The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology and Structure of the Catalysts
2.1.1. XRD, BET Surface Area and Pore Morphology
2.1.2. Morphological Analysis
2.2. Surface Properties of Catalysts
2.3. Acidic Sites Distribution of the Catalyst
2.4. Redox Performance of the Catalysts
2.5. Catalytic Activity of xFe2O3-6CeO2-40MnO2/TiO2 Catalyst
2.5.1. The Denitration Performance of xFe2O3-6CeO2-40MnO2/TiO2 Catalyst
2.5.2. The Anti-SO2 and Anti-H2O Properties of xFe2O3-6CeO2-40MnO2/TiO2 Catalyst
2.5.3. Stability of Catalytic Activity of 6Fe2O3-6CeO2-40MnO2/TiO2 Catalyst
2.5.4. Kinetic Analysis of xFe2O3-6CeO2-40MnO2/TiO2 Catalyst
2.6. Catalytic Mechanism Analysis of xFe2O3-6CeO2-40MnO2/TiO2 Catalyst
- (1)
- Adsorption of NH3
- (2)
- Co-adsorption of NO + O2
- (3)
- The microscopic reaction process of the catalyst
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Measurement of Catalyst Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, F.; Liu, C.; Ma, X.; Zhou, Z.; Lu, J. Review on NH3-SCR for Simultaneous Abating NOx and VOCs in Industrial Furnaces: Catalysts’ Composition, Mechanism, Deactivation and Regeneration. Fuel Process. Technol. 2023, 247, 107773. [Google Scholar] [CrossRef]
- Thirupathi, B.; Smirniotis, P.G. Nickel-Doped Mn/TiO2 as an Efficient Catalyst for the Low-Temperature SCR of NO with NH3: Catalytic Evaluation and Characterizations. J. Catal. 2012, 288, 74–83. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Cu-Mn Mixed Oxides for Low Temperature NO Reduction with NH3. Catal. Today 2006, 111, 236–241. [Google Scholar] [CrossRef]
- Fan, Z.; Shi, J.-W.; Niu, C.; Wang, B.; He, C.; Cheng, Y. The Insight into the Role of Al2O3 in Promoting the SO2 Tolerance of MnOx for Low-Temperature Selective Catalytic Reduction of NOx with NH3. Chem. Eng. J. 2020, 398, 125572. [Google Scholar] [CrossRef]
- Lai, J.-K.; Wachs, I.E. A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5-WO3/TiO2 Catalysts. ACS Catal. 2018, 8, 6537–6551. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Xing, Z.; Bao, C.; Liang, G. Preparation and Characterization of CeO2-MoO3/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3. Aerosol Air Qual. Res. 2017, 17, 2726–2734. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z.; Cen, K. The Activity and Characterization of CeO2-TiO2 Catalysts Prepared by the Sol-Gel Method for Selective Catalytic Reduction of NO with NH3. J. Hazard. Mater. 2010, 174, 734–739. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Luo, M.; Yang, Z.; Zhao, Q. Low-Temperature Selective Catalytic Reduction of NO with NH3 Over Mn-Ti Oxide Catalyst: Effect of the Synthesis Conditions. Catal. Lett. 2021, 151, 966–979. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Li, J.; Ma, L.; Woo, S.I. Novel Mn-Ce-Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2014, 6, 14500–14508. [Google Scholar] [CrossRef]
- Ellmers, I.; Pérez Vélez, R.; Bentrup, U.; Schwieger, W.; Brückner, A.; Grünert, W. SCR and NO Oxidation over Fe-ZSM-5—The Influence of the Fe Content. Catal. Today 2015, 258, 337–346. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Z.; Chen, M.; Zhang, Z.; Shangguan, W. Promotion Effect of Tungsten and Iron Co-Addition on the Catalytic Performance of MnOx/TiO2 for NH3-SCR of NOx. Fuel 2017, 210, 783–789. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Li, H.; Yang, Q.; Wang, L.; Li, X. Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Fe-Mn Mixed-Oxide Catalysts Containing Fe3Mn3O8 Phase. Ind. Eng. Chem. Res. 2012, 51, 202–212. [Google Scholar] [CrossRef]
- Mu, J.; Li, X.; Sun, W.; Fan, S.; Wang, X.; Wang, L.; Qin, M.; Gan, G.; Yin, Z.; Zhang, D. Enhancement of Low-Temperature Catalytic Activity over a Highly Dispersed Fe-Mn/Ti Catalyst for Selective Catalytic Reduction of NOx with NH3. Ind. Eng. Chem. Res. 2018, 57, 10159–10169. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, J.; Qian, Y.; Sun, Z. Low-Temperature DeNOx Characteristics and Mechanism of the Fe-Doped Modified CeMn Selective Catalytic Reduction Catalyst. Fuel Process. Technol. 2023, 244, 107704. [Google Scholar] [CrossRef]
- Qiu, L.; Li, D.; Li, H.; Ren, Z.; Zhu, Z.; Ouyang, F.; Guo, M. Improvement of Sulfur and Water Resistance with Fe-Modified S-MnCoCe/Ti/Si Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3. Chemosphere 2022, 302, 134740. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Ge, C.; Li, T.; Li, C.; Li, S.; Xiong, F.; Dong, L. Promoting N2 Selectivity of CeMnOx Catalyst by Supporting TiO2 in NH3-SCR Reaction. Ind. Eng. Chem. Res. 2019, 58, 6325–6332. [Google Scholar] [CrossRef]
- Liu, Q.; Bian, C.; Jin, Y.; Pang, L.; Chen, Z.; Li, T. Influence of Calcination Temperature on the Evolution of Fe Species over Fe-SSZ-13 Catalyst for the NH3-SCR of NO. Catal. Today 2022, 388–389, 158–167. [Google Scholar] [CrossRef]
- Long, L.; Tian, S.; Zhao, Y.; Zhang, X.; Luo, W.; Yao, X. Promotional Effects of Nb5+ and Fe3+ Co-Doping on Catalytic Performance and SO2 Resistance of MnOx-CeO2 Low-Temperature Denitration Catalyst. J. Colloid Interface Sci. 2023, 648, 876–888. [Google Scholar] [CrossRef]
- Wang, F.; Shen, B.; Zhu, S.; Wang, Z. Promotion of Fe and Co Doped Mn-Ce/TiO2 Catalysts for Low Temperature NH3-SCR with SO2 Tolerance. Fuel 2019, 249, 54–60. [Google Scholar] [CrossRef]
- Wu, T.; Ren, S.; Guo, R.; Li, C.; You, Y.; Guo, S.; Pan, W. The Promotion Effect of Pr Doping on the Catalytic Performance of MnCeOx Catalysts for Low-Temperature NH3-SCR. Fuel 2024, 357, 129917. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, P.; Chen, Y.; Wang, Y.; Ding, Q.; Sui, Z.; Chen, H.; Shen, Z.; Wu, X. A Basic Comprehensive Study on Synergetic Effects among the Metal Oxides in CeO2-WO3/TiO2 NH3-SCR Catalyst. Chem. Eng. J. 2021, 421, 127833. [Google Scholar] [CrossRef]
- Doan, T.; Dam, P.; Nguyen, K.; Vuong, T.H.; Le, M.T.; Pham, T.H. Copper-Iron Bimetal Ion-Exchanged SAPO-34 for NH3-SCR of NOx. Catalysts 2020, 10, 321. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Jiao, Q.; Zhao, D.; Zhang, Y.; Liu, L.; Hu, G.; Li, J. Promotion Effect and Mechanism of MnOx Doped CeO2 Nano-Catalyst for NH3-SCR. Ceram. Int. 2020, 46, 4394–4401. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Wang, Y.; Fan, R.; Zhang, C.; Wang, Y.; Guo, X.; Wang, R.; Zhang, S. Ce and Zr Modified WO3-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysts 2018, 8, 375. [Google Scholar] [CrossRef]
- Chang, H.; Li, J.; Yuan, J.; Chen, L.; Dai, Y.; Arandiyan, H.; Xu, J.; Hao, J. Ge, Mn-Doped CeO2-WO3 Catalysts for NH3-SCR of NOx: Effects of SO2 and H2O Regeneration. Catal. Today 2013, 201, 139–144. [Google Scholar] [CrossRef]
- Stahl, A.; Wang, Z.; Schwämmle, T.; Ke, J.; Li, X. Novel Fe-W-Ce Mixed Oxide for the Selective Catalytic Reduction of NOx with NH3 at Low Temperatures. Catalysts 2017, 7, 71. [Google Scholar] [CrossRef]
- Cheng, K.; Liu, J.; Zhang, T.; Li, J.; Zhao, Z.; Wei, Y.; Jiang, G.; Duan, A. Effect of Ce Doping of TiO2 Support on NH3-SCR Activity over V2O5-WO3/CeO2-TiO2 Catalyst. J. Environ. Sci. 2014, 26, 2106–2113. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Hu, H.; Li, H.; Shi, L.; Zhang, D. Investigations on the Antimony Promotional Effect on CeO2-WO3/TiO2 for Selective Catalytic Reduction of NOx with NH3. ChemCatChem 2016, 8, 2267–2278. [Google Scholar] [CrossRef]
- Sun, C.; Liu, H.; Chen, W.; Chen, D.; Yu, S.; Liu, A.; Dong, L.; Feng, S. Insights into the Sm/Zr Co-Doping Effects on N2 Selectivity and SO2 Resistance of a MnOx-TiO2 Catalyst for the NH3-SCR Reaction. Chem. Eng. J. 2018, 347, 27–40. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese-Niobium Mixed Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH3 at Low Temperatures. Chem. Eng. J. 2014, 250, 390–398. [Google Scholar] [CrossRef]
- Liu, Z.; Yi, Y.; Zhang, S.; Zhu, T.; Zhu, J.; Wang, J. Selective Catalytic Reduction of NOx with NH3 over Mn-Ce Mixed Oxide Catalyst at Low Temperatures. Catal. Today 2013, 216, 76–81. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Xiong, W.; Jiang, X.; Ouyang, T.; Bai, Y.; Cai, X.; Cai, J.; Tan, H. A DFT Study of the Mechanism of NH3-SCR NOx Reduction over Mn-Doped and Mn-Ti Co-Doped CoAl2O4 Catalysts. J. Mater. Chem. C 2024, 12, 5073–5082. [Google Scholar] [CrossRef]
- Park, E.D. Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia. Molecules 2024, 29, 4506. [Google Scholar] [CrossRef] [PubMed]


















| Catalyst | Specific Surface (m2·g−1) | Pore Capacity (cm3·g−1) | Pore Size (nm) |
|---|---|---|---|
| 6CeO2-40MnO2/TiO2 | 83 | 0.218 | 16.37 |
| 2Fe2O3-6CeO2-40MnO2/TiO2 | 84 | 0.252 | 15.19 |
| 4Fe2O3-6CeO2-40MnO2/TiO2 | 87 | 0.257 | 13.68 |
| 6Fe2O3-6CeO2-40MnO2/TiO2 | 88 | 0.268 | 12.22 |
| 8Fe2O3-6CeO2-40MnO2/TiO2 | 88 | 0.254 | 13.34 |
| Catalyst | Fe | Ce | Mn | Ti | O |
|---|---|---|---|---|---|
| 6CeO2-40MnO2/TiO2 | 0 | 5.36 | 11.86 | 13.05 | 69.73 |
| 2Fe2O3-6CeO2-40MnO2/TiO2 | 2.87 | 4.98 | 11.43 | 11.27 | 69.45 |
| 4Fe2O3-6CeO2-40MnO2/TiO2 | 4.03 | 4.47 | 10.94 | 10.68 | 69.88 |
| 6Fe2O3-6CeO2-40MnO2/TiO2 | 4.96 | 4.51 | 9.98 | 10.30 | 70.25 |
| 8Fe2O3-6CeO2-40MnO2/TiO2 | 5.78 | 4.23 | 8.55 | 10.46 | 70.98 |
| Catalyst | NH3 Adsorption at the Weak Acid Sites (μmol·g−1) | NH3 Adsorption at the Medium-Strong Acid Sites (μmol·g−1) | NH3 Adsorption at the Strong Acid Sites (μmol·g−1) |
|---|---|---|---|
| 6CeO2-40MnO2/TiO2 | 185.32 | 303.22 | 868.57 |
| 2Fe2O3-6CeO2-40MnO2/TiO2 | 188.56 | 304.73 | 957.34 |
| 4Fe2O3-6CeO2-40MnO2/TiO2 | 189.85 | 311.94 | 1079.65 |
| 6Fe2O3-6CeO2-40MnO2/TiO2 | 187.15 | 318.66 | 1108.59 |
| 8Fe2O3-6CeO2-40MnO2/TiO2 | 182.77 | 321.65 | 1089.73 |
| Catalyst | Fe3+ → Fe2+ H2 Consumption (mmol·g−1) | Mn4+ → Mn3+ H2 Consumption (mmol·g−1) | Ce4+ → Ce3+ H2 Consumption (mmol·g−1) | Total Consumption of H2 (mmol·g−1) |
|---|---|---|---|---|
| 6CeO2-40MnO2/TiO2 | 3.78 | 5.45 | 0.63 | 9.86 |
| 2Fe2O3-6CeO2-40MnO2/TiO2 | 3.50 | 5.21 | 0.51 | 9.22 |
| 4Fe2O3-6CeO2-40MnO2/TiO2 | 3.76 | 5.68 | 0.98 | 10.42 |
| 6Fe2O3-6CeO2-40MnO2/TiO2 | 4.18 | 5.73 | 1.34 | 11.25 |
| 8Fe2O3-6CeO2-40MnO2/TiO2 | 4.02 | 5.31 | 1.03 | 10.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Bian, X.; Li, J.; Jia, Z.; Bai, Y. The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3. Molecules 2025, 30, 4260. https://doi.org/10.3390/molecules30214260
Yang Y, Bian X, Li J, Jia Z, Bai Y. The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3. Molecules. 2025; 30(21):4260. https://doi.org/10.3390/molecules30214260
Chicago/Turabian StyleYang, Yuming, Xue Bian, Jiaqi Li, Zhongshuai Jia, and Yuting Bai. 2025. "The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3" Molecules 30, no. 21: 4260. https://doi.org/10.3390/molecules30214260
APA StyleYang, Y., Bian, X., Li, J., Jia, Z., & Bai, Y. (2025). The Effect of Fe2O3 Modification on the CeO2-MnO2/TiO2 Catalyst for Selective Catalytic Reduction of NO with NH3. Molecules, 30(21), 4260. https://doi.org/10.3390/molecules30214260

