Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (318)

Search Parameters:
Keywords = BeiDou navigation satellite system-3 (BDS-3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4848 KiB  
Communication
Practical Performance Assessment of Water Vapor Monitoring Using BDS PPP-B2b Service
by Linghao Zhou, Enhong Zhang, Hong Liang, Zuquan Hu, Meifang Qu, Xinxin Li and Yunchang Cao
Appl. Sci. 2025, 15(14), 8033; https://doi.org/10.3390/app15148033 - 18 Jul 2025
Viewed by 212
Abstract
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service [...] Read more.
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service is illustrated through a continuously operated water vapor monitoring system in Wuhan, China, with a 25-day experiment in 2025. Original observations from the Global Positioning System (GPS) and BDS are collected and processed in the near real-time (NRT) mode using ephemeris from the PPP-B2b service. Precipitable water vapor PWV monitored with B2b ephemeris are evaluated with radiosonde and ERA5 reanalysis, respectively. Taking PWV from radiosonde observations as the reference, RMS of PWV based on B2b ephemeris varies from 3.71 to 4.66 mm for different satellite combinations. While those values are with a range from 3.95 to 4.55 mm when compared with ERA5 reanalysis. These values are similar to those processed with the real-time ephemeris from the China Academy of Science (CAS). In general, this study demonstrates that the practical accuracy of water vapor monitored based on the BDS PPP-B2b service can meet the basic demand for operational meteorology for the first time. This will provide a scientific reference for its wide promotion to meteorological applications in the near future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Inter-Frequency Aided Acquisition for BeiDou DFMC Receivers: Dual-Frequency Cooperation and Extended Integration
by Zhenyang Ma, Xupeng Zhang, Zhaobin Duan and Yicheng Li
Aerospace 2025, 12(7), 629; https://doi.org/10.3390/aerospace12070629 - 12 Jul 2025
Viewed by 217
Abstract
With the advancement of the third-generation BeiDou Navigation Satellite System (BDS-3), BeiDou dual-frequency multi-constellation (DFMC) receivers exhibit distinct advantages in accuracy and reliability due to their dual-frequency capabilities. However, the integration time imposes constraints on further improvements in sensitivity. To address this limitation, [...] Read more.
With the advancement of the third-generation BeiDou Navigation Satellite System (BDS-3), BeiDou dual-frequency multi-constellation (DFMC) receivers exhibit distinct advantages in accuracy and reliability due to their dual-frequency capabilities. However, the integration time imposes constraints on further improvements in sensitivity. To address this limitation, this study proposes a dual-frequency cooperative acquisition strategy targeting the B1C and B2a signals, with the objective of enhancing acquisition performance in weak signal environments. A dual-channel acquisition architecture was designed, incorporating an inter-frequency Doppler assistance technique to improve acquisition efficiency. Simulation results demonstrate that, compared to conventional fixed short integration time architectures, the proposed cooperative acquisition approach increases the receiver’s acquisition sensitivity by 5.7 dB. Real-world experiments further confirm the effectiveness of this strategy, achieving successful acquisition of the PRN28 signal with 5 ms of coherent integration, thereby highlighting its practical utility. This research offers an innovative solution for high-sensitivity signal acquisition in challenging environments for BeiDou DFMC receivers and provides valuable insights for the advancement of high-precision BeiDou applications. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 4409 KiB  
Article
Differences in Time Comparison and Positioning of BDS-3 PPP-B2b Signal Broadcast Through GEO
by Hongjiao Ma, Jinming Yang, Xiaolong Guan, Jianfeng Wu and Huabing Wu
Remote Sens. 2025, 17(14), 2351; https://doi.org/10.3390/rs17142351 - 9 Jul 2025
Viewed by 286
Abstract
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing [...] Read more.
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing and positioning. This paper investigates the disparities in time comparison and positioning capabilities associated with the PPP-B2b signals transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites (C59 and C61). Three stations in the Asia–Pacific region were selected to establish two time comparison links. The study evaluated the time transfer accuracy of PPP-B2b signals by analyzing orbit and clock corrections from BDS-3 GEO satellites C59 and C61. Using multi-GNSS final products (GBM post-ephemeris) as a reference, the performance of PPP-B2b-based time comparison was assessed. The results indicate that while both satellites achieve comparable time transfer accuracy, C59 demonstrates superior stability and availability compared to C61. Additionally, five stations from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) were selected to assess the positioning accuracy of PPP-B2b corrections transmitted by BDS-3 GEO satellites C59 and C61. Using IGS/iGMAS weekly solution positioning results as a reference, the analysis demonstrates that PPP-B2b enables centimeter-level static positioning and decimeter-level simulated kinematic positioning. Furthermore, C59 achieves higher positioning accuracy than C61. Full article
Show Figures

Figure 1

19 pages, 3553 KiB  
Article
Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology
by Wei Xiao, Zhengcheng Wu, Zongnan Li, Lei Fan, Shiwei Guo and Yilun Chen
Remote Sens. 2025, 17(14), 2342; https://doi.org/10.3390/rs17142342 - 8 Jul 2025
Viewed by 351
Abstract
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser [...] Read more.
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser ranging (SLR) data, with advantages of high precision and no ambiguous parameters, can provide new ideas for solving the current problem. This work firstly deduces the mathematical model for orbit determination by combining inter-satellite links and the introduced satellite laser ranging observations, then designs orbit determination experiments with different prior orbit constraints and different observation data, and finally evaluates the impacts of the prior orbits and the introduction of SLR observations from two dimensions: orbit accuracy and constellation rotation. The experimental results using one month of measured data show the following: (1) There is good consistency among different days, and the accuracy of the prior orbits affects the performance of the orbit determination and the consistency. Compared with broadcast ephemerides, using precise ephemerides as prior constraints significantly improves the consistency, and the orbit accuracy can be increased by about 75%. (2) The type of observation data affects the performance of the orbit determination. Introducing SLR observations can improve the orbit accuracy by approximately 13% to 26%. (3) Regardless of whether broadcast ephemerides or precise ephemerides are used as prior constraints, the constellation translation and rotation still exist after introducing SLR observations. Among the translation parameters, TX is the largest, followed by TY, and TZ is the smallest; all three rotation parameters (RX, RY, and RZ) show relatively large values, which may be related to the limited number of available satellite laser ranging stations during this period. (4) After considering the constellation translation and rotation, the orbit accuracy under different prior constraints remains at the same level. The statistical root mean square error (RMSE) indicates that the orbit accuracy of inclined geosynchronous orbit (IGSO) satellites in three directions is better than 20 cm, while the accuracy of medium earth orbit (MEO) satellites in along-track, cross-track, and radial directions is better than 10 cm, 8 cm, and 5 cm, respectively. Full article
Show Figures

Figure 1

19 pages, 7410 KiB  
Article
Atmospheric Boundary Layer and Tropopause Retrievals from FY-3/GNOS-II Radio Occultation Profiles
by Shaocheng Zhang, Youlin He, Sheng Guo and Tao Yu
Remote Sens. 2025, 17(13), 2126; https://doi.org/10.3390/rs17132126 - 21 Jun 2025
Viewed by 366
Abstract
The atmospheric boundary layer (ABL) and tropopause play critical roles in weather formation and climate change. This study initially focuses on the ABL height (ABLH), tropopause height (TPH), and temperature (TPT) retrieved from the integrated radio occultation (RO) profiles from FY-3E, FY-3F, and [...] Read more.
The atmospheric boundary layer (ABL) and tropopause play critical roles in weather formation and climate change. This study initially focuses on the ABL height (ABLH), tropopause height (TPH), and temperature (TPT) retrieved from the integrated radio occultation (RO) profiles from FY-3E, FY-3F, and FY-3G satellites during September 2022 to August 2024. All three FY-3 series satellites are equipped with the RO payload of Global Navigation Satellite System Radio Occultation Sounder-II (GNOS-II), which includes open-loop tracking RO observations from the BeiDou navigation satellite system (BDS) and the Global Positioning System (GPS). The wavelet covariance transform method was used to determine the ABL top, and the temperature lapse rate was applied to judge the tropopause. Results show that the maximum ABL detection rate of FY-3/GNOS-II RO can reach up to 76% in the subtropical eastern Pacific, southern hemisphere Atlantic, and eastern Indian Ocean. The ABLH is highly consistent with the collocated radiosonde observations and presents distinct seasonal variations. The TPH retrieved from FY-3/GNOS-II RO profiles is in agreement with the radiosonde-derived TPH, and both TPH and TPT from RO profiles display well-defined spatial structures. From 45°S to 45°N and south of 55°S, the annual cycle of the TPT is negatively correlated with the TPH. This study substantiates the promising performance of FY-3/GNOS-II RO measurements in observing the ABL and tropopause, which can be incorporated into the weather and climate systems. Full article
Show Figures

Figure 1

16 pages, 23928 KiB  
Article
Impact Evaluation of DME Beacons on BeiDou B2a Signal Reception Performance
by Yicheng Li, Jinli Cui, Zhenyang Ma and Zhaobin Duan
Sensors 2025, 25(12), 3763; https://doi.org/10.3390/s25123763 - 16 Jun 2025
Viewed by 314
Abstract
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive [...] Read more.
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive interference evaluation model based on receiver signal processing principles to quantify the degradation of B2a signal reception performance under DME interference scenarios. Leveraging empirical data from the DME beacon network in the Chinese mainland, we systematically analyzed the interference effects through an effective carrier-to-noise ratio (C/N0), signal detection probability, carrier tracking accuracy, and demodulation bit error rate (BER). The results demonstrate that the effective C/N0 of the B2a signal degrades by up to 3.25 dB, the detection probability decreases by 33%, and the carrier tracking errors and BER increase by 2.57° and 5.1%, respectively, in worst-case interference scenarios. Furthermore, significant spatial correlation was observed between the interference hotspots and regions of high aircraft density. DME interference adversely affected the accuracy, availability, continuity, and integrity of the airborne BeiDou navigation system, thereby compromising civil aviation flight safety. These findings establish a scientific foundation for developing Minimum Operational Performance Standards for B2a signal receivers and for strategically optimizing DME beacon deployment throughout the Chinese mainland. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 3088 KiB  
Article
First In-Orbit Validation of Interferometric GNSS-R Altimetry: Mission Overview and Initial Results
by Yixuan Sun, Yueqiang Sun, Junming Xia, Lingyong Huang, Qifei Du, Weihua Bai, Xianyi Wang, Dongwei Wang, Yuerong Cai, Lichang Duan, Zhenhe Zhai, Bin Guan, Zhiyong Huang, Shizhong Li, Feixiong Huang, Cong Yin and Rui Liu
Remote Sens. 2025, 17(11), 1820; https://doi.org/10.3390/rs17111820 - 23 May 2025
Viewed by 566
Abstract
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou [...] Read more.
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou Navigation Satellite System (BDS), the Global Positioning System (GPS), and the Galileo Satellite Navigation System (GAL). This launch marked the first in-orbit validation of the iGNSS-R altimetry technology. This study provides a detailed overview of the iGNSS-R payload design and analyzes its dual-frequency delay mapping (DM) measurements. We developed a refined DM waveform-matching algorithm that precisely extracts the propagation delays between reflected and direct GNSS signals, enabling the retrieval of global sea surface height (SSH) through the interferometric altimetry model. For validation, we employed an inter-satellite crossover approach using Jason-3 and Sentinel-6 radar altimetry as references, achieving an unprecedented SSH accuracy of 17.2 cm at a 40 km resolution. This represents a breakthrough improvement over previous GNSS-R altimetry efforts. The successful demonstration of iGNSS-R technology opens up new possibilities for cost-effective, wide-swath sea level monitoring. It showcases the potential of GNSS-R technology to complement existing ocean observation systems and enhance our understanding of global sea surface dynamics. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 959 KiB  
Article
Improving High-Precision BDS-3 Satellite Orbit Prediction Using a Self-Attention-Enhanced Deep Learning Model
by Shengda Xie, Jianwen Li and Jiawei Cai
Sensors 2025, 25(9), 2844; https://doi.org/10.3390/s25092844 - 30 Apr 2025
Viewed by 542
Abstract
Precise Global Navigation Satellite System (GNSS) orbit prediction is critical for real-time positioning applications. Current orbit prediction accuracy for the BeiDou Navigation Satellite System-3 (BDS-3) exhibits a notable disparity compared to GPS and Galileo, with limited advancements from traditional dynamic modeling approaches. This [...] Read more.
Precise Global Navigation Satellite System (GNSS) orbit prediction is critical for real-time positioning applications. Current orbit prediction accuracy for the BeiDou Navigation Satellite System-3 (BDS-3) exhibits a notable disparity compared to GPS and Galileo, with limited advancements from traditional dynamic modeling approaches. This study introduces a novel data-driven methodology, Sample Convolution and Interaction Network with Self-Attention (SCINet-SA), to augment dynamic methods and improve BDS-3 ultra-rapid orbit prediction. SCINet-SA leverages deep learning to model the temporal characteristics of orbit differences between BDS-3 ultra-rapid and final products. By training on historical orbit difference data, SCINet-SA predicts future discrepancies, facilitating the refinement of ultra-rapid orbit estimates. The incorporation of a self-attention mechanism within SCINet-SA enables the model to effectively capture long-range temporal dependencies, thereby enhancing long-term prediction capabilities and mitigating the latency associated with final product availability. Rigorous experimental evaluation demonstrates the superior performance of SCINet-SA in enhancing BDS-3 ultra-rapid orbit prediction accuracy relative to alternative deep learning models. Specifically, SCINet-SA achieved the highest average relative improvement (IMP) in 3D Root Mean Square (RMS) error across 1 d, 7 d, and 15 d prediction horizons, yielding improvements of 21.69%, 18.66%, and 15.42%, respectively. The observed IMP range spanned from 7.78% to 38.91% for 1 d, 4.34% to 35.96% for 7 d, and 1.68% to 31.13% for 15 d predictions, underscoring the efficacy of the proposed methodology in advancing BDS-3 orbit prediction accuracy. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

25 pages, 5598 KiB  
Article
Quad-Frequency Wide-Lane, Narrow-Lane and Hatch–Melbourne–Wübbena Combinations: The Beidou Case
by Daniele Borio, Melania Susi and Kinga Wȩzka
Electronics 2025, 14(9), 1805; https://doi.org/10.3390/electronics14091805 - 28 Apr 2025
Viewed by 430
Abstract
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band [...] Read more.
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band components, obtaining a high-accuracy pseudorange. The HMW and the wide-lane combinations thus play a key role in constructing meta-signal measurements. The theory of GNSS meta-signals was recently extended to the case with a number of components equal to a power of two. This theory can be used to generalize HMW and wide-lane combinations to the quad-frequency case. This is carried out through a Hadamard matrix of order four, which defines a narrow-lane and three wide-lane combinations. This paper characterizes meta-signal-inspired quad-frequency HMW and wide-lane measurements combinations using Beidou Navigation Satellite System (BDS) observations. Two professional Septentrio PolarRx5S multi-frequency, multi-constellation receivers were set up in a zero-baseline configuration and used to collect observables from all the BDS open frequencies. These measurements are used to characterize different quad-frequency HMW and wide-lane carrier combinations. Some of the combinations analyzed have large equivalent wavelengths and have the potential to enable single-epoch ambiguity resolution in scenarios where short convergence times are required. Full article
(This article belongs to the Special Issue Precision Positioning and Navigation Communication Systems)
Show Figures

Graphical abstract

19 pages, 15190 KiB  
Article
Multi-Layer LEO Constellation Optimization Based on D-NSDE Algorithm
by Shuai Wang, Xuebin Zhuang, Cailun Wu, Guangteng Fan, Min Li, Tianhe Xu and Xin Zhao
Remote Sens. 2025, 17(6), 994; https://doi.org/10.3390/rs17060994 - 12 Mar 2025
Cited by 1 | Viewed by 894
Abstract
Low-Earth-orbit (LEO) satellites have unique advantages in communication, navigation, and remote sensing due to their low orbit, strong landing signal strength, and low launch cost. However, the optimization of the design of LEO constellations to obtain the optimal configuration to meet different missions [...] Read more.
Low-Earth-orbit (LEO) satellites have unique advantages in communication, navigation, and remote sensing due to their low orbit, strong landing signal strength, and low launch cost. However, the optimization of the design of LEO constellations to obtain the optimal configuration to meet different missions faces great challenges. Traditional multi-objective optimization algorithms often struggle with designing constellations involving composite functions due to various constraints, which can result in premature termination and local optimality issues. This paper introduces a dynamic parameter-based non-dominated sorting differential evolution (D-NSDE) algorithm to obtian better solutions, which is capable of dynamically adjusting the boundary of feasible solutions and modifying operators according to the iteration process to mitigate these constraints. Additionally, we model a composite LEO constellation with multiple layers, constructing 2-/3-/4-layer configurations, and we include constraints from the third-generation BeiDou Navigation Satellite System (BDS-3) navigation constellations. Subsequently, we employ the D-NSDE algorithm to solve the corresponding multi-objective optimization problems and derive the optimal solution set. The results demonstrate that D-NSDE can generate complete and multi-level solution sets under diverse constraint conditions, with 75% of D-NSDE algorithm optimization solutions being able to achieve seamless positioning for 95% of global coverage. Furthermore, the PDOP median values are 5.12/4.23/2.97 without BDS-3 navigation constraints and 1.38/1.44/1.51 with BDS-3 navigation constraints. Additionally, simulation experiments conducted on standard function test sets confirm that the solution sets produced by the D-NSDE algorithm exhibit favorable distribution and convergence performance better than the Non-dominated Sorting Genetic Algorithm (NSGA)-III. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 6824 KiB  
Article
Analyzing the Precise Point Positioning Performance of Different Dual-Frequency Ionospheric-Free Combinations with BDS-3 and Galileo
by Xingli Sun, Zhan Shu and Jinjie Yao
Atmosphere 2025, 16(3), 316; https://doi.org/10.3390/atmos16030316 - 10 Mar 2025
Viewed by 770
Abstract
The BeiDou global navigation satellite system (BDS-3) and Galileo systems both broadcast satellite signals on five frequencies, which can form many observation combinations with dual-frequency ionospheric-free (DFIF) precise point positioning (PPP). This study analyzes the PPP static and kinematic performance of a total [...] Read more.
The BeiDou global navigation satellite system (BDS-3) and Galileo systems both broadcast satellite signals on five frequencies, which can form many observation combinations with dual-frequency ionospheric-free (DFIF) precise point positioning (PPP). This study analyzes the PPP static and kinematic performance of a total of eight different DFIF combinations, including BDS-3’s B1C/B2a, B1C/B3I, B1I/B2b, and B1I/B3I and Galileo’s E1/E5, E1/E6, E1/E5a, and E1/E5b combinations. A 10-day dataset from 60 Multi-GNSS Experiment (MGEX) stations was adopted. The root mean square error (RMSE) of the PPP was tested in the north, east, and up (NEU), horizontal (H), and three-dimensional (3D) components. The PPP accuracy of BDS-3 was comparable with that of Galileo. Both BDS-3 and Galileo signals allow for independent PPP processing both in static and kinematic modes. When the 3D error was used as the evaluation criterion, the order of the combinations in which the positioning accuracy gradually deteriorated was as follows: E1/E5, B1C/B3I, B1I/B2b, E1/E6, B1I/B3I, E1/E5b, E1/E5a, and B1C/B2a; The 3D RMSE values for the best combination, E1/E5, and the worst combination, B1C/B2a, were 1.06 cm and 1.43 cm, respectively; the positioning accuracies of all combinations remained at the level of 1 cm in static mode. In kinematic mode, the order of the combinations in which the PPP accuracy gradually deteriorated was as follows: E1/E5, E1/E5a, E1/E5b, B1I/B2b, B1I/B3I, B1C/B2a, B1C/B3I, and E1/E6. The 3D RMSE values for the best combination, E1/E5, and the worst combination, B1C/B2a, were 3.89 cm and 1.95 cm, respectively. The best results could be achieved with the E1/E5 combination, which outperforms the worst combination, E1/E6, by about 1 cm. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 7358 KiB  
Article
Optimizing PPP-AR with BDS-3 and GPS: Positioning Performance Across Diverse Geographical Regions Under Mostly Quiet Space Weather Conditions
by Burhaneddin Bilgen
Atmosphere 2025, 16(3), 288; https://doi.org/10.3390/atmos16030288 - 27 Feb 2025
Viewed by 656
Abstract
The integration of Global Navigation Satellite Systems (GNSS) has revolutionized geodetic positioning, with techniques like Precise Point Positioning with Ambiguity Resolution (PPP-AR) offering highly accurate results with reduced convergence times. The full deployment of the BeiDou Navigation Satellite System-3 (BDS-3) has spurred interest [...] Read more.
The integration of Global Navigation Satellite Systems (GNSS) has revolutionized geodetic positioning, with techniques like Precise Point Positioning with Ambiguity Resolution (PPP-AR) offering highly accurate results with reduced convergence times. The full deployment of the BeiDou Navigation Satellite System-3 (BDS-3) has spurred interest in assessing its standalone and combined performance with GPS in PPP-AR applications. This study evaluates the performance of BDS-3-based PPP-AR across diverse geographical regions considering space weather conditions (SWCs) for the first time. GNSS data from six International GNSS Service (IGS) stations located in the Asia–Pacific, Europe, Africa, and the Americas were processed for 15 consecutive days. The three scenarios (BDS-3 only, GPS only, and BDS-3 + GPS) were analyzed using the open-source raPPPid v2.3 software developed in 2023. The estimated coordinates were statistically compared to the IGS-derived coordinates to assess accuracy. Results demonstrate that BDS-3 PPP-AR can independently deliver reliable positioning for many applications and that the accuracy of BDS-3-based PPP-AR is relatively low in the Americas. However, combining BDS-3 with GPS significantly enhances horizontal and vertical accuracies, especially in the Americas, achieving improvements of up to 86% and 82%, respectively. These findings highlight the potential of BDS-3 for complementing GPS for precise geodetic applications. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 4377 KiB  
Article
Improving BeiDou Global Navigation Satellite System (BDS-3)-Derived Station Coordinates Using Calibrated Satellite Antennas and Station Inter-System Translation Parameters
by Tao Zhang, Shiwei Guo, Lei Fan and Chuang Shi
Remote Sens. 2025, 17(3), 510; https://doi.org/10.3390/rs17030510 - 31 Jan 2025
Viewed by 839
Abstract
The BeiDou global navigation satellite system (BDS-3) has been widely applied in various geodetic applications since its full operation. However, the estimated station coordinates using BDS-3 are less precise compared to GPS results. It contains systematic errors caused by scale bias with respect [...] Read more.
The BeiDou global navigation satellite system (BDS-3) has been widely applied in various geodetic applications since its full operation. However, the estimated station coordinates using BDS-3 are less precise compared to GPS results. It contains systematic errors caused by scale bias with respect to International GNSS Service (IGS) 2020 frame and Inter-System Translation Parameters (ISTPs). In order to improve the consistency of BDS-3-derived station coordinates with respect to IGS20 products, we firstly estimated the satellite antenna Phase Center Offsets (PCOs) for BDS-3 Medium Earth Orbit (MEO) constellation, and then estimated station-specific ISTPs from GPS to BDS-3 systems. The results indicate that the PCO-Z estimates show large differences among satellites from different manufacturers and orbit planes. The estimated BDS-3 satellite PCOs exhibit a systematic bias of −9.3 cm in the Z-direction compared to ground calibrations. The maximum mean station-specific ISTPs can reach up to 3 mm, highlighting significant variability and the need for refinement in positioning. When using the estimated PCOs instead of igs20.atx values, the estimated scale bias with respect to the IGS20 frame is reduced from 0.38 ppb to −0.12 ppb, indicating that the refined BDS-3 satellite PCOs are well compatible with IGS20. Regarding the Up component that is correlated with the scale factor, the station coordinate differences with respect to the IGS20 frame is reduced from 7.0 mm to 6.2 mm in terms of the root mean square (RMS), which is improved by 11.4%. Considering the additional ISTP corrections, a further improvement of 17% was obtained in station coordinates. The RMS of station coordinate differences with respect to the IGS20 frame is 2.3 mm, 2.7 mm, and 5.2 mm for the North, East, and Up components, respectively. Full article
Show Figures

Figure 1

19 pages, 8948 KiB  
Article
Differential Code Bias Estimation and Accuracy Analysis Based on CSES Onboard GPS and BDS Observations
by Jiawen Pang, Fuying Zhu and Shang Wu
Remote Sens. 2025, 17(3), 374; https://doi.org/10.3390/rs17030374 - 23 Jan 2025
Viewed by 964
Abstract
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System [...] Read more.
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS) dual-frequency observations of the China Seismo-electromagnetic Satellite (CSES) from day of the year (DOY) 201 to DOY 232 in 2018, we evaluate the quality of CSES onboard GNSS observations, improve the data preprocessing method, and use the least-squares to estimate DCBs for both GNSS satellites and CSES receivers. A comprehensive analysis of the estimation accuracy is presented, revealing that DCBs for BDS satellites, derived from joint BDS and GPS observations, exhibit superior consistency compared to those from single BDS observations. Notably, the stability of DCBs for the CSES BDS receiver as well as for BDS GEO, IGSO, and MEO satellites has been significantly enhanced by 70%, 14%, 22%, and 23%, respectively. Conversely, the consistency of GPS satellite DCBs estimated from joint observations shows a decline when compared to the DCB products from the Center for Orbit Determination in Europe (CODE) and the Chinese Academy of Sciences (CAS). When fewer than nine satellites are tracked daily and nighttime observations are under 25%, estimation errors increase. The optimal DCB estimation is achieved with a cutoff elevation angle set at 10°, with monthly mean DCB values for CSES GPS and BDS receivers determined to be −2.193 ns and −1.099 ns, respectively, accompanied by root mean square errors (RMSEs) of 0.10 ns and 0.31 ns. The highest accuracy of DCBs estimated by the single-GPS scheme is corroborated by examining the occurrence of negative vertical total electron content (VTEC) percentages. Full article
Show Figures

Figure 1

20 pages, 11657 KiB  
Article
Assessment of PPP Using BDS PPP-B2b Products with Short-Time-Span Observations and Backward Smoothing Method
by Lewen Zhao and Wei Zhai
Remote Sens. 2025, 17(1), 25; https://doi.org/10.3390/rs17010025 - 25 Dec 2024
Cited by 1 | Viewed by 1108
Abstract
The BeiDou Navigation Satellite System (BDS) offers orbit and clock corrections through the B2b signal, enabling Precise Point Positioning (PPP) without relying on ground communication networks. This capability supports applications such as aerial and maritime mapping. However, achieving high precision during the convergence [...] Read more.
The BeiDou Navigation Satellite System (BDS) offers orbit and clock corrections through the B2b signal, enabling Precise Point Positioning (PPP) without relying on ground communication networks. This capability supports applications such as aerial and maritime mapping. However, achieving high precision during the convergence period remains challenging, particularly for missions with short observation durations. To address this, we analyze the performance of PPP over short periods using PPP-B2b products and propose using the backward smoothing method to enhance the accuracy during the convergence period. Evaluation of the accuracy of PPP-B2b products shows that the orbit and clock accuracy of the BDS surpass those of GPS. Specifically, the BDS achieves orbit accuracies of 0.059 m, 0.178 m, and 0.186 m in the radial, along-track, and cross-track components, respectively, with a clock accuracy within 0.13 ns. The hourly static PPP achieves 0.5 m and 0.1 m accuracies with convergence times of 4.5 and 25 min at a 50% proportion, respectively. Nonetheless, 7.07% to 23.79% of sessions fail to converge to 0.1 m due to the limited availability of GPS and BDS corrections at certain stations. Simulated kinematic PPP requires an additional 1–4 min to reach the same accuracy as the static PPP. Using the backward smoothing method significantly enhances accuracy, achieving 0.024 m, 0.046 m, and 0.053 m in the north, east, and up directions, respectively. For vehicle-based positioning, forward PPP can achieve a horizontal accuracy better than 0.5 m within 4 min; however, during the convergence period, positioning errors may exceed 1.5 m and 3.0 m in the east and up direction. By applying the smoothing method, horizontal accuracy can reach better than 0.2 m, while the vertical accuracy can improve to better than 0.3 m. Full article
Show Figures

Figure 1

Back to TopTop