Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,001)

Search Parameters:
Keywords = C and N mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8515 KiB  
Article
Preparation and Performance Study of Alkali-Activated Conductive Mortar via Response Surface Methodology
by Wenfang Lv, Wenhua Zha, Tao Xu and Minqian Sun
Minerals 2025, 15(8), 787; https://doi.org/10.3390/min15080787 - 26 Jul 2025
Viewed by 175
Abstract
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali [...] Read more.
In this study, alkali-activated coal gangue-slag material (AACGS) was prepared using coal gangue and slag as precursors, and its feasibility as conductive mortar substrate material was preliminarily investigated. Firstly, this study employed Response Surface Methodology (RSM) to develop statistical models correlating the alkali equivalent, water-to-binder ratio, and slag content with the compressive strength, flexural strength, and resistivity of AACGS, aiming to identify the optimal mix proportions. Secondly, based on the optimal ratio identified above and using carbon fibers (CF) as the conductive phase, an alkali-activated conductive mortar (CF-AACGS) was prepared, and its compressive strength, flexural strength, and resistivity were tested. Lastly, XRD and SEM-EDS were conducted to characterize the mineral composition and microstructure of CF-AACGS. The results indicate that when the alkali equivalent, water-to-binder ratio, and slag content are 13.34%, 0.54, and 57.52%, respectively, the AACGS achieves compressive strength, flexural strength, and resistivity of 72.5 MPa, 7.0 MPa, and 62.41 Ω·m at 28 days. Under the action of the alkali activator, coal gangue and slag undergo hydration reactions, forming a denser N, C-(A)-S-H gel. This effectively improves the interface transition zone between the CF and AACGS, endowing the CF-AACGS with superior mechanical properties. Furthermore, the AACGS matrix enhances the conductive contact point density by optimizing CF dispersion, which significantly reduces the resistivity of the CF-AACGS. Full article
(This article belongs to the Special Issue Development in Alkali-Activated Materials and Applications)
Show Figures

Figure 1

19 pages, 1766 KiB  
Article
A Simple Model to Predict the Temporal Nitrogen Saturation Point of a Jack Pine (Pinus banksiana L.) Forest
by Andrew M. McDonough and Shaun A. Watmough
Forests 2025, 16(7), 1195; https://doi.org/10.3390/f16071195 - 19 Jul 2025
Viewed by 295
Abstract
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana [...] Read more.
Dry jack pine forests exposed to elevated nitrogen (N) deposition do not necessarily exhibit traditional N saturation responses. Using empirical results from a five year above-canopy N deposition experiment, a simple nitrogen (N) saturation model was developed for jack pine (Pinus banksiana Lamb.) forests dominated by cryptogams. For the model, a series of differential equations using empirically derived rate constants (k) were applied to estimate changes in net N pools in biotic and abiotic components across a narrow N deposition gradient (0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1). Critical soil C:N ratios were used as the model limit to signify saturation. We explored the saturation response time by priming the model to mineralize approximately one percent of the soil N pool after the critical C:N ratio was reached. A portion of this pool was made available to jack pine trees. Nitrogen leaching below the rooting zone occurred when the mass of N mineralized from the soil organic- and A horizon layers exceeded the theoretical mass required by jack pine, driving the mineral soil below the critical C:N ratio. The model suggests that N leaching below the rooting zone could happen around 50 (1% LFH N mineralization) years after the onset of deposition at 25 kg N ha−1 yr−1. In contrast, N deposition rates ≤ 20 kg N ha−1 yr−1 are not expected to be associated with N leaching over this timeframe. The modeled results are consistent with empirical surveys of jack pine forests exposed to elevated N deposition for several decades. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 295
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

13 pages, 880 KiB  
Review
Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
by Xiao-Xia Wang, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang and Zihao Zhao
Minerals 2025, 15(7), 728; https://doi.org/10.3390/min15070728 - 12 Jul 2025
Viewed by 193
Abstract
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, [...] Read more.
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, impact diamonds, etc. While carbon constitutes the primary component of diamonds, nitrogen represents one of the most significant impurity elements. The study of the occurrence mode of nitrogen and the C-N isotope composition is essential for exploring the formation mechanism of diamond. Nitrogen primarily exists in diamonds as either isolated atoms (N) or aggregated forms (N2 or N4), with the dominant mode being controlled by temperature and residence time in the mantle. As temperature and residence time increase, isolated nitrogen progressively transforms into aggregated forms. As a result, mantle-derived diamonds typically contain nitrogen predominantly as N2 or N4, whereas metamorphic diamonds and impact diamonds mainly retain isolated N. Global C-N isotopic composition of over 4400 diamonds reveals a wide compositional range, with δ13C ranging from −38.5‰ to +5.0‰, and δ15N from −39.4‰ to +15.0‰. These values significantly exceed the typical mantle δ13C and δ15N values of −5‰ ± 3‰, indicating that the diamond formation may be influenced by subducted crustal materials. During crystallization, diamonds can encapsulate surrounding materials as inclusions, which are divided into three types based on their formation sequence relative to the host diamond: preformed, syngenetic, and epigenetic. Syngenetic inclusions are particularly valuable for constraining crystallization conditions and the genesis of diamonds. Furthermore, geochronology studies of radioactive isotope-bearing syngenetic inclusions are helpful to clarify the age of diamond formation. Usually, mantle-derived diamonds exhibit Archean age, whereas metamorphic diamonds are associated with subduction, showing younger ages that could be associated with metamorphic events. Therefore, the formation conditions and genesis of diamonds can be clearly constrained through integrating investigations of inclusions, nitrogen occurrence modes, and C-N isotopic compositions. The characteristics of occurrence modes, inclusions, and C-N isotope compositions of different types of diamonds are systematically reviewed in this paper, providing critical insights into their genesis and contributing to a deeper understanding of diamond formation processes in Earth’s interior. Full article
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests
by Xuejia Huang, Yuanying Peng, Wende Yan, Tianyi Yan, Xiaocui Liang, Junjie Lei, Xiaoyong Chen and Yaqin Qi
Sustainability 2025, 17(14), 6358; https://doi.org/10.3390/su17146358 - 11 Jul 2025
Viewed by 228
Abstract
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal [...] Read more.
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal Treatment (DIRT) framework to examine how aboveground and belowground organic inputs influence soil organic carbon (SOC), total nitrogen (TN), soil water content (SWC), and enzymatic activities in subtropical urban camphor tree forests in China. Six treatments were implemented: litter removal (LR), litter addition (LA), root exclusion (RE), combined litter and root removal (LR + RE), combined litter addition and root exclusion (LA + RE), and an undisturbed litter control (LC). The results showed that the LA treatment significantly enhanced SOC, TN, SWC, and key soil enzyme activities (protease, catalase, and urease) compared to the LC, highlighting the crucial role of litter in enhancing soil fertility and microbial functioning. These elevated enzyme activities suggest intensified microbial nutrient cycling and metabolic activity in response to organic matter inputs. In contrast, the combined LR + RE treatment reduced SOC and enzyme activities but unexpectedly increased TN, indicating disrupted nutrient cycling, possibly due to accelerated microbial nitrogen mineralization and decomposition of existing soil organic matter in the absence of fresh carbon inputs. The LA treatment also showed the highest carbon-to-nitrogen (C:N) ratio, reflecting a carbon-enriched environment that may favor long-term carbon stabilization. Additionally, SWC was most improved under the LA + RE treatment, suggesting its potential for enhancing soil moisture retention in urban settings. These findings underscore the complementary roles of litter and root inputs in maintaining soil health and biogeochemical balance in urban forests. The study provides insights into enzyme-mediated soil processes under varying organic input regimes and highlights the value of targeted organic matter management to enhance urban ecosystem services. Full article
Show Figures

Figure 1

16 pages, 2439 KiB  
Article
Unraveling Carbon and Nitrogen Dynamics in Cattle Manure: New Insights from Litterbag Incubation
by Thierry Morvan, Françoise Watteau and Paul Robin
Nitrogen 2025, 6(3), 56; https://doi.org/10.3390/nitrogen6030056 - 11 Jul 2025
Viewed by 220
Abstract
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by [...] Read more.
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by methodological constraints, notably the drying process of organic products. While litterbag experiments allow in situ decomposition of OM to be monitored, they often focus only on mass loss on a dry matter basis, which may overestimate biodegradation rates. To address these limitations, we designed an experiment that combined the measurement of material fluxes with the characterization of OM using transmission electron microscopy. Raw and dried farmyard cattle manure were incorporated into the soil and incubated in litterbags (200 µm mesh) for 301 days. The results demonstrated that drying significantly altered the biochemical composition of the cattle manure and influenced its microbial dynamics at the beginning of the incubation. However, this alteration did not influence the C mineralization rate at the end of incubation. Biodegradation alone could not explain C losses from litterbags after day 112 of incubation, which supports the assertion that physical and biological processes transferred large amounts of matter from the litterbags to the soil. These results highlight the importance of conditioning samples before laboratory incubations. Full article
Show Figures

Figure 1

22 pages, 3354 KiB  
Article
PS-YOLO-seg: A Lightweight Instance Segmentation Method for Lithium Mineral Microscopic Images Based on Improved YOLOv12-seg
by Zeyang Qiu, Xueyu Huang, Zhicheng Deng, Xiangyu Xu and Zhenzhong Qiu
J. Imaging 2025, 11(7), 230; https://doi.org/10.3390/jimaging11070230 - 10 Jul 2025
Viewed by 495
Abstract
Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge [...] Read more.
Microscopic image automatic recognition is a core technology for mineral composition analysis and plays a crucial role in advancing the intelligent development of smart mining systems. To overcome the limitations of traditional lithium ore analysis and meet the challenges of deployment on edge devices, we propose PS-YOLO-seg, a lightweight segmentation model specifically designed for lithium mineral analysis under visible light microscopy. The network is compressed by adjusting the width factor to reduce global channel redundancy. A PSConv-based downsampling strategy enhances the network’s ability to capture dim mineral textures under microscopic conditions. In addition, the improved C3k2-PS module strengthens feature extraction, while the streamlined Segment-Efficient head minimizes redundant computation, further reducing the overall model complexity. PS-YOLO-seg achieves a slightly improved segmentation performance compared to the baseline YOLOv12n model on a self-constructed lithium ore microscopic dataset, while reducing FLOPs by 20%, parameter count by 33%, and model size by 32%. Additionally, it achieves a faster inference speed, highlighting its potential for practical deployment. This work demonstrates how architectural optimization and targeted enhancements can significantly improve instance segmentation performance while maintaining speed and compactness, offering strong potential for real-time deployment in industrial settings and edge computing scenarios. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Computer Vision Applications)
Show Figures

Figure 1

19 pages, 2149 KiB  
Article
Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization
by Katarzyna Struszczyk-Świta, Piotr Drożdżyński, Paweł Marcinkowski, Aleksandra Nadziejko, Magdalena Rodziewicz, Bartłomiej Januszewicz, Magdalena Gierszewska and Olga Marchut-Mikołajczyk
Int. J. Mol. Sci. 2025, 26(13), 6494; https://doi.org/10.3390/ijms26136494 - 5 Jul 2025
Viewed by 383
Abstract
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete [...] Read more.
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete strain extracted from petroleum plant sludge. This is the inaugural publication illustrating keratinolytic activity in the Gordonia genus. The optimization of the degradation process via the Taguchi approach led to the effective biodegradation of untreated home chicken feathers, achieving dry mass loss of up to 99% after 168 h in a mineral medium. The agricultural potential of the obtained keratin hydrolysate, which was high in organic components (C 31.2%, N 8.9%, H 5.1%, and S 1.7%), was assessed. Phytotoxicity tests demonstrated that the feather hydrolysate led to better growth of the indicator plants—Sorghum saccharatum and Lepidium sativum. The highest values of root growth stimulation were 26% for S. saccharatum and 31% for L. sativum, at a dose of 0.01%. Shoot growth stimulation was noted only for L. sativum, reaching 38% (0.01%), 53% (0.05%), and 37% (0.1%), as compared to the control sample. These results demonstrate the process’s combined economic and environmental benefits, providing a fresh approach to the production of bio-based plant biostimulants and sustainable keratin waste management. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications: 2nd Edition)
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 227
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 412
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

19 pages, 3549 KiB  
Article
Bacillus amyloliquefaciens SQ-2 and Biochar: A Promising Combination for Enhancing Rice Growth in Pb/Al-Contaminated Acidic Soils
by Guohui Gao, Xue Li, Jiajun Ma, Yumeng Cui, Ming Ying, Lei Huang and Meitong Li
Microorganisms 2025, 13(7), 1556; https://doi.org/10.3390/microorganisms13071556 - 2 Jul 2025
Viewed by 230
Abstract
In this study, Bacillus amyloliquefaciens SQ-2, previously isolated from a commercial watercress paste, was investigated for its potential in promoting rice growth in Pb/Al-contaminated acidic soil, especially when used in conjunction with corn straw biochar. Firstly, the physiological properties of rice were enhanced, [...] Read more.
In this study, Bacillus amyloliquefaciens SQ-2, previously isolated from a commercial watercress paste, was investigated for its potential in promoting rice growth in Pb/Al-contaminated acidic soil, especially when used in conjunction with corn straw biochar. Firstly, the physiological properties of rice were enhanced, with the activities of catalase and superoxide dismutase increasing by 162.5% and 162.9%, respectively. Additionally, the total phenolic and chlorophyll contents of rice increased by 17.6% and 83.7%, respectively. Secondly, the nutrient content of the rice rhizosphere soil was improved. In particular, nitrate nitrogen, available potassium, and sucrase were enhanced by 9.4%, 45.9%, and 466.8%, respectively. Moreover, SQ-2–biochar was demonstrated to have a notable capacity for removing Pb2+ and Al3+. The mineralization of Pb2+ and Al3+ was achieved through the use of SQ-2–biochar, as revealed by SEM-EDS, XRD, XPS, and FT-IR analyses, with the main precipitates being Pb3(PO4)2 and AlPO4. Functional groups such as C-O-C, C=O, N-H, P-O, and -O-H on the microbial surface were found to be involved in the biosorption process of Pb2+ and Al3+. In summary, SQ-2–biochar can effectively mineralize Pb2+ and Al3+, enhance the physiological properties of rice, and improve soil nutrients, thereby augmenting the antioxidant capacity, photosynthesis, and stress resistance of rice and ultimately promoting rice growth. Full article
Show Figures

Figure 1

25 pages, 3317 KiB  
Article
Biosurfactant Produced by Bacillus subtilis UCP 1533 Isolated from the Brazilian Semiarid Region: Characterization and Antimicrobial Potential
by Antônio P. da C. Albuquerque, Hozana de S. Ferreira, Yali A. da Silva, Renata R. da Silva, Carlos V. A. de Lima, Leonie A. Sarubbo and Juliana M. Luna
Microorganisms 2025, 13(7), 1548; https://doi.org/10.3390/microorganisms13071548 - 1 Jul 2025
Viewed by 348
Abstract
The increasing resistance of pathogenic microorganisms to antimicrobials has driven the search for safe and sustainable alternatives. In this context, microbial biosurfactants have gained prominence due to their antimicrobial activity, low toxicity, and high stability under extreme conditions. This study presents the production [...] Read more.
The increasing resistance of pathogenic microorganisms to antimicrobials has driven the search for safe and sustainable alternatives. In this context, microbial biosurfactants have gained prominence due to their antimicrobial activity, low toxicity, and high stability under extreme conditions. This study presents the production and characterization of a biosurfactant with antimicrobial potential, obtained from Bacillus subtilis isolated from soil, for application in the control of resistant strains. Bacterial identification was performed using mass spectrometry (MALDI-TOF), confirming it as Bacillus subtilis. The strain B. subtilis UCP 1533 was cultivated using different carbon sources (glucose, soybean oil, residual frying oil, and molasses) and nitrogen sources (ammonium chloride, sodium nitrate, urea, and peptone), with evaluations at 72, 96, and 120 h. The best condition involved a mineral medium supplemented with 2% soybean oil and 0.12% corn steep liquor, resulting in the production of 16 g·L−1 of biosurfactant, with a critical micelle concentration (CMC) of 0.3 g·L−1 and a reduction in water surface tension to 25 mN·m−1. The biosurfactant showed an emulsification index of 100% for used motor oil and ranged from 50% to 100% for different vegetable oils, maintaining stability across a wide range of pH, salinity, and temperature. FT-IR and NMR analyses confirmed its lipopeptide nature and anionic charge. Toxicity tests with Tenebrio molitor larvae showed 100% survival at all the tested concentrations. In phytotoxicity assays, seed germination rates above 90% were recorded for Solanum lycopersicum and Lactuca sativa. Antimicrobial tests revealed inhibitory activity against resistant strains of Escherichia coli and Pseudomonas aeruginosa, as well as against species of the genus Candida (C. glabrata, C. lipolytica, C. bombicola, and C. guilliermondii), highlighting the biosurfactant as a promising alternative in combating antimicrobial resistance (AMR). These results indicate the potential application of this biosurfactant in the development of antimicrobial agents for pharmaceutical formulations and sustainable strategies for phytopathogen control in agriculture. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

17 pages, 2039 KiB  
Article
Long-Term Conservation Tillage Increases Soil Organic Carbon Stability by Modulating Microbial Nutrient Limitations and Aggregate Protection
by Zixuan Han, Xueping Wu, Huizhou Gao, Angyuan Jia and Qiqi Gao
Agronomy 2025, 15(7), 1571; https://doi.org/10.3390/agronomy15071571 - 27 Jun 2025
Viewed by 446
Abstract
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly [...] Read more.
Increasing soil organic carbon (SOC) storage is essential for improving soil fertility and mitigating climate change. The priming effect, which is regulated by physical, chemical and microbial interactions, plays a pivotal role in SOC turnover. However, the fate of both native and newly added carbon under different tillage regimes remains unclear. To address this gap, a 13C-glucose labelling incubation experiment was conducted to assess SOC mineralization and priming effects under long-term tillage practices, including subsoiling with straw mulching (ST), no tillage with straw mulching (NT), and conventional tillage with straw removal (CT). The results demonstrated that conservation tillage (NT and ST) significantly reduced total SOC mineralization and glucose-derived CO2 release compared to CT. Notably, the priming effect under CT was 19.5% and 24.7% higher than under NT and ST, respectively. In the early incubation stage, positive priming was primarily driven by microbial co-metabolism, while during days 1–31, microbial stoichiometric decomposition dominated the process. In addition, NT and ST treatments significantly increased the proportion of >250 μm aggregates and their associated carbon and nitrogen contents, thereby enhancing aggregate stability and physical protection of SOC. The priming effect observed under conservation tillage was strongly negatively related to aggregate stability and aggregate associated carbon content, whereas it was positively related to the β-glucosidase/Peroxidase ratio (BG/PER) and the subtraction value between carbon/nitrogen (RC:N) and the carbon–nitrogen imbalance of the available resources (TERC:N). Overall, our findings highlight that conservation tillage enhances SOC stability not only by improving soil physical structure but also by alleviating microbial stoichiometric constraints, offering a synergistic pathway for carbon retention and climate-resilient soil management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 4410 KiB  
Article
GS-YOLO-Seg: A Lightweight Instance Segmentation Method for Low-Grade Graphite Ore Sorting Based on Improved YOLO11-Seg
by Zeyang Qiu, Xueyu Huang, Zhaojie Sun, Sifan Li and Jionghui Wang
Sustainability 2025, 17(12), 5663; https://doi.org/10.3390/su17125663 - 19 Jun 2025
Viewed by 664
Abstract
Efficient identification and removal of low-grade minerals during graphite ore processing is essential for improving product quality, optimizing resource recovery, and promoting sustainable production. To address the limitations of traditional sorting methods and performance bottlenecks in edge devices, this paper proposes a lightweight [...] Read more.
Efficient identification and removal of low-grade minerals during graphite ore processing is essential for improving product quality, optimizing resource recovery, and promoting sustainable production. To address the limitations of traditional sorting methods and performance bottlenecks in edge devices, this paper proposes a lightweight instance segmentation model, GS-YOLO-seg, for rapid identification and intelligent sorting of low-grade graphite ore in industrial production lines. The model first reduces network depth by adjusting the depth factor. Subsequently, the backbone network adopts the lightweight and efficient GSConv to perform downsampling, while a novel C3k2-Faster architecture is proposed to improve the effectiveness of feature extraction. Finally, the Segment-Efficient segmentation head is optimized to reduce redundant computations, further lowering the model load. On a self-constructed graphite ore image dataset, GS-YOLO-seg achieved comparable segmentation performance to the baseline YOLO11n-seg, while achieving a 30% reduction in FLOPs, 59% fewer parameters, 56% smaller model size, and 8% higher FPS. This method enhances the intelligence of the sorting process, preventing low-grade ores from entering subsequent stages, thus reducing resource waste, energy consumption, and carbon emissions, providing crucial technical support and feasible deployment pathways for building intelligent, green, and sustainable mining systems. Full article
(This article belongs to the Special Issue Data-Driven Sustainable Development: Techniques and Applications)
Show Figures

Figure 1

20 pages, 3756 KiB  
Article
Reducing Cd Uptake by Wheat Through Rhizosphere Soil N-C Cycling and Bacterial Community Modulation by Urease-Producing Bacteria and Organo-Fe Hydroxide Coprecipitates
by Junqing Zhang, Shuangjiao Tang, Hao Wei, Lunguang Yao, Zhaojin Chen, Hui Han, Mingfei Ji and Jianjun Yang
Microorganisms 2025, 13(6), 1412; https://doi.org/10.3390/microorganisms13061412 - 17 Jun 2025
Viewed by 439
Abstract
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms [...] Read more.
The bioavailability of heavy metals is profoundly influenced by their interactions with active soil components (microorganisms, organic matter, and iron minerals). However, the effects of urease-producing bacteria combined with organo-Fe hydroxide coprecipitates (OFCs) on Cd accumulation in wheat, as well as the mechanisms underlying these effects, remain unclear. In this study, pot experiments integrated with high-throughput sequencing were employed to investigate the impacts of the urease-producing bacterial strain TJ6, ferrihydrite (Fh), and OFCs on Cd enrichment in wheat grains, alongside the underlying soil–microbial mechanisms. The results demonstrate that the strain TJ6-Fh/OFC consortium significantly (p < 0.05) reduced (50.1–66.7%) the bioavailable Cd content in rhizosphere soil while increasing residual Cd fractions, thereby decreasing (77.4%) Cd accumulation in grains. The combined amendments elevated rhizosphere pH (7.35), iron oxide content, and electrical conductivity while reducing (14.5–21.1%) dissolved organic carbon levels. These changes enhanced soil-colloid-mediated Cd immobilization and reduced Cd mobility. Notably, the NH4+ content and NH4+/NO3 ratio were significantly (p < 0.05) increased, attributed to the ureolytic activity of TJ6, which concurrently alkalinized the soil and inhibited Cd uptake via competitive ion channel interactions. Furthermore, the relative abundance of functional bacterial taxa (Proteobacteria, Gemmatimonadota, Enterobacter, Rhodanobacter, Massilia, Nocardioides, and Arthrobacter) was markedly increased in the rhizosphere soil. These microbes exhibited enhanced abilities to produce extracellular polymeric substances, induce phosphate precipitation, facilitate biosorption, and promote nutrient (C/N) cycling, synergizing with the amendments to immobilize Cd. This study for the first time analyzed the effect and soil science mechanism of urease-producing bacteria combined with OFCs in blocking wheat’s absorption of Cd. Moreover, this study provides foundational insights and a practical framework for the remediation of Cd-contaminated wheat fields through microbial–organic–mineral collaborative strategies. Full article
Show Figures

Figure 1

Back to TopTop