Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Bifidobacterium animalis subsp. lactis (BB–12)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 506 KiB  
Article
Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion
by Katarzyna Szajnar, Małgorzata Pawlos, Magdalena Kowalczyk, Julita Drobniak and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(13), 2249; https://doi.org/10.3390/nu17132249 - 7 Jul 2025
Viewed by 603
Abstract
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate [...] Read more.
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate the effects of milk supplementation with inulin and sodium butyrate on physicochemical properties, sensory characteristics, and the survival of selected probiotic strains during in vitro simulated gastrointestinal digestion. Methods: Fermented milk samples were analyzed for color, pH, titratable acidity, and syneresis. A trained sensory panel evaluated aroma, texture, and acceptability. Samples underwent a standardized in vitro digestion simulating oral, gastric, and intestinal phases. Viable probiotic cells were counted before digestion and at each stage, and survival rates were calculated. Results: Physicochemical and sensory attributes varied depending on probiotic strain and supplementation. Inulin and the inulin–sodium butyrate combination influenced syneresis and acidity. Lacticaseibacillus casei 431 and Lactobacillus johnsonii LJ samples showed the highest viable counts before digestion. Two-way ANOVA confirmed that probiotic strain, supplementation type, and their interactions significantly affected bacterial survival during digestion (p < 0.05). Conclusions: The addition of inulin and sodium butyrate did not impair probiotic viability under simulated gastrointestinal conditions. The effects on product characteristics were strain-dependent (Bifidobacterium animalis subsp. lactis BB-12, L. casei 431, L. paracasei L26, L. acidophilus LA-5, L. johnsonii LJ). These findings support the use of inulin–butyrate fortification in dairy matrices to enhance the functional potential of probiotic foods targeting gut health. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

15 pages, 794 KiB  
Article
CLA-Producing Probiotics for the Development of a Yogurt-Type Beverage
by Hasnia Ziar, Philippe Gérard and Ali Riazi
Beverages 2025, 11(2), 50; https://doi.org/10.3390/beverages11020050 - 14 Apr 2025
Cited by 1 | Viewed by 702
Abstract
This study examined the ability of four beneficial strains (Lactobacillus rhamnosus LbRE-LSAS, Bifidobacterium animalis subsp. lactis Bb12, and two yogurt starters TA040 and LB340) to ferment MRS or milk containing free linoleic acid (0, 0.5, or 1 mg/mL). The goal was to produce [...] Read more.
This study examined the ability of four beneficial strains (Lactobacillus rhamnosus LbRE-LSAS, Bifidobacterium animalis subsp. lactis Bb12, and two yogurt starters TA040 and LB340) to ferment MRS or milk containing free linoleic acid (0, 0.5, or 1 mg/mL). The goal was to produce an enriched conjugated linoleic acid (CLA) isomers’ yogurt-type beverage. Linoleic acid (LA) at 0.5 mg/mL did not interfere with the growth of the assayed bacteria on de Man Rogosa and Sharpe broth (MRS) or milk. On the other hand, increasing the content of LA in the MRS or yogurt-type beverage to 1 mg/mL slightly inhibited all strains and prevented accumulating high biomasses. A gas chromatography analysis of the fatty acid profiles confirmed the bioconversion of LA. The yogurt starters TA040 and LB340 had the highest bioconversion rates in the yogurt-type beverages, whereas the probiotic Bb12 strain was the most interesting at converting LA into its active CLA. CLA from the MRS supernatants of TA040, Bb12, and LbRE-LSAS had maximum antibacterial activities against S. typhimurium, E. coli, and S. aureus, respectively. Whey from the Bb12 beverage showed an inhibitory effect against all pathogens. These results suggest that all strains could be used as starter cultures in the proposition of a yogurt-type beverage with a high CLA content and antibacterial potential. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

16 pages, 4960 KiB  
Article
Protective Effect of Probiotics on Cardiac Damage in Experimental Sepsis Model Induced by Lipopolysaccharide in Rats
by Necip Gökhan Taş, Osman Aktaş, Hakan Gökalp Taş, Selim Zırh, Nezahat Kurt and Hakan Uslu
Medicina 2025, 61(4), 589; https://doi.org/10.3390/medicina61040589 - 25 Mar 2025
Viewed by 987
Abstract
Background and Objective: Probiotics have been shown to be effective in controlling various adverse health conditions such as antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and neurological diseases. However, to our knowledge, there is no research on the preventive effect of probiotics on [...] Read more.
Background and Objective: Probiotics have been shown to be effective in controlling various adverse health conditions such as antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and neurological diseases. However, to our knowledge, there is no research on the preventive effect of probiotics on heart damage caused by infections. This study examined the preventive benefits of probiotics against sepsis-related heart injury using a rat model caused by lipopolysaccharide (LPS). Materials and Methods: Four groups of twenty-four male Wistar albino rats, each with six rats, were set up. For 14 days, Group 1 (Sham Group) was given oral normal saline, intraperitoneal Escherichia coli O111-B4 lipopolysaccharide (LPS Group) was given to Group 2, and oral probiotics were given to Group 3 (Probiotic Group). Escherichia coli O111-B4 lipopolysaccharide was injected intraperitoneally after Group 4 (Probiotic + LPS) received oral probiotics containing Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 (109 CFU/day). Blood samples were taken twenty-four hours following the administration of LPS. The animals were then euthanized by cervical dislocation, and samples of cardiac tissue were taken in order to assess any damage to the heart. The following serum values were measured: C-reactive protein (CRP), creatine kinase-myocardial band (CK-MB), cardiac troponin subunit I (cTn-I), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). The TNF-α, IL-1β, IL-6, glutathione (GSH), malondialdehyde (MDA), Total Oxidant Status (TOS), Total Antioxidant Status (TAS), Oxidative Stress Index (OSI), CRP, CK-MB, and cTn-I levels were assessed in tissue samples. Additionally, staining techniques were used to analyze histopathological alterations in tissues. Results: With the exception of serum IL-6 (p = 0.111), tissue and serum cytokine levels were considerably greater in the sepsis group (Group 2) than in the other groups (p < 0.05 to <0.001). The TAS, GSH, and SOD levels were significantly lower (p < 0.05 to <0.001) in septic rats, although the tissue levels of TOS, OSI, and MDA were significantly higher. With the exception of serum CRP in Group 3 (p = 0.328), the CK-MB, CRP, and cTn-I levels were considerably higher in Group 2 than in the other groups (p < 0.01 to <0.001). When compared to the other groups, histopathological examination showed significant alterations in the LPS group. Conclusions: Probiotics showed positive effects on oxidative stress markers and dramatically decreased sepsis-induced cardiac damage in the LPS-induced sepsis model. These results imply that probiotics could be used as a therapeutic approach to lessen the cardiac damage brought on by sepsis. Full article
(This article belongs to the Special Issue Infection, Inflammation and Immunity in Health and Disease)
Show Figures

Figure 1

14 pages, 2395 KiB  
Article
Milk Exosome-Based Delivery System for Probiotic Encapsulation That Enhances the Gastrointestinal Resistance and Adhesion of Probiotics
by Linlin Hao, Yinxue Liu, Ignatius Man-Yau Szeto, Haining Hao, Tai Zhang, Tongjie Liu and Huaxi Yi
Nutrients 2025, 17(5), 923; https://doi.org/10.3390/nu17050923 - 6 Mar 2025
Cited by 1 | Viewed by 1923
Abstract
The oral administration of probiotics is a promising strategy to regulate the host–intestinal flora balance and improve health. Nevertheless, adverse gastrointestinal (GI) conditions affect the activity of free native probiotics. In this study, a novel probiotic encapsulation system based on milk exosomes (mExos) [...] Read more.
The oral administration of probiotics is a promising strategy to regulate the host–intestinal flora balance and improve health. Nevertheless, adverse gastrointestinal (GI) conditions affect the activity of free native probiotics. In this study, a novel probiotic encapsulation system based on milk exosomes (mExos) and DSPE-PEG-PBA was developed. mExos acted as a shield to protect probiotics from harsh GI environments, and DSPE-PEG-PBA served as a bridge between mExos and probiotics. The coated probiotics were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and intrinsic fluorescence spectra. The results showed three probiotics (Akkermansia muciniphila (AKK), Bifidobacterium animalis subsp. lactis BB-12 (BB12), and Lactiplantibacillus plantarum Q7 (Q7)) were coated with mExos@DSPE-PEG-PBA, with encapsulation rates of 90.37 ± 0.45%, 84.47 ± 1.22%, and 70.93 ± 2.39%, respectively. This encapsulation not only preserved the growth activity of the probiotics but also provided robust protection against the detrimental effects of acidic pH, bile salts, and digestive enzymes. The encapsulated strains Q7, BB12, and AKK demonstrated survival rates of 80.99 ± 0.41%, 85.28 ± 0.20%, and 94.53 ± 0.26%, respectively, in an in vitro simulated GI environment. The mExos@DSPE-PEG-PBA-encapsulated probiotics exhibited enhanced hydrophobicity and auto-aggregation capacity, accompanied by a significant improvement in mucoadhesive properties, which collectively potentiated their colonization potential within the gastrointestinal tract. These findings substantiate the potential of mExos as an encapsulation platform for probiotics, providing valuable insights into the selection of exosomes as encapsulating agents to enhance probiotic viability and mucoadhesive capacity. Full article
(This article belongs to the Special Issue Prebiotics and Probiotics in Metabolism Disorder—2nd Edition)
Show Figures

Figure 1

17 pages, 301 KiB  
Article
Survivability of Probiotic Microflora in Fermented and Non-Fermented Mare’s Milk: A Comparative Study
by Anna Mituniewicz-Małek, Małgorzata Ziarno, Izabela Dmytrów and Katarzyna Szkolnicka
Appl. Sci. 2025, 15(2), 862; https://doi.org/10.3390/app15020862 - 16 Jan 2025
Viewed by 1288
Abstract
This study discusses the properties of mare milk as a potential food matrix to produce functional dairy products. The aim of this study was to investigate the effects of cold storage on the viability of microflora in fermented and unfermented mare’s milk, containing [...] Read more.
This study discusses the properties of mare milk as a potential food matrix to produce functional dairy products. The aim of this study was to investigate the effects of cold storage on the viability of microflora in fermented and unfermented mare’s milk, containing live monocultures of probiotic bacteria, during storage at low temperatures. Three fermented beverages were produced, differentiated by the bacterial flora used for production (Lactobacillus acidophilus LA-5 and Bifidobacterium animalis subsp. lactis BB-12), as well as one unfermented beverage (using 40% commercial kumis and 7% LA-5). The unfermented beverage was mare’s milk supplemented with a BB-12 monoculture, which was chilled immediately after adding the inoculum. The population of BB-12 remained above 6 log CFU/g until the 21st day of storage at 5 ± 1 °C, while for LA-5, it remained viable only up to 14 days of storage. The BB-12 population was high and stable for 21 days in both fermented and unfermented beverages. The results confirm the good quality of the final product (appropriate pH and high population of individual bacterial strains); not only are appropriate culture conditions important, but the use of suitable probiotic bacteria and the optimization of the starter concentrations should also be considered. There is considerable potential for further research and future commercialization of mare’s dairy products, such as yogurt and potentially other dairy products. Full article
(This article belongs to the Special Issue Innovation in Dairy Products)
17 pages, 1467 KiB  
Article
Effect of the Bifidobacterium animalis Subsp. Lactis, BB-12® on Cronobacter sakazakii Growth in Infant Formulas with Different Acid-Buffering Capacities
by Anthimia Batrinou, Efstathia Tsakali, Vassilia J. Sinanoglou, Polyvakidi Maria Eleni, Katerina Pyrovolou, Arhontoula Chatzilazarou and Spyros J. Konteles
Appl. Sci. 2025, 15(1), 124; https://doi.org/10.3390/app15010124 - 27 Dec 2024
Cited by 1 | Viewed by 1036
Abstract
The opportunistic pathogenic bacterium C. sakazakii poses a significant infection risk to infants through contaminated powdered infant formulae (PIFs) when proper hygiene and temperature control are neglected during reconstitution. This study aimed to investigate whether the acid-buffering capacity (ABC) of commercially available PIFs [...] Read more.
The opportunistic pathogenic bacterium C. sakazakii poses a significant infection risk to infants through contaminated powdered infant formulae (PIFs) when proper hygiene and temperature control are neglected during reconstitution. This study aimed to investigate whether the acid-buffering capacity (ABC) of commercially available PIFs enriched with the probiotic strain Bifidobacterium animalis subsp. lactis (BB-12®) could influence the growth of C. sakazakii. Two PIFs differing in their ABC were reconstituted (RIF), inoculated, and incubated in monoculture and co-culture at 22 °C and 37 °C for 24 h. After 24 h of incubation at 22 °C, regardless of the ABC type of PIF, the population of C. sakazakii in the monoculture was approx. 1.4 log cycles higher than the inoculum, while, in the co-culture, the C. sakazakii count was approx. 0.34 log cycles lower. In contrast, at 37 °C during the 24 h co-culture in the lower ABC infant formula, C. sakazakii was <10 CFU/mL. In all co-culture samples, the pH was significantly lower (p < 0.05) in the PIF with the lower ABC. An analysis of the weak organic acids at 12 and 24 h of incubation revealed that the antimicrobial activity is significantly affected by the final pH value, the type of the weak organic acids, and their ionic–non-ionic ratio, which is formed through the common ion effect. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

25 pages, 7612 KiB  
Article
Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis
by Marko Vinceković, Lana Živković, Elmira Turkeyeva, Botagoz Mutaliyeva, Galiya Madybekova, Suzana Šegota, Nataša Šijaković Vujičić, Anđela Pustak, Tanja Jurkin, Marta Kiš and Sanja Kajić
Gels 2024, 10(11), 752; https://doi.org/10.3390/gels10110752 - 19 Nov 2024
Cited by 4 | Viewed by 3467
Abstract
The probiotic bacterium Bifidobacterium animalis subsp. lactis BB-12 (BB-12) was encapsulated in two composites, alginate/agar and alginate/agar/casein. The network structure and physicochemical properties of these composites are influenced by complex interactions, including hydrogen bonding, electrostatic forces between biopolymers, calcium ions, and the encapsulated [...] Read more.
The probiotic bacterium Bifidobacterium animalis subsp. lactis BB-12 (BB-12) was encapsulated in two composites, alginate/agar and alginate/agar/casein. The network structure and physicochemical properties of these composites are influenced by complex interactions, including hydrogen bonding, electrostatic forces between biopolymers, calcium ions, and the encapsulated bacteria. The composites demonstrated a granular surface, with the granules being spatially oriented on the alginate/agar/BB-12 surface and linearly oriented on the alginate/agar/casein/BB-12 surface. They possess a highly organized microparticle structure and exhibit viscoelastic solid-like behavior. The alginate/agar/BB-12 composite showed higher storage modulus, shear stress, and shear strain values, indicating enhanced stability in various physical environments. Both composites displayed good thermal stability, aligning with their rheological properties, confirming their well-ordered structures. Despite differences in composite structures, the release mechanism of bacteria is governed by Fickian diffusion through the composite matrix. Based on physicochemical properties, the alginate/agar/casein composite is recommended for dairy product fermentation, while the alginate/agar composite seems more suitable for oral use. These findings provide new insights into the interactions between bacterial cultures and alginate composite ingredients. Full article
Show Figures

Graphical abstract

19 pages, 2243 KiB  
Article
Supplemented Infant Formula and Human Breast Milk Show Similar Patterns in Modulating Infant Microbiota Composition and Function In Vitro
by Klaudyna Borewicz and Wolfram Manuel Brück
Int. J. Mol. Sci. 2024, 25(3), 1806; https://doi.org/10.3390/ijms25031806 - 2 Feb 2024
Cited by 4 | Viewed by 3309
Abstract
The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well [...] Read more.
The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants’ microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants. Full article
(This article belongs to the Special Issue Molecular Advances in Gut Microbiota and Intestinal Diseases)
Show Figures

Graphical abstract

19 pages, 1976 KiB  
Technical Note
Development and Characterization of a Functional Ice Cream from Sheep Milk Enriched with Microparticulated Whey Proteins, Inulin, Omega-3 Fatty Acids, and Bifidobacterium BB-12®
by Giacomo Lai, Margherita Addis, Marco Caredda, Myriam Fiori, Alessio Silvio Dedola, Stefano Furesi and Massimo Pes
Dairy 2024, 5(1), 134-152; https://doi.org/10.3390/dairy5010011 - 1 Feb 2024
Cited by 6 | Viewed by 3427
Abstract
The aim of this work was develop a technological process for the manufacturing of an ice cream from sheep milk, enriched with both functional ingredients and probiotic bacteria. The studied process involved the use of an enriched milk (EM) obtained by mixing predetermined [...] Read more.
The aim of this work was develop a technological process for the manufacturing of an ice cream from sheep milk, enriched with both functional ingredients and probiotic bacteria. The studied process involved the use of an enriched milk (EM) obtained by mixing predetermined amounts of sheep skimmed milk concentrated by ultrafiltration (retentate), cream from sheep’s milk and whey, microparticulated whey proteins (MWP), obtained by ultrafiltration of sweet sheep whey as a source of whey proteins, marine algal oil from Schizochytrium spp. as a source of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), inulin as a prebiotic fiber, and locust bean gum as a stabilizer. The resulting EM was inoculated with starter and aroma cultures together with the probiotic culture of Bifidobacterium animalis subsp. lactis (BB-12®) in order to obtain a fermented functional product (FFP) with a physico-chemical composition similar to that of EM. FFP was the main ingredient (~80%, w/w) in the ice cream mixture. Two sucrose-alternative sweeteners (trehalose and erythritol), together with dextrose, were subsequently added to obtain the final ice cream formulation. The resulting ice cream met three nutritional claims: “Source of protein”, “Source of fiber” and “High in omega-3 fatty acids” listed in Regulations (EC) No 1924/2006 and (EU) No 116/2010. Furthermore, the ice cream satisfied the requirement of “probiotic food” according to the Italian Ministry of Health’s guidelines for probiotics. The nutritional characteristics of the ice cream, including the concentration of the probiotic culture, remained stable up to 120 days of storage at −20 ± 2 °C. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

11 pages, 492 KiB  
Article
Effect of Yogurt Ice Cream on the Viability and Antidiabetic Potential of the Probiotics Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, and Bifidobacterium animalis subsp. lactis after In Vitro Digestion
by Rinrada Talearngkul, Sudathip Sae-tan and Jintana Sirivarasai
Foods 2023, 12(23), 4373; https://doi.org/10.3390/foods12234373 - 4 Dec 2023
Cited by 9 | Viewed by 3154
Abstract
Probiotics can ameliorate type 2 diabetes mellitus (T2DM) via several mechanisms such as by decreasing inflammatory cytokines and increasing pancreatic β-cell functions. Another targeted mechanism for managing T2DM involves inhibiting α-amylase and α-glucosidase, which exhibit antioxidant activity and affect carbohydrate metabolism by delaying [...] Read more.
Probiotics can ameliorate type 2 diabetes mellitus (T2DM) via several mechanisms such as by decreasing inflammatory cytokines and increasing pancreatic β-cell functions. Another targeted mechanism for managing T2DM involves inhibiting α-amylase and α-glucosidase, which exhibit antioxidant activity and affect carbohydrate metabolism by delaying carbohydrate digestion, thus mitigating glucose in the circulation. Dairy products are effective matrices for delivering probiotics through the gastrointestinal tract. We compared the viability and antioxidant activity of the probiotics Lactobacillus acidophilus LA-5, Lacticaseibacillus rhamnosus GG, and Bifidobacterium animalis subsp. lactis in yogurt ice cream after in vitro digestion and compared α-amylase and α-glucosidase inhibition activities. Lacticaseibacillus rhamnosus GG had the highest viability after in vitro digestion (oral, gastric, and intestinal). Lactobacillus acidophilus LA-5 and Lacticaseibacillus rhamnosus GG exhibited the highest percentages of α-glucosidase (16.37% ± 0.32%) and α-amylase (41.37% ± 0.61%) inhibition. Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5 showed the highest antioxidant activities via the α,α-diphenyl-β-picrylhydrazyl free radical-scavenging method and ferric-reducing antioxidant power assay, respectively. These findings suggest that yogurt ice cream can provide a suitable matrix for the delivery of probiotics from dairy culture to promote intestinal homeostasis with probiotic benefits in the host as well as a potential functional food to help reduce postprandial hyperglycaemia. Full article
(This article belongs to the Special Issue Functional Foods with Modulating Action on Metabolic Risk Factors)
Show Figures

Graphical abstract

23 pages, 5057 KiB  
Article
Seeding the Infant Gut in Early Life—Effects of Maternal and Infant Seeding with Probiotics on Strain Transfer, Microbiota, and Gastrointestinal Symptoms in Healthy Breastfed Infants
by Cathrine Melsaether, Diana Høtoft, Anja Wellejus, Gerben D. A. Hermes and Anders Damholt
Nutrients 2023, 15(18), 4000; https://doi.org/10.3390/nu15184000 - 15 Sep 2023
Cited by 4 | Viewed by 4808
Abstract
We investigated the effects of two dosing regimens of two multi-strain probiotic products on the gut microbiota of breastfed infants, including the transfer of the dosed strains and clinical outcomes. In forty-seven dyads, infants were either exposed through maternal intake (MS) of Lactobacillus [...] Read more.
We investigated the effects of two dosing regimens of two multi-strain probiotic products on the gut microbiota of breastfed infants, including the transfer of the dosed strains and clinical outcomes. In forty-seven dyads, infants were either exposed through maternal intake (MS) of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, Lacticaseibacillus rhamnosus LGG, and Bifidobacterium longum subsp. infantis Bifin02 from gestational week thirty-three until four weeks after birth (n = 24) or dosed directly (IS) with the same strains except for LA-5 starting within 24 h after birth until day 28 (n = 23). Infant stool samples were collected on day 0, 14, 28, and 42 after birth. Gastrointestinal symptoms were assessed by parents using an electronic diary. Microbiota composition was determined using 16S rRNA sequencing, and strain recovery was analyzed by qPCR. Notably, 100% of the IS infants were colonized with Bifin02 after 14 days as opposed to only 25% of the MS infants. Mean stool frequency was significantly lower in IS infants compared to MS infants and IS infants had softer stools on day 14, 28, and 42. A significantly steeper slope of progression of inconsolable crying and fussing was observed in MS infants compared to IS infants. In conclusion, direct infant seeding induced a faster increase in fecal bifidobacteria abundancy and Bifin02 recovery compared to dosed through the maternal intake. Full article
Show Figures

Figure 1

15 pages, 2051 KiB  
Article
Viability and In Vitro Gastrointestinal Transit Tolerance of Multispecies Probiotic Combinations Incorporated into Orange Juice and Drinking Water
by Mahta Moussavi, Javad Barouei, Craig Evans, Michelle C. Adams and Surinder Baines
Foods 2023, 12(11), 2249; https://doi.org/10.3390/foods12112249 - 2 Jun 2023
Cited by 4 | Viewed by 2648
Abstract
Little is known about how combining probiotics affects the storage survival and functional performance of individual probiotics when incorporated into non-dairy drinks. Viability of Lacticaseibacillus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis subsp. lactis BB-12 (Bb), and Propionibacterium jensenii 702 [...] Read more.
Little is known about how combining probiotics affects the storage survival and functional performance of individual probiotics when incorporated into non-dairy drinks. Viability of Lacticaseibacillus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis subsp. lactis BB-12 (Bb), and Propionibacterium jensenii 702 (PJ), either alone or in multi-species combinations included in orange juice (OJ), were assessed during storage in refrigerated conditions and compared with bottled water (BW). The tolerance of probiotics included in refrigerated OJ to simulated gastrointestinal conditions was also examined. LG and LR viabilities were significantly higher in OJ than in BW (p ≤ 0.001), while the reverse was evident for PJ. Bb maintained high viability in both drinks. LG-PJ in both drinks and Bb-PJ in BW resulted in greater viabilities among the paired combinations compared to their respective monocultures when incorporated separately (p ≤ 0.001). The viability of LG in the LG-Bb-PJ combination improved significantly in BW compared with LG alone (p ≤ 0.001). OJ did not alter bacterial tolerance to simulated gastric juice but diminished tolerance to simulated intestinal juice (SIJ). In all combinations, tolerance of LG and LR to SIJ was improved, whereas tolerance of PJ declined significantly compared with respective monocultures (p ≤ 0.001). In conclusion, probiotic storage stability and gastrointestinal transit tolerance were species-dependent and affected by carrier type and combinations. These effects should be considered when formulating probiotic products. Full article
(This article belongs to the Collection Probiotics Research and Innovation in Functional Food Production)
Show Figures

Graphical abstract

13 pages, 1464 KiB  
Article
Design and Characterization of a Cheese Spread Incorporating Osmundea pinnatifida Extract
by Margarida Faustino, Daniela Machado, Dina Rodrigues, José Carlos Andrade, Ana Cristina Freitas and Ana Maria Gomes
Foods 2023, 12(3), 611; https://doi.org/10.3390/foods12030611 - 1 Feb 2023
Cited by 7 | Viewed by 3115
Abstract
Marine algae have been emerging as natural sources of bioactive compounds, such as soluble dietary fibers and peptides, presenting special interest as ingredients for functional foods. This study developed a cheese spread incorporating red seaweed Osmundea pinnatifida extract and subsequently characterized it in [...] Read more.
Marine algae have been emerging as natural sources of bioactive compounds, such as soluble dietary fibers and peptides, presenting special interest as ingredients for functional foods. This study developed a cheese spread incorporating red seaweed Osmundea pinnatifida extract and subsequently characterized it in terms of nutritional, pH, and microbiological parameters and bioactivities including prebiotic, antidiabetic, antihypertensive, and antioxidant activities. This food was produced through incorporation of O. pinnatifida extract (3%), obtained via enzymatic extraction Viscozyme L in a matrix containing whey cheese (75%) and Greek-type yoghurt (22%). The product was then subjected to thermal processing and subsequently stored for 21 days at 4 °C. During storage, this food showed a high pH stability (variations lower than 0.2 units), the absence of microbial contamination and all tested bioactivities at the sampling timepoints 0 and 21 days. Indeed, it exerted prebiotic effects under Lactobacillus acidophilus LA-5® and Bifidobacterium animalis subsp. lactis BB-12®, increasing their viability to around 4 and 0.5 log CFU/g, respectively. In addition, it displayed antidiabetic (α-glucosidase inhibition: 5–9%), antihypertensive (ACE inhibition: 50–57%), and antioxidant (ABTS: 13–15%; DPPH: 3–5%; hydroxyl radical: 60–76%) activities. In summary, the cheese spread produced may be considered an innovative food with high potential to contribute toward healthier status and well-being of populations. Full article
(This article belongs to the Special Issue Functional Foods Applied to Human Health Protection)
Show Figures

Graphical abstract

19 pages, 1518 KiB  
Article
Probiotic Whey-Based Beverages from Cow, Sheep and Goat Milk: Antioxidant Activity, Culture Viability, Amino Acid Contents
by Nayil Dinkçi, Vildan Akdeniz and Ayşe Sibel Akalın
Foods 2023, 12(3), 610; https://doi.org/10.3390/foods12030610 - 1 Feb 2023
Cited by 19 | Viewed by 4663
Abstract
Recently, the demand for goat and sheep cheese has increased mainly because of its nutritional and health benefits. As a result, an enormous amount of whey from various animal species is produced as a waste/by-product. The production of functional probiotic fermented beverages from [...] Read more.
Recently, the demand for goat and sheep cheese has increased mainly because of its nutritional and health benefits. As a result, an enormous amount of whey from various animal species is produced as a waste/by-product. The production of functional probiotic fermented beverages from different types of whey protein concentrates (WPC) could be a good way to valorize whey. Meanwhile, reduced environmental pollution and economic sustainability will be provided. In this study, probiotic beverages enriched with 1% kiwi powder were produced from goat, sheep, and cow WPC (15%). Moreover, Streptococcus salivarius subsp. thermophilus and the probiotic bacteria Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis were used for fermentation. The results showed that WPC significantly increased the protein content and acidity of beverages (p < 0.05). Production with WPC also improved the viability of probiotic bacteria and S. thermophilus, total phenolic compound (TPC), and antioxidant activity of beverages. The highest viability of probiotic bacteria (9.67 log CFU/mL for Bb-12 and, 9.35 log CFU/mL for L. acidophilus) was found in beverages produced from goat WPC. In addition, WPC increased the free amino acid content of beverages, and the highest essential amino acids and branched-chain amino acids were found in beverages produced from goat WPC as 146.19 mg/100 g and 70.31 mg/100 g, respectively (p < 0.05). Consequently, while production with goat, cow, and sheep WPC improved quality compared to the control, beverages produced from goat WPC excelled. The production of a functional probiotic beverage with goat WPC is promising for dairy technology. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

17 pages, 4265 KiB  
Article
Release of HMGB1 and Toll-like Receptors 2, 4, and 9 Signaling Are Modulated by Bifidobacterium animalis subsp. lactis BB-12 and Salmonella Typhimurium in a Gnotobiotic Piglet Model of Preterm Infants
by Igor Splichal, Sharon M. Donovan, Zdislava Kindlova, Zbynek Stranak, Vera Neuzil Bunesova, Marek Sinkora, Katerina Polakova, Barbora Valaskova and Alla Splichalova
Int. J. Mol. Sci. 2023, 24(3), 2329; https://doi.org/10.3390/ijms24032329 - 24 Jan 2023
Cited by 6 | Viewed by 2944
Abstract
Gnotobiotic (GN) animals with defined microbiota allow us to study host–microbiota and microbiota–microbiota interferences. Preterm germ-free (GF) piglets were mono-associated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to ameliorate/prevent the consequences of infection with the Salmonella Typhimurium strain LT2 (LT2). Goblet cell [...] Read more.
Gnotobiotic (GN) animals with defined microbiota allow us to study host–microbiota and microbiota–microbiota interferences. Preterm germ-free (GF) piglets were mono-associated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to ameliorate/prevent the consequences of infection with the Salmonella Typhimurium strain LT2 (LT2). Goblet cell density; expression of Toll-like receptors (TLRs) 2, 4, and 9; high mobility group box 1 (HMGB1); interleukin (IL)-6; and IL-12/23p40 were analyzed to evaluate the possible modulatory effect of BB12. BB12 prevented an LT2-induced decrease of goblet cell density in the colon. TLRs signaling modified by LT2 was not influenced by the previous association with BB12. The expression of HMGB1, IL-6, and IL12/23p40 in the jejunum, ileum, and colon and their levels in plasma were all decreased by BB12, but these changes were not statistically significant. In the colon, differences in HMGB1 distribution between the GF and LT2 piglet groups were observed. In conclusion, the mono-association of GF piglets with BB12 prior to LT2 infection partially ameliorated the inflammatory response to LT2 infection. Full article
Show Figures

Figure 1

Back to TopTop