. Full article
(This article belongs to the Special Issue Advances in Gene Therapy)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

24 pages, 8682 KiB  
Article
Predicting EGFRL858R/T790M/C797S Inhibitory Effect of Osimertinib Derivatives by Mixed Kernel SVM Enhanced with CLPSO
by Shaokang Li, Wenzhe Dong and Aili Qu
Pharmaceuticals 2025, 18(8), 1092; https://doi.org/10.3390/ph18081092 - 23 Jul 2025
Abstract
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims [...] Read more.
Background/Objectives: The resistance mutations EGFRL858R/T790M/C797S in epidermal growth factor receptor (EGFR) are key factors in the reduced efficacy of Osimertinib. Predicting the inhibitory effects of Osimertinib derivatives against these mutations is crucial for the development of more effective inhibitors. This study aims to predict the inhibitory effects of Osimertinib derivatives against EGFRL858R/T790M/C797S mutations. Methods: Six models were established using heuristic method (HM), random forest (RF), gene expression programming (GEP), gradient boosting decision tree (GBDT), polynomial kernel function support vector machine (SVM), and mixed kernel function SVM (MIX-SVM). The descriptors for these models were selected by the heuristic method or XGBoost. Comprehensive learning particle swarm optimizer was adopted to optimize hyperparameters. Additionally, the internal and external validation were performed by leave-one-out cross-validation (QLOO2), 5-fold cross validation (Q5fold2) and concordance correlation coefficient (CCC), QF12, and QF22. The properties of novel EGFR inhibitors were explored through molecular docking analysis. Results: The model established by MIX-SVM whose kernel function is a convex combination of three regular kernel functions is best: R2 and RMSE for training set and test set are 0.9445, 0.1659 and 0.9490, 0.1814, respectively; QLOO2, Q5fold2, CCC, QF12, and QF22 are 0.9107, 0.8621, 0.9835, 0.9689, and 0.9680. Based on these results, the IC50 values of 162 newly designed compounds were predicted using the HM model, and the top four candidates with the most favorable physicochemical properties were subsequently validated through PEA. Conclusions: The MIX-SVM method will provide useful guidance for the design and screening of novel EGFRL858R/T790M/C797S inhibitors. Full article
(This article belongs to the Special Issue QSAR and Chemoinformatics in Drug Design and Discovery)
Show Figures

Graphical abstract

18 pages, 2540 KiB  
Article
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
by Angélica L. R. Pavanelli, Maria Eduarda S. Lopes, André T. Reis, Flávio A. Carvalho, Sven Zalewski, André G. dos Santos, Joni A. Cirelli, James Deschner and Andressa V. B. Nogueira
Antioxidants 2025, 14(8), 901; https://doi.org/10.3390/antiox14080901 - 23 Jul 2025
Abstract
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed [...] Read more.
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed to investigate the effects of C. sylvestris on the synthesis of pro- and anti-inflammatory, proteolytic, and antioxidant molecules and on wound healing in epithelial cells. A human telomerase-immortalized gingival keratinocyte cell line (TIGKs) was used, and cells were exposed to Escherichia coli lipopolysaccharide (LPS) in the presence and absence of C. sylvestris extract, its diterpene-concentrated fraction, and its clerodane diterpene casearin J for 24 h and 48 h. Gene expression and protein synthesis were analyzed by RT-qPCR and ELISA, respectively. Nitric oxide (NO) and NF-κB activation were analyzed by Griess reaction and immunofluorescence, respectively. Additionally, cell viability was evaluated by alamarBlue® assay, and an automated scratch assay was used for wound healing. LPS significantly increased the expression of cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-17), proteases (MMP-1 and MMP-13), iNOS as well as NO synthesis, and triggered NF-κB nuclear translocation. It also reduced IL-4 expression, cell viability, and cellular wound repopulation. Treatment with C. sylvestris derivatives significantly abrogated all aforementioned LPS-induced effects by 80–100%. Furthermore, even at higher concentrations, C. sylvestris did not affect cell viability, thus proving the safety of its derivatives. C. sylvestris exerts anti-inflammatory, antiproteolytic, and antioxidant effects on gingival keratinocytes, highlighting its potential as a valuable adjunct in the prevention and treatment of periodontal diseases. Full article
Show Figures

Figure 1

19 pages, 2407 KiB  
Article
IFDA: Intermittent Fault Diagnosis Algorithm for Augmented Cubes Under the PMC Model
by Chongwen Yuan, Chenghao Zou, Jiong Wu, Hao Feng and Jie Li
Appl. Sci. 2025, 15(15), 8197; https://doi.org/10.3390/app15158197 - 23 Jul 2025
Abstract
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic [...] Read more.
Fault diagnosis technology is a crucial technique for ensuring the reliability of multiprocessor systems. Many previous studies have paid close attention to the permanent faults of systems while ignoring the rise of intermittent faults. Meanwhile, there is a lack of a rapid diagnostic algorithm tailored for intermittent faults. In this paper, we propose multiple theorems to evaluate the intermittent fault diagnosability of different topologies under the PMC model. Through these theorems, we demonstrate that the intermittent fault diagnosability of an n-dimensional augmented cube (AQn) is (2n2) when n is greater than or equal to 4. Furthermore, we present a fast intermittent fault diagnosis algorithm, which is named as IFDA, to identify the processors with intermittent fault in the networks. Finally, we evaluate the performance of the algorithm in terms of the parameters Accuracy and Precision. The simulation experimental results show that the algorithm IFDA has good performance and efficiency. Full article
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

17 pages, 2754 KiB  
Article
The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect
by Lin Yuan, Xurong Teng, Ping Li, Ouyuan Zhang, Fangfang Zhao, Changyuan Tao and Renlong Liu
Materials 2025, 18(15), 3450; https://doi.org/10.3390/ma18153450 - 23 Jul 2025
Abstract
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content [...] Read more.
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content of non-bridging oxygen led to the depolymerization of the glass structure. A quantitative analysis of Qn units in the [SiO4] tetrahedron using 29Si MAS NMR revealed that a non-monotonic variation appeared when the Q4 unit reached a minimum at R = 0.7. Meanwhile, the chemical environment of aluminum also varies with the R, and the presence of high-coordinated aluminum species is observed when Ca2+ and Mg2+ ions coexist. In terms of overall performance, both density and molar volume exhibited a linear trend. However, thermal stability, viscosity, characteristic temperatures (including melting temperature, Littleton softening temperature, working point temperature, and glass transition temperature), and mechanical properties showed deviations from linearity. Additionally, four non-isothermal thermodynamics was employed to quantitatively assess the thermal stability of samples C-0.7 and C-1. The insights gained from this study will aid in the development of advanced glass materials with tailored properties for industrial applications. Full article
Show Figures

Figure 1

15 pages, 3942 KiB  
Article
Quantitative Evaluation of Endogenous Reference Genes for RT-qPCR and ddPCR Gene Expression Under Polyextreme Conditions Using Anaerobic Halophilic Alkalithermophile Natranaerobius thermophilus
by Xinyi Tao, Qinghua Xing, Yingjie Zhang, Belsti Atnkut, Haozhuo Wei, Silva Ramirez, Xinwei Mao and Baisuo Zhao
Microorganisms 2025, 13(8), 1721; https://doi.org/10.3390/microorganisms13081721 - 23 Jul 2025
Abstract
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability [...] Read more.
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability of eight candidate RGs in the anaerobic halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT under combined salt, alkali, and thermal stresses. The stability of these candidate RGs was assessed using five statistical algorithms: Delta CT, geNorm, NormFinder, BestKeeper, and RefFinder. Results indicated that recA exhibited the highest expression stability across all tested conditions and proved adequate as a single RG for normalization in both RT-qPCR and droplet digital PCR (ddPCR) assays. Furthermore, recA alone or combined with other RGs (sigA, rsmH) effectively normalized the expression of seven stress-response genes (proX, opuAC, mnhE, nhaC, trkH, ducA, and pimT). This work represents the first systematic validation of RGs under polyextreme stress conditions, providing essential guidelines for future gene expression studies in extreme environments and aiding research on microbial adaptation mechanisms in halophilic, alkaliphilic, and thermophilic microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

Back to TopTop