Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,191)

Search Parameters:
Keywords = Beijing You

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 87429 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

20 pages, 2612 KiB  
Article
Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM
by Xiaoqing Zhou, Xiaoran Ma and Haifeng Wang
Processes 2025, 13(8), 2482; https://doi.org/10.3390/pr13082482 - 6 Aug 2025
Abstract
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the [...] Read more.
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the Particle Optimization Algorithm (POA) and Variational Mode Decomposition (VMD) with the Long Short-Term Memory (LSTM) network. First, POA is employed to optimize VMD by adaptively determining the optimal parameter combination [k, α], enabling the decomposition of the original PM2.5 time series into subcomponents while reducing data noise. Subsequently, an LSTM model is constructed to predict each subcomponent individually, and the predictions are aggregated to derive hourly PM2.5 concentration forecasts. Empirical analysis using datasets from Beijing, Tianjin, and Tangshan demonstrates the following key findings: (1) LSTM outperforms traditional machine learning models in time series forecasting. (2) The proposed model exhibits superior effectiveness and robustness, achieving optimal performance metrics (e.g., MAE: 0.7183, RMSE: 0.8807, MAPE: 4.01%, R2: 99.78%) in comparative experiments, as exemplified by the Beijing dataset. (3) The integration of POA with serial decomposition techniques effectively handles highly volatile and nonlinear data. This model provides a novel and reliable tool for PM2.5 concentration prediction, offering significant benefits for governmental decision-making and public awareness. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

29 pages, 1895 KiB  
Article
How Does Sharing Economy Advance Sustainable Production and Consumption? Evidence from the Policies and Business Practices of Dockless Bike Sharing
by Shouheng Sun, Yiran Wang, Dafei Yang and Qi Wu
Sustainability 2025, 17(15), 7053; https://doi.org/10.3390/su17157053 - 4 Aug 2025
Viewed by 64
Abstract
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It [...] Read more.
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It also dynamically quantifies the environmental and economic performance of DBS practices from a life cycle perspective. The findings indicate that effective SPC practices can be achieved through the collaborative efforts of multiple stakeholders, including the government, operators, manufacturers, consumers, recycling agencies, and other business partners, supported by regulatory systems and advanced technologies. The SPC practices markedly improved the sustainability of DBS promotion in Beijing. This is evidenced by the increase in greenhouse gas (GHG) emission reduction benefits, which have risen from approximately 35.81 g CO2-eq to 124.40 g CO2-eq per kilometer of DBS travel. Considering changes in private bicycle ownership, this value could reach approximately 150.60 g CO2-eq. Although the economic performance of DBS operators has also improved, it remains challenging to achieve profitability, even when considering the economic value of the emission reduction benefits. In certain scenarios, DBS can maximize profits by optimizing fleet size and efficiency, without compromising the benefits of emission reductions. The framework of stakeholder interaction proposed in this study and the results of empirical analysis not only assist regulators, businesses, and the public in better understanding and promoting sustainable production and consumption practices in the sharing economy but also provide valuable insights for achieving a win-win situation of platform profitability and environmental benefits in the SPC practice process. Full article
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 52
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

25 pages, 5531 KiB  
Article
Transitions of Carbon Dioxide Emissions in China: K-Means Clustering and Discrete Endogenous Markov Chain Approach
by Shangyu Chen, Xiaoyu Kang and Sung Y. Park
Climate 2025, 13(8), 165; https://doi.org/10.3390/cli13080165 - 3 Aug 2025
Viewed by 110
Abstract
This study employs k-means clustering to group 30 Chinese provinces into four CO2 emission patterns, characterized by increasing emission levels and distinct energy consumption structures, and captures their dynamic evolution from 2000 to 2021 using a discrete endogenous Markov chain approach. While [...] Read more.
This study employs k-means clustering to group 30 Chinese provinces into four CO2 emission patterns, characterized by increasing emission levels and distinct energy consumption structures, and captures their dynamic evolution from 2000 to 2021 using a discrete endogenous Markov chain approach. While Shanghai, Jiangxi, and Hebei retained their original classifications, provinces such as Beijing, Fujian, Tianjin, and Anhui transitioned from higher to lower emission patterns, indicating notable reversals in emission trajectories. To identify the determinants of these transitions, GDP growth rate, population growth rate, and energy investment are incorporated as time varying covariates. The empirical findings demonstrate that GDP growth substantially increases interpattern mobility, thereby weakening state persistence, whereas population growth and energy investment tend to reinforce emission pattern stability. These results imply that policy responses must be tailored to regional dynamics. In rapidly growing regions, fiscal incentives and technological upgrading may facilitate downward transitions in emission states, whereas in provinces where emissions remain persistent due to demographic or investment related rigidity, structural adjustments and long term mitigation frameworks are essential. The study underscores the importance of integrating economic, demographic, and investment characteristics into carbon reduction strategies through a region specific and data informed approach. Full article
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Viewed by 142
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 208
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

19 pages, 4759 KiB  
Article
Research on User Experience and Continuous Usage Mechanism of Digital Interactive Installations in Museums from the Perspective of Distributed Cognition
by Aili Zhang, Yanling Sun, Shaowen Wang and Mengjuan Zhang
Appl. Sci. 2025, 15(15), 8558; https://doi.org/10.3390/app15158558 (registering DOI) - 1 Aug 2025
Viewed by 162
Abstract
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study [...] Read more.
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study investigates key factors influencing users’ continuous usage of digital interactive installations using the Capital Museum in Beijing as a case study. A theoretical model was constructed and empirically validated through Bayesian Structural Equation Modeling (Bayesian-SEM) with 352 valid samples. The findings reveal that perceived ease of use plays a critical direct predictive role in continuous usage intention. Environmental factors and peer interaction indirectly influence user behavior through learner engagement, while user satisfaction serves as a core mediator between perceived ease of use and continuous usage intention. Notably, perceived usefulness and entertainment showed no direct effects, indicating that convenience and social experience outweigh functional benefits in this context. These findings emphasize the importance of optimizing interface design, fostering collaborative environments, and enhancing user satisfaction to promote sustained participation. This study provides practical insights for aligning digital innovation with audience needs in museums, thereby supporting the sustainable integration of technology in cultural heritage education and preservation. Full article
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Measurement, Differences, and Driving Factors of Land Use Environmental Efficiency in the Context of Energy Utilization
by Lingyao Wang, Huilin Liu, Xiaoyan Liu and Fangrong Ren
Land 2025, 14(8), 1573; https://doi.org/10.3390/land14081573 - 31 Jul 2025
Viewed by 229
Abstract
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to [...] Read more.
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to 2021 by using the EBM-DEA model in China. The geographical detector model is used to examine the driving factors of land use environmental efficiency. The results show the following: (1) China’s LUEE is high in general but shows a clear pattern of spatial differentiation internally, with the highest values in the eastern region represented by Beijing, Jiangsu, and Zhejiang, while the central and western regions show lower LUEE because of their irrational industrial structure and lagging green development. (2) Energy consumption, economic development, industrial upgrading, population size, and urban expansion are the driving factors. Their explanatory power for the spatial stratification heterogeneity of land use environmental impacts varies. (3) Urban expansion has the greatest impact on the spatial differentiation of land use environmental effects, while energy consumption also shows significant explanatory strength. In contrast, economic development and population size exhibit relatively weaker explanatory effects. (4) The interaction of the two driving factors has a greater impact on LUEE than their individual effects, and the interaction is a two-factor enhancement. Finally, we make targeted recommendations to help improve land use environmental efficiency. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 195
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

27 pages, 7810 KiB  
Article
Mutation Interval-Based Segment-Level SRDet: Side Road Detection Based on Crowdsourced Trajectory Data
by Ying Luo, Fengwei Jiao, Longgang Xiang, Xin Chen and Meng Wang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 299; https://doi.org/10.3390/ijgi14080299 - 31 Jul 2025
Viewed by 205
Abstract
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side [...] Read more.
Accurate side road detection is essential for traffic management, urban planning, and vehicle navigation. However, existing research mainly focuses on road network construction, lane extraction, and intersection identification, while fine-grained side road detection remains underexplored. Therefore, this study proposes a road segment-level side road detection method based on crowdsourced trajectory data: First, considering the geometric and dynamic characteristics of trajectories, SRDet introduces a trajectory lane-change pattern recognition method based on mutation intervals to distinguish the heterogeneity of lane-change behaviors between main and side roads. Secondly, combining geometric features with spatial statistical theory, SRDet constructs multimodal features for trajectories and road segments, and proposes a potential side road segment classification model based on random forests to achieve precise detection of side road segments. Finally, based on mutation intervals and potential side road segments, SRDet utilizes density peak clustering to identify main and side road access points, completing the fitting of side roads. Experiments were conducted using 2021 Beijing trajectory data. The results show that SRDet achieves precision and recall rates of 84.6% and 86.8%, respectively. This demonstrates the superior performance of SRDet in side road detection across different areas, providing support for the precise updating of urban road navigation information. Full article
Show Figures

Figure 1

21 pages, 3203 KiB  
Article
Spatiotemporal Patterns of Tourist Flow in Beijing and Their Influencing Factors: An Investigation Using Digital Footprint
by Xiaoyuan Zhang, Jinlian Shi, Qijun Yang, Xinru Chen, Xiankai Huang, Lei Kong and Dandan Gu
Sustainability 2025, 17(15), 6933; https://doi.org/10.3390/su17156933 - 30 Jul 2025
Viewed by 299
Abstract
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist [...] Read more.
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist flows and their underlying driving mechanisms. Based on digital footprint relational data, a dual-perspective analytical framework—“tourist perception–tourist flow network”—is constructed. By integrating the center-of-gravity model, social network analysis, and regression models, the study systematically examines the dynamic spatial structure of tourist flows in Beijing from 2012 to 2024. The findings reveal that in the post-pandemic period, Beijing tourists place greater emphasis on the cultural connotation and experiential aspects of destinations. The gravitational center of tourist flows remains relatively stable, with core historical and cultural blocks retaining strong appeal, though a slight shift has occurred due to policy influences and emerging attractions. The evolution of the spatial network structure reveals that tourism flows have become more dispersed, while the influence of core scenic spots continues to intensify. Government policy orientation, tourism information retrieval, and the agglomeration of tourism resources significantly promote the structure of tourist flows, whereas the general level of tourism resources exerts no notable influence. These findings offer theoretical insights and practical guidance for the sustainable development and regional coordination of tourism in Beijing, and provide a valuable reference for the spatial restructuring of urban tourism in the post-COVID-19 era. Full article
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 147
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

Back to TopTop