Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,089)

Search Parameters:
Keywords = C1 oxygenates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1798 KB  
Article
Mitochondrial Base Editing of the m.8993T>G Mutation Restores Bioenergetics and Neural Differentiation in Patient iPSCs
by Luke Yin, Angel Yin and Marjorie Jones
Genes 2025, 16(11), 1298; https://doi.org/10.3390/genes16111298 (registering DOI) - 1 Nov 2025
Abstract
Background: Point mutations in mitochondrial DNA (mtDNA) cause a range of neurometabolic disorders that currently have no curative treatments. The m.8993T>G mutation in the Homo sapiens MT-ATP6 gene leads to neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) when heteroplasmy exceeds approximately [...] Read more.
Background: Point mutations in mitochondrial DNA (mtDNA) cause a range of neurometabolic disorders that currently have no curative treatments. The m.8993T>G mutation in the Homo sapiens MT-ATP6 gene leads to neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) when heteroplasmy exceeds approximately 70%. Methods: We engineered a split DddA-derived cytosine base editor (DdCBE), each half fused to programmable TALE DNA-binding domains and a mitochondrial targeting sequence, to correct the m.8993T>G mutation in patient-derived induced pluripotent stem cells (iPSCs). Seven days after plasmid delivery, deep amplicon sequencing showed 35 ± 3% on-target C•G→T•A conversion at position 8993, reducing mutant heteroplasmy from 80 ± 2% to 45 ± 3% with less than 0.5% editing at ten predicted off-target loci. Results: Edited cells exhibited a 25% increase in basal oxygen consumption rate, a 50% improvement in ATP-linked respiration, and a 2.3-fold restoration of ATP synthase activity. Directed neural differentiation yielded 85 ± 2% Nestin-positive progenitors compared to 60 ± 2% in unedited controls. Conclusions: Edits remained stable over 30 days in culture. These results establish mitochondrial base editing as a precise and durable strategy to ameliorate biochemical and cellular defects in NARP patient cells. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2355 KB  
Article
Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation
by Wenhui An, Yige Zhou, Jiayu Hui, Wenhui Sun, Qiting Liu and Hongbo Liu
Catalysts 2025, 15(11), 1027; https://doi.org/10.3390/catal15111027 (registering DOI) - 1 Nov 2025
Abstract
The high stability of chelated heavy metal complexes like Cu-EDTA renders their effective removal from industrial wastewater a persistent challenge for conventional treatment processes. This study developed a sustainable and high-performance CuO-modified biochar (CuO-BC) from corn straw waste for peroxydisulfate (PDS)-activated degradation of [...] Read more.
The high stability of chelated heavy metal complexes like Cu-EDTA renders their effective removal from industrial wastewater a persistent challenge for conventional treatment processes. This study developed a sustainable and high-performance CuO-modified biochar (CuO-BC) from corn straw waste for peroxydisulfate (PDS)-activated degradation of Cu-EDTA. Through systematic optimization, hydrothermal co-precipitation using copper acetate as the precursor followed by secondary pyrolysis at 350 °C was identified as the optimal synthesis strategy, yielding a dandelion-like structure with highly dispersed CuO on the BC surface. It achieved 93.8% decomplexation efficiency and 57.3% TOC removal within 120 min under optimized conditions, with an observed rate constant (Kobs) of 0.0220 min−1—five times higher than BC. Comprehensive characterization revealed that CuO-BC possessed a specific surface area and pore volume of 4.36 and 15.5 times those of BC, along with abundant oxygen-containing functional groups and well-exposed Cu–O active sites. The enhanced performance is attributed to the synergistic effects of hierarchical porosity facilitating mass transfer, uniform dispersion of CuO preventing aggregation, and surface functional groups promoting PDS activation. This work presents a green and scalable approach to transform agricultural waste into an efficient metal oxide-BC composite catalyst, offering dual benefits of environmental remediation and resource valorization. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts: State of the Art and Future Directions)
Show Figures

Graphical abstract

22 pages, 6087 KB  
Article
The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3
by Yuming Yang, Xue Bian, Jiaqi Li, Zhongshuai Jia and Yuting Bai
Molecules 2025, 30(21), 4260; https://doi.org/10.3390/molecules30214260 (registering DOI) - 31 Oct 2025
Abstract
High denitration efficiency and strong adaptability to flue gas temperature fluctuations are the core properties of the NH3-SCR catalyst. In this study, Fe2O3 modification is used as a means to explore the mechanism of adding Fe2O [...] Read more.
High denitration efficiency and strong adaptability to flue gas temperature fluctuations are the core properties of the NH3-SCR catalyst. In this study, Fe2O3 modification is used as a means to explore the mechanism of adding Fe2O3 to broaden the temperature range of the 6CeO2-40MnO2/TiO2 catalyst during the preparation process. The results show that the 6Fe2O3-6CeO2-40MnO2/TiO2 catalyst exhibits excellent denitration performance, with a denitration efficiency higher than 90%. The temperature range is from 129 to 390 °C. N2 selectivity and resistance to SO2 and H2O are good, and the denitration performance is significantly improved. When the Fe2O3 content is 6%, it promotes lattice shrinkage of TiO2, improves its dispersion, refines the grain size, and increases the specific surface area of the catalyst. At the same time, Fe2O3 enhances the chemical adsorption of oxygen on the catalyst surface and increases the proportion of low-cost metal ions, thereby promoting electron transfer between active elements, generating more surface reactive oxygen species, increasing the oxygen vacancy content and adsorption sites for NOx and NH3, and significantly improving the redox performance of the catalyst. This effect is particularly conducive to the formation of strong acid sites on the catalyst surface. The NH3-SCR reaction on the surface of the 6Fe2O3-6CeO2-40MnO2/TiO2 catalyst follows both the L-H and E-R mechanisms, with the L-H mechanism being dominant. Full article
20 pages, 2025 KB  
Article
Ginger (Zingiber officinale) and Zingerone Antioxidant Properties Studied Using Hydrodynamic Voltammetry, Zingerone Crystal Structure and Density Functional Theory (DFT)—Results Support Zingerone Experimental Catalytic Behavior Similar to Superoxide Dismutases (SODs)
by Miriam Rossi, Taylor S. Teitsworth, Elle McKenzie, Alessio Caruso, Natalie Thieke and Francesco Caruso
Int. J. Mol. Sci. 2025, 26(21), 10645; https://doi.org/10.3390/ijms262110645 (registering DOI) - 31 Oct 2025
Abstract
Ginger is a common spice found in many cuisines all over the world that is from the rhizome of Zingiber officinale. Additionally, it has been used in traditional medicinal practices as an aid in many ailments ranging from nausea to muscle pain. [...] Read more.
Ginger is a common spice found in many cuisines all over the world that is from the rhizome of Zingiber officinale. Additionally, it has been used in traditional medicinal practices as an aid in many ailments ranging from nausea to muscle pain. The non-volatile compounds of ginger, including zingerone, are responsible for pungency and they have widespread biomedical activities. The crystal structure of zingerone, a 6-gingerol degradation product and phenolic compound, reveals that the C4 hydroxyl group is the fulcrum for strong intermolecular interactions such as (O1-H2…O3) 2.737(2) Å. Our electrochemical results using rotating ring-disk electrode (RRDE) hydrodynamic voltammetry demonstrate that zingerone is an effective scavenger of superoxide radical anions and that zingerone, unlike powdered ginger, is a strong antioxidant with a collection efficiency slope of −6.5 × 104 M−1. The addition of vitamin C enhances scavenging activity for both zingerone and ginger powder, although the effect is more noticeable with zingerone. Correspondingly, the zingerone/vitamin C efficiency slope value is −5.40 × 105 M−1. Density Functional Theory (DFT) calculations permit the development of a plausible antioxidant mechanism for zingerone, and zingerone synergistic action with vitamin C, in which zingerone is capable of being regenerated with the assistance of protons that may be provided by ascorbic acid. This mechanism demonstrates that zingerone acts as a strong antioxidant agent by virtue of its C4 hydroxyl group and aromatic system. The scavenging chemical reaction is the same as that obtained through the dismutation of superoxide by superoxide dismutase (SOD) enzymes into hydrogen peroxide and molecular oxygen. Thus, zingerone behaves as a SOD mimic. Full article
(This article belongs to the Special Issue Superoxide)
12 pages, 1458 KB  
Article
Precipitation of Fe-25Cr-5Al-Ti-RE Ferritic Stainless Steel Under Different Quenching Temperatures
by Xiaojian Du, Jianghua Ma, Guowang Song, Taotao Li, Jiayi Qi, Chengzhi Liu and Yucheng Yin
Crystals 2025, 15(11), 948; https://doi.org/10.3390/cryst15110948 (registering DOI) - 31 Oct 2025
Abstract
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure [...] Read more.
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure and precipitation behavior, comprehensive characterization techniques were employed, including X-ray Diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrated that after quenching at these temperatures, the main precipitation in the alloy was a chromium-rich phase (α′), aluminum oxide (Al2O3), titanium carbide (TiC), and titanium nitride (TiN). Specifically, Al2O3 was detected exclusively after heat treatments at 800 °C, 900 °C, and 1000 °C, with its particle size ranging from 10 nm to 100 nm. During high-temperature heat treatment, aluminum atoms and oxygen atoms in the matrix interacted with each other, and fine Al2O3 particles precipitated through a solid-state phase transition. Regarding titanium-containing precipitates, TiC precipitated after heat treatments at 700 °C, 800 °C, and 900 °C, whereas TiN was only observed after the quenching treatment at 1000 °C. The size of TiC particles fell within the range of 100 nm to 400 nm, while TiN particles exhibited a significantly larger size, spanning from 5 μm to 10 μm. Thermodynamic and kinetic analyses revealed that at elevated temperatures, nitrogen (N) exhibited a relatively high diffusion coefficient in the matrix; meanwhile, titanium (Ti) demonstrated an extremely strong chemical affinity for N. Consequently, even when the N content in the alloy was at a low level, N tended to preferentially react with Ti rather than with carbon (C) to form TiN. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
23 pages, 9574 KB  
Article
Active and Coking Resistant Ni/SBA-15 Catalysts for Low Temperature Dry Reforming of Methane
by Maria Olea and Takehiko Sasaki
Processes 2025, 13(11), 3505; https://doi.org/10.3390/pr13113505 (registering DOI) - 31 Oct 2025
Abstract
In recent years CO2 reforming of methane has attracted great interest as it produces high CO/H2 ratio syngas suitable for the synthesis of higher hydrocarbons and oxygenated derivatives since it is a way for disposing and recycling two greenhouse gases with [...] Read more.
In recent years CO2 reforming of methane has attracted great interest as it produces high CO/H2 ratio syngas suitable for the synthesis of higher hydrocarbons and oxygenated derivatives since it is a way for disposing and recycling two greenhouse gases with high environmental impact, CH4 and CO2, and because it is regarded as a potential route to store and transmit energy due to its strong endothermic effect. Along with noble metals, all the group VIII metals except for osmium have been studied for catalytic CO2 reforming of methane. It was found that the catalytic activity of Ni, though lower than those of Ru and Rh, was higher than the catalytic activities of Pt and Pd. Although noble metals have been proven to be insensitive to coke, the high cost and restricted availability limit their use in this process. It is therefore valuable to develop stable Ni-based catalysts. In this contribution, we show how their activity and coking resistivity are greatly related to the size and dispersion of Ni particles. Well-dispersed Ni nanoparticles were achieved by multistep impregnation on a mesoporous silica support, namely SBA-15, obtained through a sol-gel method, using acetate as a nickel precursor and keeping the Ni loading between 5% and 11%. Significant catalytic activity was obtained at temperatures as low as 450 °C, a temperature well below their deactivation temperature, i.e., 700 °C. For the pre-reduced samples, a CO2 conversion higher than 99% was obtained at approximately 680 °C. As such, their deactivation by sintering and coke formation was prevented. To the best of our knowledge, no Ni-based catalysts with complete CO2 conversion at temperatures lower than 800 °C have been reported so far. Full article
16 pages, 2295 KB  
Article
Sesuvium portulacastrum SpC3H Enhances Salt Tolerance of Arabidopsis thaliana by Regulating Lignin Synthesis and Scavenging Reactive Oxygen Species
by Yuxin Li, Yanping Hu, Tingting Zhang, Yushan Wang, Zhiguang Sun and Yang Zhou
Plants 2025, 14(21), 3347; https://doi.org/10.3390/plants14213347 (registering DOI) - 31 Oct 2025
Abstract
Lignin constitutes a fundamental component of plant defense mechanisms against environmental stressors. 4-coumarate 3-hydroxylase (C3H) serves as a pivotal enzyme in lignin biosynthesis. However, its role in the halophyte Sesuvium portulacastrum remains uncharacterized. In this study, the SpC3H gene was cloned, and subsequent [...] Read more.
Lignin constitutes a fundamental component of plant defense mechanisms against environmental stressors. 4-coumarate 3-hydroxylase (C3H) serves as a pivotal enzyme in lignin biosynthesis. However, its role in the halophyte Sesuvium portulacastrum remains uncharacterized. In this study, the SpC3H gene was cloned, and subsequent sequence alignment and phylogenetic analyses revealed the highest similarity (57.14%) with BvC3H from Beta vulgaris, exhibiting the closest evolutionary relationship with Beta vulgaris and Spinacia oleracea C3H protein. Quantitative real-time polymerase chain reaction demonstrated that SpC3H expression was markedly upregulated in both roots and leaves of S. portulacastrum under 800 mM NaCl treatment. Root expression peaked at 48 h (25.3-fold), whereas leaves displayed dual expression maxima at 12 h (7.9-fold) and 72 h (10.7-fold). Subcellular localization assays confirmed cytoplasmic distribution. Heterologous expression in Arabidopsis thaliana indicated that transgenic lines exhibited enhanced growth performance, higher fresh weight, and elevated lignin contents relative to wild-type plants under salt stress, accompanied by reduced reactive oxygen species (ROS) accumulation and lower relative electrical conductivity. Furthermore, activities of superoxide dismutase and peroxidase, together with expression of lignin biosynthesis-associated and antioxidant enzyme genes, were markedly elevated. Collectively, these findings establish that SpC3H confers salt tolerance by promoting lignin biosynthesis and activating antioxidant defenses to eliminate ROS, thereby providing a theoretical foundation for genetic improvement of plant salt tolerance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
16 pages, 5375 KB  
Article
POPC Enhances Both the Maturation of Bovine Oocytes and the Subsequent Development and Quality of Embryos
by Xingyu Zhang, Daqing Wang, Xin Cheng, Yong Zhang, Ruizhen Jian, Jiajia Zhang and Guifang Cao
Animals 2025, 15(21), 3172; https://doi.org/10.3390/ani15213172 (registering DOI) - 31 Oct 2025
Abstract
In vitro maturation (IVM) of oocytes is a pivotal step in assisted reproductive technologies for livestock. However, oxidative stress (OS) and mitochondrial dysfunction during in vitro culture often lead to oocyte aging, thereby limiting the efficiency of the technologies. To address these challenges, [...] Read more.
In vitro maturation (IVM) of oocytes is a pivotal step in assisted reproductive technologies for livestock. However, oxidative stress (OS) and mitochondrial dysfunction during in vitro culture often lead to oocyte aging, thereby limiting the efficiency of the technologies. To address these challenges, this study investigated the regulatory effects of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) on bovine oocyte IVM, aging, and developmental competence to determine the optimal concentration and explore underlying mechanisms. Cumulus–oocyte complexes (COCs) were collected from abattoir-derived bovine ovaries and cultured in IVM medium supplemented with 0 (control), 50, 100, 150, or 200 μmol/mL of POPC (n = 300 per group) at 38.5 °C under 5% CO2 for 22 h. The optimal concentration was determined based on the first polar body extrusion rate, followed by in vitro fertilization (IVF), fluorescence staining, Smart-seq2 transcriptome sequencing, and quantitative PCR (qPCR) analysis. The results demonstrated that 150 μmol/mL of POPC yielded the highest maturation rate, significantly exceeding the control group (p < 0.05), and enhanced 2-4-cell cleavage rates after IVF. Furthermore, POPC markedly reduced intracellular reactive oxygen species (ROS) levels, increased glutathione (GSH) content, improved mitochondrial function, and restored normal spindle morphology. Transcriptomic analysis identified 350 upregulated and 280 downregulated differentially expressed genes (DEGs), which were enriched in pathways related to OS. qPCR validation confirmed upregulation of SIRT1/2 and BCL-2, along with downregulation of BAX and Caspase-1/3. Collectively, these findings suggest that 150 μmol/mL of POPC alleviates OS and activates the “SIRT–antioxidant–antiapoptotic” signaling axis, thereby providing valuable insights for optimizing assisted reproductive technologies in livestock. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

23 pages, 3940 KB  
Article
Valorisation of Cocoa Waste into Edible Packaging Films: Physicochemical Characterisation and Potential Use as Edible Pouches with Enhanced Light Barrier, Mechanical and Antioxidant Properties
by Anna Łyczak, Isra Kirmani and Sabina Galus
Appl. Sci. 2025, 15(21), 11643; https://doi.org/10.3390/app152111643 (registering DOI) - 31 Oct 2025
Abstract
This study presents the valorisation of cocoa waste (CW) by transforming it into edible packaging films using apple pectin (AP) as a gelling agent. Several properties, including microstructure, optical characteristics, sorption, wetting, barrier functionality, mechanical strength, structure, and antioxidant activity, were investigated. The [...] Read more.
This study presents the valorisation of cocoa waste (CW) by transforming it into edible packaging films using apple pectin (AP) as a gelling agent. Several properties, including microstructure, optical characteristics, sorption, wetting, barrier functionality, mechanical strength, structure, and antioxidant activity, were investigated. The analyses concluded that increasing the concentration of CW from 0 to 50% in pectin films enhanced UV light protection and caused a reorganisation in the film’s microstructure, resulting in both higher surface roughness and improved mechanical resistance. Specifically, the tensile strength increased from 7.28 to 19.14 MPa. The addition of CW reduced the lightness (parameter L*) from 82.58 to 28.58, making the films darker. Measurements of the water contact angle, which was in the range of 38.25 to 73.23; gas permeability, in the range from 5.53 to 19.52 × 10−16 g/m·Pa·s for oxygen and from 9.62 to 40.82 × 10−16 g/m·Pa·s for carbon dioxide; and adsorption indicated a reduction in water vapour sorption rates, suggesting that the films have average barrier properties against moisture. Fourier-transform infrared spectroscopy analysis confirmed no interactions between CW and the polymer matrix, showing the typical functional groups of pectin, such as carbonyl (C=O) and hydroxyl (-OH) groups. The incorporation of CW significantly increased the antioxidant properties of the developed films, attributed to the bioactive compounds present in CW. These films have potential for use as active food packaging thanks to the CW addition. They could be particularly beneficial for extending the shelf life of products sensitive to oxidation, such as oily products. Excellent sealability indicated suitability for use as pouches for fried products, such as instant coffee or powders. This study underscores the possibility of using apple pectin films with cocoa waste as sustainable components in eco-friendly packaging materials. This idea aligns with circular economic and waste reduction principles. This approach contributes to the development of innovative solutions for sustainable food packaging. Full article
Show Figures

Figure 1

20 pages, 2771 KB  
Article
Improved Rat Heart Preservation Using High-Pressure Gaseous Perfusion with Oxygen–Xenon Mixture
by Alexander Ponomarev, Daniil Kuznetsov and Elena Mukhlynina
Pathophysiology 2025, 32(4), 58; https://doi.org/10.3390/pathophysiology32040058 (registering DOI) - 31 Oct 2025
Abstract
Background: To address limitations in static cold storage (SCS) of donor hearts, we developed the High-Pressure Gaseous Perfusion without Fluidic Preservation Media (HIPPER) method, along with the necessary equipment for its application. Methods: 33 Wistar rat hearts were split into five groups: (Control) [...] Read more.
Background: To address limitations in static cold storage (SCS) of donor hearts, we developed the High-Pressure Gaseous Perfusion without Fluidic Preservation Media (HIPPER) method, along with the necessary equipment for its application. Methods: 33 Wistar rat hearts were split into five groups: (Control) static cold storage (SCS) in HTK solution, (Exp) HIPPER using oxygen–xenon gas mixtures of varying ratios (“Gas-A”: 1/9, “Gas-B”: 9/1, and “Gas-C”: 1/1), and (Air) HIPPER using air. Hearts were preserved for six hours, followed by a one-hour Langendorff assessment. Results: Beating was restored in 4/10 Control hearts, 15/15 Exp hearts across all gas mixtures (p = 0.001 Control vs. Exp), and 6/8 Air hearts. Among resuscitated hearts, the mean heart rates (in bpm) were 131 ± 10 (Control), 164 ± 21 (Air), and 226 ± 13 (Exp) (p = 0.001 Control vs. Exp; p = 0.015 Exp vs. Air). The mean left ventricular pressures (in mmHg) were 31 ± 5 (Control), 45 ± 9 (Air), and 73 ± 7 (Exp) (p = 0.002 Control vs. Exp; p = 0.014 Exp vs. Air), with dP/dT max/min showing consistent trends (p < 0.006 Control vs. Exp and Air vs. Exp). Infarct size in Exp group was also significantly reduced, averaging 39.6 ± 6.6% (Control), 12.6 ± 3.3% (Air), and 6.3 ± 0.7% (Exp) of total myocardium area (p < 0.014 for Control vs. all). Conclusions: as evidenced by both quantitative and qualitative data, HIPPER consistently outperformed SCS following six hours of storage of rat heart regardless of the gas mixture, highlighting its potential as a more robust preservation method. Full article
(This article belongs to the Section Cardiovascular Pathophysiology)
Show Figures

Figure 1

18 pages, 4145 KB  
Article
Significant Suppression of Multiple Sclerosis in the Mouse EAE Model Using the PrC-210 Aminothiol
by William E. Fahl, Bryan L. Fahl, Sarah R. Goesch, Hannah R. Goesch and Torsten R. Goesch
Int. J. Mol. Sci. 2025, 26(21), 10597; https://doi.org/10.3390/ijms262110597 - 30 Oct 2025
Abstract
Multiple sclerosis (MS) is a complex disease marked by chronic neuroinflammation and reactive oxygen species (ROS) toxicity in the central nervous system (CNS). Based on this ROS-driven mechanism, we tested whether PrC-210—a new aminothiol ROS scavenger—could lessen MS symptoms in mice with experimental [...] Read more.
Multiple sclerosis (MS) is a complex disease marked by chronic neuroinflammation and reactive oxygen species (ROS) toxicity in the central nervous system (CNS). Based on this ROS-driven mechanism, we tested whether PrC-210—a new aminothiol ROS scavenger—could lessen MS symptoms in mice with experimental autoimmune encephalomyelitis (EAE)-induced MS. Our goals were to assess the role of ROS in MS and evaluate the potential benefits of PrC-210 for managing MS. Mice with EAE received varying doses of PrC-210 under preventive and therapeutic protocols. Disease progression was measured using clinical scores and spinal cord histology. Safety was assessed by comparing the gastrointestinal and hematological toxicity between PrC-210 and dimethyl fumarate (DMF, Tecfidera’s active agent). PrC-210 reduced MS severity by up to 62% in paralysis scores versus those in the controls (p = 0.0001), whether used preventively or at the onset of paralysis. The group with the greatest decrease also showed the best spinal cord preservation and least demyelination. DMF caused toxicity at a dose that was ineffective, while PrC-210 showed no toxicity at effective levels. These findings suggest that the systemic administration of PrC-210 may offer a safe, effective MS treatment when started at symptom onset. Full article
Show Figures

Figure 1

19 pages, 1654 KB  
Article
Analysis of the Bioactive Compounds and Physiological Activities of Commonly Consumed Noni Juice in Republic of Korea
by Xiaolu Fu, Min-Hye Kim, Geon Oh, Ji-Hyun Im, June-Seok Lim, Yeon-Seok Seong, Jae-Yeon Lee, Eun Young Park, Do Sang Lee, Im-Joung La and Ok-Hwan Lee
Foods 2025, 14(21), 3732; https://doi.org/10.3390/foods14213732 - 30 Oct 2025
Abstract
Noni (Morinda citrifolia L.) juice is increasingly recognized for its potential health-promoting properties. In this research, the bioactive compounds and physiological effects of commercial noni juice products in Korea were assessed. Noni juice was found to contain high levels of total phenolics [...] Read more.
Noni (Morinda citrifolia L.) juice is increasingly recognized for its potential health-promoting properties. In this research, the bioactive compounds and physiological effects of commercial noni juice products in Korea were assessed. Noni juice was found to contain high levels of total phenolics (6.39 ± 1.45 mg gallic acid equivalents (GAE)/g) and proanthocyanidins (8.64 ± 6.20 mg catechin equivalents (CE)/g). Furthermore, it exhibited potent antioxidant activities, with 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activities of 44.03 ± 14.88% and 55.91 ± 2.62%, respectively, which exceeded those reported for common fruit juices such as apple, orange, and blueberry. Additionally, noni juice reduced lipid accumulation by 5.92% and reactive oxygen species (ROS) levels by 7.23% in 3T3-L1 adipocytes; improved fusion index to 81.44% and restored myotube diameter by 37.24% in dexamethasone-induced C2C12 cells; and suppressed LPS-induced nitric oxide (NO) production. These results suggested that noni juice has anti-inflammatory, anti-obesity, anti-muscle atrophy, and antioxidant properties, supporting its potential as a functional health beverage. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 1151 KB  
Article
Regulatory Machinery of Bacterial Bioflocculant Synthesis and Optimisation and Assessment of Bioflocculation Efficiency in Wastewater
by Stanley Mokoboro, Tlou Nelson Selepe, Tsolanku Sidney Maliehe and Kgabo Moganedi
Int. J. Mol. Sci. 2025, 26(21), 10559; https://doi.org/10.3390/ijms262110559 - 30 Oct 2025
Abstract
Bacteria are promising sources of bioflocculants, yet their regulatory machinery for bioflocculant synthesis remains underexplored. This study focused on evaluating the biosynthetic genes, optimisation and assessment of bioflocculation efficiency in wastewater. The isolated bioflocculant producers were identified by 16S rRNA and rpoB [...] Read more.
Bacteria are promising sources of bioflocculants, yet their regulatory machinery for bioflocculant synthesis remains underexplored. This study focused on evaluating the biosynthetic genes, optimisation and assessment of bioflocculation efficiency in wastewater. The isolated bioflocculant producers were identified by 16S rRNA and rpoB gene analysis. Polymerase chain reaction was used to assess the presence of polyketide synthase I (PKS-1), polyketide synthase II (PKS-II), non-ribosomal peptide synthetase (NRPS), epsH and epsJ. A one-factor-at-a-time technique was utilised for optimisation of culture conditions. The bioflocculants’ efficiencies were evaluated in wastewater using the Jar test method. Among 31 isolates, Klebsiella michiganensis and Klebsiella pasteurii were the most potent bioflocculant producers. They both revealed the presence of PKS-II. K. pasteurii possessed the epsH gene. The optimal conditions for maximum bioflocculant production (95% activity) by K. michiganensis were a temperature of 35 °C, pH of 5, galactose, tryptophan and 84 h of incubation. K. pasteurii’s maximum bioflocculant production of 83% was obtained at a temperature of 35 °C and pH of 7, with galactose, a mixture of urea, yeast extract, and ammonium sulphate (NH4)2SO4 and 96 h of fermentation. Their bioflocculants reduced the chemical oxygen demand and turbidity of wastewater by more than 70%. The bacteria had promising bioflocculant production with potential applicability in wastewater treatment. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 9440 KB  
Article
Cold-Tolerant Bacteria Isolated from Alpine Plants Can Promote Growth and Mitigate Cold Stress in Tomato Seedlings by Complex Transcriptional Reprogramming of Stress-Related Genes
by Irma Milanese, Aureliano Bombarely, Malek Marian and Michele Perazzolli
Plants 2025, 14(21), 3316; https://doi.org/10.3390/plants14213316 - 30 Oct 2025
Abstract
Cold stress adversely affects crop growth, and climate change is increasing its severity and frequency in many agricultural regions. Tomato plants are sensitive to low temperatures, although they activate some stress response mechanisms. Beneficial microorganisms can enhance cold-stress acclimation in tomato plants, but [...] Read more.
Cold stress adversely affects crop growth, and climate change is increasing its severity and frequency in many agricultural regions. Tomato plants are sensitive to low temperatures, although they activate some stress response mechanisms. Beneficial microorganisms can enhance cold-stress acclimation in tomato plants, but the transcriptional regulation underlying this process remains poorly understood. This study aimed to investigate the transcriptional processes activated by cold stress in tomato plants following inoculation with cold-tolerant bacteria isolated from alpine plants to identify genes potentially involved in cold stress acclimation. Among 41 cold-tolerant bacterial isolates tested, Chryseobacterium sp. GRCS301 and Pseudomonas sp. GRCS202 inoculation in sterilized soil promoted tomato growth under controlled non-stress (25 ± 2 °C) and cold-stress (10 ± 2 °C) conditions. Bacterial inoculations lowered H2O2 content and affected the transcriptional regulations activated in tomato shoots after one day and 14 days of incubation under cold-stress conditions. In mock-inoculated plants, cold stress downregulated genes related to energy generation, photosynthesis, and reproductive processes, highlighting its detrimental effects. Conversely, plants inoculated with Chryseobacterium and Pseudomonas upregulated genes involved in DNA replication, galactose metabolism, polysaccharide metabolism, photosynthesis, and protein metabolism in response to cold stress. Bacterial inoculation induced the expression of genes involved in reactive oxygen species homeostasis, cold-stress response, and hormonal signaling, suggesting that cold-tolerant bacteria trigger key transcriptional changes in tomato plants and enhance cold-stress acclimation. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

15 pages, 2780 KB  
Article
Post-Synthesis Ion Beam Sputtering of Pt/CeO2–ZrO2 Catalysts: Correlating Surface Modifications with Light-Off Performance
by Ruairi O’Donnell, Marina Maddaloni, Salvatore Scaglione and Nancy Artioli
Catalysts 2025, 15(11), 1018; https://doi.org/10.3390/catal15111018 - 30 Oct 2025
Abstract
High-efficiency diesel and lean-burn engines produce lower exhaust temperatures, which can delay the activation of after-treatment catalysts such as Diesel Oxidation Catalysts (DOCs). This study explores ion beam sputtering as a post-synthesis strategy to enhance the low-temperature activity of commercial Pt/CeO2–ZrO [...] Read more.
High-efficiency diesel and lean-burn engines produce lower exhaust temperatures, which can delay the activation of after-treatment catalysts such as Diesel Oxidation Catalysts (DOCs). This study explores ion beam sputtering as a post-synthesis strategy to enhance the low-temperature activity of commercial Pt/CeO2–ZrO2 catalysts. Low-energy ions (0.5–1.5 keV) were applied with controlled variations in treatment number, beam current, and exposure time to selectively generate oxygen vacancies and improve Pt dispersion. Structural and chemical effects were characterized using X-ray diffraction (XRD), BET surface area measurements, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Catalytic performance was evaluated through CO and C3H6 oxidation under conditions mimicking lean-burn engine exhaust. Increasing the number of ion treatments progressively lowered light-off temperatures, correlating with enhanced Pt–Ce3+ interactions and improved surface reducibility. Variations in beam current and exposure time further modulated these surface effects, confirming the tunable nature of the approach. The results demonstrate that ion beam sputtering selectively modifies the catalyst surface without altering the bulk structure, directly linking atomic-scale modifications to improved low-temperature activity. This strategy offers a promising route to overcome delayed light-off issues in modern high-efficiency engines, providing a precise, controllable method to optimize emission control catalysts. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Graphical abstract

Back to TopTop