Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Artemisia ordosica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6504 KiB  
Article
Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land
by Shaobo Du, Huichun Xie, Gaosen Zhang, Feng Qiao, Guigong Geng and Chongyi E
Biology 2025, 14(5), 532; https://doi.org/10.3390/biology14050532 - 11 May 2025
Viewed by 484
Abstract
Desertification, which may lead to land degradation, is a significant global ecological issue. Biological soil crusts (BSCs) can play a role in sand fixation, carbon sequestration, and the improvement in soil functions in the ecological restoration of sandy soil. Therefore, elucidating the responses [...] Read more.
Desertification, which may lead to land degradation, is a significant global ecological issue. Biological soil crusts (BSCs) can play a role in sand fixation, carbon sequestration, and the improvement in soil functions in the ecological restoration of sandy soil. Therefore, elucidating the responses of BSCs to afforestation measures in alpine sandy areas is necessary to guide vegetation configuration in sandy ecosystems and enhance the effectiveness of sand fixation measures to prevent desertification. Herein, we determined the physicochemical properties and enzyme activities of bare sand (no crust) and algal and moss crusts collected from four sites subjected to different afforestation measures, including Salix cheilophila + Populus simonii (WLYY), Salix psammophila + S. cheilophila (SLWL), Artemisia ordosica + Caragana korshinskii (SHNT), and C. korshinskii (NT80) plantations. High-throughput sequencing was also employed to analyze bacterial community structure in BSCs. The results revealed that fine particle contents in algal and moss crusts were higher than in bare sand. During the succession from bare sand to algae to moss crust, their enzymatic activities and water and nutrient contents tended to increase. And the diversity of bacterial communities changed little in the SLWL sample points, while the richness showed a trend of first decreasing and then increasing, but bacterial community richness and diversity first decreased and then increased at the other sites. Among the four measures, SLWL enhanced nutrient contents, enzyme activities, and bacterial community richness and diversity in BSCs relatively more effectively. Alkaline-hydrolyzable nitrogen and soil organic matter were the key factors impacting bacterial community structures in BSCs under the four afforestation measures. From the perspective of BSCs, the results can provide a reference for the prevention and control strategies of other alpine sandy soils. Full article
(This article belongs to the Special Issue The Application of Microorganisms and Plants in Soil Improvement)
Show Figures

Figure 1

21 pages, 12849 KiB  
Article
Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas
by Yu Tian, Zehao Feng, Lixiao Tu, Chuning Ji, Jiazheng Han, Yibo Zhao and You Zhou
Remote Sens. 2025, 17(9), 1530; https://doi.org/10.3390/rs17091530 - 25 Apr 2025
Viewed by 326
Abstract
Plant species classification in semi-arid mining areas is of great significance in assessing the environmental impacts and ecological restoration effects of coal mining. However, in semi-arid mining areas characterized by mixed arbor–shrub–herb vegetation, the complex vegetation distribution patterns and spectral features render single-sensor [...] Read more.
Plant species classification in semi-arid mining areas is of great significance in assessing the environmental impacts and ecological restoration effects of coal mining. However, in semi-arid mining areas characterized by mixed arbor–shrub–herb vegetation, the complex vegetation distribution patterns and spectral features render single-sensor approaches inadequate for achieving fine classification of plant species in such environments. How to effectively fuse hyperspectral images (HSI) data with light detection and ranging (LiDAR) to achieve better accuracy in classifying vegetation in semi-arid mining areas is worth exploring. There is a lack of precise evaluation regarding how these two data collection approaches impact the accuracy of fine-scale plant species classification in semi-arid mining environments. This study established two experimental scenarios involving the synchronous and asynchronous acquisition of HSI and LiDAR data. The results demonstrate that integrating LiDAR data, whether synchronously or asynchronously acquired, significantly enhances classification accuracy compared to using HSI data alone. The overall classification accuracy for target vegetation increased from 71.7% to 84.7% (synchronous) and 80.2% (asynchronous), respectively. In addition, the synchronous acquisition mode achieved a 4.5% higher overall accuracy than asynchronous acquisition, with particularly pronounced improvements observed in classifying vegetation with smaller canopies (Medicago sativa L.: 17.4%, Pinus sylvestris var. mongholica Litv.: 11.7%, and Artemisia ordosica Krasch.: 7.5%). This study can provide important references for ensuring classification accuracy and error analysis of land cover based on HSI-LiDAR fusion in similar scenarios. Full article
(This article belongs to the Special Issue Application of Advanced Remote Sensing Techniques in Mining Areas)
Show Figures

Figure 1

18 pages, 3945 KiB  
Article
Purification, Characterization, and Potential Immune-Regulation Mechanism of Polysaccharides from Artemisia odosica Krasch.
by Yuanyuan Xing, Yankai Zheng, Jing Zhang, Lu Chen, Yuanqing Xu, Xiao Jin, Lei Hong, Sumei Yan and Binlin Shi
Molecules 2025, 30(3), 675; https://doi.org/10.3390/molecules30030675 - 3 Feb 2025
Viewed by 851
Abstract
Artemisia ordosica Krasch. represents a medicinal species traditionally and extensively employed in traditional medicine for treating ailments such as rheumatic arthritis, sore throat, and inflammation. This study initially focuses on the extraction, purification, and characterization of Artemisia ordosica Krasch. polysaccharides (AOP). The purified [...] Read more.
Artemisia ordosica Krasch. represents a medicinal species traditionally and extensively employed in traditional medicine for treating ailments such as rheumatic arthritis, sore throat, and inflammation. This study initially focuses on the extraction, purification, and characterization of Artemisia ordosica Krasch. polysaccharides (AOP). The purified AOP exhibits a molecular mass corresponding to 9.00 kDa and consists of multiple monosaccharide units, with glucose (54.08%) as the predominant component, followed by arabinose (13.75%), mannose (13.43%), galactose (12.79%), xylose (3.15%), glucuronic acid (0.93%), galacturonic acid (0.67%), ribose (0.63%), and fucose (0.56%), respectively. Furthermore, to explore the immune-regulatory mechanisms of AOP, peripheral blood lymphocytes (PBLs) were cultured and exposed to inhibitors targeting receptors and signaling molecules. The results indicated that TLR4 serves as a potential target through which AOP exerts its immunomodulatory functions. AOP mitigates immune stress in PBLs triggered by LPS by disrupting the interaction between LPS and TLR and downregulating the over-activation of the nuclear factor kappa B (NF-κB) signaling pathway. In summary, AOP shows promise as a feed additive to protect animals from immune stress. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Graphical abstract

23 pages, 10673 KiB  
Article
Improvement Effects of Different Afforestation Measures on the Surface Soil of Alpine Sandy Land
by Shaobo Du, Huichun Xie, Gaosen Zhang, Feng Qiao, Guigong Geng and Chongyi E
Biology 2025, 14(2), 144; https://doi.org/10.3390/biology14020144 - 30 Jan 2025
Cited by 4 | Viewed by 897
Abstract
Desertification severely impacts soil environments, necessitating effective control measures to improve sandy soil. On the alpine sandy land of Gonghe Basin, taking bare land containing mobile sand dunes (LD) as a reference, surface soil undergoing four afforestation measures, namely Salix cheilophila + [...] Read more.
Desertification severely impacts soil environments, necessitating effective control measures to improve sandy soil. On the alpine sandy land of Gonghe Basin, taking bare land containing mobile sand dunes (LD) as a reference, surface soil undergoing four afforestation measures, namely Salix cheilophila + Populus simonii (WLYY), Salix psammophila + Salix cheilophila (SLWL), Artemisia ordosica + Caragana korshinskii (SHNT), and Caragana korshinskii (NT80), was studied, with soil physicochemical properties and enzyme activity measured and the bacterial community structure analyzed using Illumina high-throughput sequencing. Compared to LD, all four afforestation measures significantly reduced the sand content, while increasing soil total carbon, total nitrogen, organic matter, alkali-hydrolyzable nitrogen, and available potassium. WLYY, SLWL, and SHNT significantly increased the surface soil total phosphorus and total potassium. Catalase, sucrase, urease, and alkaline phosphatase activities significantly increased under all four measures. Among them, the highest improvements were observed under SLWL, followed by WLYY. All treatments increased soil bacterial community richness, exhibiting significantly different bacterial community compositions to those in LD. Total phosphorus was the key physicochemical factor affecting the soil bacterial community structure, while enzyme activity was significantly correlated with the relative abundance of most major bacterial phyla. All measures improved the surface soil environment, with SLWL demonstrating the best improvement. The results provide valuable reference for sand prevention and control strategies in alpine sandy areas and offer a theoretical basis for the ecological restoration of sandy soil microenvironments. Full article
Show Figures

Figure 1

25 pages, 9295 KiB  
Article
Relieving Effect of Artemisia ordosica Krasch Extract on DSS-Induced Colitis by Regulating Immunity, Antioxidant Function, Gut Microbiota, and Bile Acid Metabolism in Mice
by Min Jiang, Xuekai Zhang, Xiao Jin, Binlin Shi, Yuanqing Xu and Zheqi Wang
Antioxidants 2025, 14(1), 45; https://doi.org/10.3390/antiox14010045 - 2 Jan 2025
Cited by 1 | Viewed by 1167
Abstract
Artemisia ordosica Krasch, a traditional Chinese herbal medicine, possesses antibacterial, antiviral, and anti-inflammatory properties. The aim of this experiment was to investigate the therapeutic effect of Artemisia ordosica Krasch extraction (AOE) in treating colitis induced by dextran sulfate sodium (DSS) in mice. [...] Read more.
Artemisia ordosica Krasch, a traditional Chinese herbal medicine, possesses antibacterial, antiviral, and anti-inflammatory properties. The aim of this experiment was to investigate the therapeutic effect of Artemisia ordosica Krasch extraction (AOE) in treating colitis induced by dextran sulfate sodium (DSS) in mice. The in vitro antioxidant activity of AOE was evaluated by assessing its iron reduction capacity and scavenging capacity towards 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals (·OH). The protective effect of AOE on colitis in mice was determined by monitoring key indicators such as body weight, colon length, and survival rate in mice, as well as by assessing the expression of colon-related genes and cytokine levels. We evaluated the impact of AOE on intestinal microbiota by measuring the 16s sequencing of cecal contents and bile acid metabolism. The results showed that the iron reduction capacity of AOE was positively correlated with its concentration. The half-maximal inhibitory concentrations (IC50) for scavenging DPPH and hydroxyl radicals were 3.126 mg/mL and 6.139 mg/mL, with a 95% confidence interval of 95%. In vivo studies demonstrated that AOE reduced DSS-induced colitis in mice by increasing the colon length, enhancing antioxidant enzyme activity, inhibiting inflammatory cell infiltration, suppressing the formation of TNF-α and IL-6, and reducing malondialdehyde (MDA) levels. qPCR analysis revealed that AOE reversed the down-regulation of Claudin mRNA expression, and altered the composition of cecal microbiota, thus mitigating DSS-induced colitis. AOE plays a crucial role in alleviating colitis in mice and effectively improves DSS-induced colitis, highlighting its potential as a therapeutic agent for inflammatory bowel diseases. Full article
Show Figures

Graphical abstract

22 pages, 10303 KiB  
Article
Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land
by Qin Gao, Xiaohong Dang, Zhongju Meng, Yang Liu, Jiale Lou, Yu Yan and Xing Zhang
Plants 2024, 13(23), 3261; https://doi.org/10.3390/plants13233261 - 21 Nov 2024
Viewed by 1117
Abstract
Water resources are crucial factors that limit vegetation recovery, and rational planning of silvicultural patterns is essential for the efficient utilization of water in arid and semi-arid regions. This study examined the water utilization strategies of pure shrubs (pure stands of Artemisia ordosica [...] Read more.
Water resources are crucial factors that limit vegetation recovery, and rational planning of silvicultural patterns is essential for the efficient utilization of water in arid and semi-arid regions. This study examined the water utilization strategies of pure shrubs (pure stands of Artemisia ordosica and pure stands of Salix psammophila) and mixed shrubs (mixed stands of A. ordosica S. psammophila, and mixed stands of A. ordosica Caragana korshinskii) from the rainy to dry seasons using stable isotope techniques and MixSIAR modeling in the Mu Us Sandy Land in the semi-arid region of China. Mixed shrubs were significantly more effective than pure shrubs in utilizing the primary water sypply from the soil layer. During the rainy season in August, shallow soil water was used to a greater extent, contributing 33.78 ± 2.18%, with no significant difference in the contribution proportion. After a brief drought during the transition period in September, there was a significant increase in the use of the primary water-absorbing soil layer across all vegetation types, with a maximum increase of 39.53%. Conversely, during the dry season in October, after an extended drought, the contribution of the primary water supply layer to vegetation water absorption decreased compared with the transition period, with a maximum increase of only 17.88%. The results of this study revealed that variations in water conditions and vegetation configurations influence the water utilization patterns of the vegetation. This study offers a scientific basis and theoretical support for understanding ecological water use, the rationale behind vegetation establishment, and an assessment of plantation community stability in sandy regions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 4911 KiB  
Article
Artemisia Ordosica Polysaccharides Enhance Antioxidant Capacity of Peripheral Blood Lymphocytes in Poultry Through Nrf2/Keap1 and TLR4/NF-κB Signal Pathway
by Yuanyuan Xing, Yankai Zheng, Lu Chen, Yuanqing Xu, Xiao Jin, Li Hong, Sumei Yan and Binlin Shi
Antioxidants 2024, 13(11), 1308; https://doi.org/10.3390/antiox13111308 - 28 Oct 2024
Cited by 2 | Viewed by 991
Abstract
Artemisia ordosica polysaccharides (AOP) can promote animal growth, improve intestinal morphology, regulate immunity, and enhance antioxidant capacity. To investigate the antioxidant capacity of AOP, three experiments were conducted. (1) Different concentrations of AOP (0, 50, 100, 150, 200, and 250 μg/mL) and 1 [...] Read more.
Artemisia ordosica polysaccharides (AOP) can promote animal growth, improve intestinal morphology, regulate immunity, and enhance antioxidant capacity. To investigate the antioxidant capacity of AOP, three experiments were conducted. (1) Different concentrations of AOP (0, 50, 100, 150, 200, and 250 μg/mL) and 1 µg/mL VA on peripheral blood lymphocytes (PBLs) treated with/without lipopolysaccharides (LPS) were investigated to select the optimum concentration. The results showed that 150 μg/mL AOP had significant antioxidation activity. (2) The PBLs was randomly divided into eight treatments with six replicates, namely CON, AOP, LPS, ML385 (Nrf2 inhibitor), AOP + LPS, AOP + ML385, LPS + ML385 and LPS + ML385 + AOP. The results showed that under a normal condition or stress condition, AOP presented antioxidation activity via upregulating Nrf2/Keap1 pathway-related gene expression. (3) The PBLs was randomly divided into eight treatments with six replicates, namely CON, AOP, LPS, PDTC (NF-κB inhibitor), AOP + LPS, AOP + PDTC, LPS + PDTC and LPS + PDTC + AOP. The results showed that under a normal condition, AOP presented antioxidation activity via increasing TLR4/NF-κB pathway-related gene expression; under a stress condition, AOP alleviated oxidative damage caused by LPS via suppressing TLR4/NF-κB pathway-related gene expression. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

17 pages, 2120 KiB  
Article
The Physiological Adjustments of Two Xerophytic Shrubs to Long-Term Summer Drought
by Mingze Xu, Tianshan Zha, Yun Tian, Peng Liu, Charles P.-A. Bourque, Xin Jia, Cheng Li, Chuan Jin, Zifan Guo and Xiaoshuai Wei
Agronomy 2024, 14(5), 975; https://doi.org/10.3390/agronomy14050975 - 6 May 2024
Cited by 1 | Viewed by 1527
Abstract
Adaptive characteristics of plants, such as those associated with photosynthesis and resource use efficiency, are usually affected by synthesis costs and resource availability. The impact of extreme climate events such as long-term drought on plant physiological functions needs to be examined, particularly as [...] Read more.
Adaptive characteristics of plants, such as those associated with photosynthesis and resource use efficiency, are usually affected by synthesis costs and resource availability. The impact of extreme climate events such as long-term drought on plant physiological functions needs to be examined, particularly as it concerns the internal management of water and nitrogen (N) resources. In this study, we evaluated the resource management strategies for water and N by xerophytic shrubs, Artemisia ordosica and Salix psammophila, under extreme summer drought. This was carried out by comparing the plants’ physiological status during periods of wet and dry summer conditions in 2019 and 2021. Compared with the wet period, A. ordosica and S. psammophila both decreased their light-saturated net carbon (C) assimilation rate (Asat), stomatal conductance (gs), transpiration rate (E), leaf N content per leaf area (Narea), and photosynthetic N use efficiency (PNUE) during the summer drought. Whether in wet or dry summers, the gas-exchange parameters and PNUE of A. ordosica were generally greater than those associated with S. psammophila. The instantaneous water use efficiency (IWUE) response to drought varied with species. As a drought-tolerant species, the A. ordosica shrubs increased their IWUE during drought, whereas the S. psammophila shrubs (less drought-tolerant) decreased theirs. The divergent responses to drought by the two species were largely related to differences in the sensitivity of gs, and as a result, E. Compared with A. ordosica, S. psammophila’s inferior plasticity regarding gs response affected its ability to conserve water during drought. Our research illustrates the need for assessing plasticity in gs when addressing plant adaptation to long-term drought. A high dry-season IWUE in xerophytic shrubs can benefit the plants by augmenting their C gain. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 2003 KiB  
Article
Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats
by Shuyi Li, Yongmei Guo, Xiaoyu Guo, Binlin Shi, Guoqiang Ma, Sumei Yan and Yanli Zhao
Animals 2023, 13(22), 3575; https://doi.org/10.3390/ani13223575 - 19 Nov 2023
Cited by 11 | Viewed by 2229
Abstract
The objective of this experiment was to investigate the effect of dietary supplementation with Artemisia ordosica crude polysaccharide (AOCP) on growth performance, nutrient digestibility, antioxidant and immunity capacity, rumen fermentation parameters, and the microbiota of cashmere goats. A total of 12 cashmere goats [...] Read more.
The objective of this experiment was to investigate the effect of dietary supplementation with Artemisia ordosica crude polysaccharide (AOCP) on growth performance, nutrient digestibility, antioxidant and immunity capacity, rumen fermentation parameters, and the microbiota of cashmere goats. A total of 12 cashmere goats (2 years old) with similar weight (38.03 ± 2.42 kg of BW ± SD) were randomly divided into two dietary treatments with six replicates. The treatments were as follows: (1) control (CON, basal diet); and (2) AOCP treatment (AOCP, basal diet with 0.3% AOCP). Pre-feeding was conducted for 7 days, followed by an experimental period of 21 days. The results showed that the ADG; feed/gain (F/G); and the digestibility of DM, CP, and ADF of cashmere goats in the AOCP group were greater than in the CON group (p < 0.05). Still, there was no significant effect on the digestibility of EE, NDF, Ca, and P (p > 0.05). Compared to the CON group, AOCP increased BCP, propionate, butyrate, isobutyrate, valerate, isovalerate, and TVFA concentrations (p < 0.05), but it reduced the protozoa numbers of acetate and A/P (p < 0.05). The serum CAT, GSH-Px, T-SOD, 1L-6, and NO levels were higher in AOCP than in the CON group (p < 0.05). The addition of AOCP increased the Sobs and Ace estimators (p < 0.05) and reduced the Simpson estimator in the ruminal fluid compared to the CON group (p < 0.05). Additionally, the AOCP group increased the colonization of beneficial bacteria by positively influencing GSH-Px and IL-6 (norank_f__F082, unclassified_p__Firmicutes), as well as bacteria negatively associated with F/G (norank_f__norank_o__Bacteroidales, unclassified_p__Firmicutes, and norank_f__F082). It decreased the colonization of potential pathogenic bacteria (Aeromonas and Escherichia-Shigella) (p < 0.05) compared to the CON group. In conclusion, 0.3% AOCP improves the growth performance, nutrient digestibility, antioxidant status, immune function, rumen fermentation, and microflora of cashmere goats. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

17 pages, 316 KiB  
Article
Dietary Artemisia Ordosica Polysaccharide Enhances Spleen and Intestinal Immune Response of Broiler Chickens
by Haidong Du, Yuanyuan Xing, Yuanqing Xu, Xiao Jin, Sumei Yan and Binlin Shi
Biology 2023, 12(11), 1390; https://doi.org/10.3390/biology12111390 - 31 Oct 2023
Cited by 5 | Viewed by 1898
Abstract
The spleen and small intestines are the primary immune organs that provide important immunity against various diseases. Artemisia ordosica polysaccharide (AOP) could be used as an immunologic enhancer to boost immunity in response to infection. This study was performed to explore the effects [...] Read more.
The spleen and small intestines are the primary immune organs that provide important immunity against various diseases. Artemisia ordosica polysaccharide (AOP) could be used as an immunologic enhancer to boost immunity in response to infection. This study was performed to explore the effects of the dietary supplementation of AOP on the growth performance and spleen and small intestine immune function in broilers. A total of 288 AA broilers (1 day old) were randomly assigned into six dietary groups. Each group included six replicates of eight broilers per cage. The broilers were fed with a basal diet supplemented with 0 mg/kg (CON), 50 mg/kg chlortetracycline (CTC), 250, 500, 750, and 1000 mg/kg AOP for 42 d. The results showed that dietary AOP supplementation affected broiler growth performance, with 750 and 1000 mg/kg of AOP being able to significantly improve broiler BWG, and 750 mg/kg of AOP was able to significantly reduce the FCR. The dietary AOP supplementation increased the levels of IgA, IgG, IgM, IL-1β, IL-2, and IL-4 in the spleen and small intestine in a dose-dependent manner (p < 0.05). Meanwhile, we found that AOP can promote the mRNA expression of TLR4/MAPK/NF-κB signaling-pathway-related factors (TLR4, MyD88, P38 MAPK, JNK, NF-κB p50, and IL-1β). In addition, the dietary supplementation of 750 mg/kg AOP provides better immunity in the tissue than the CON group but showed no significant difference from the CTC group. Therefore, AOP has an immunoregulatory action and can modulate the immune function of broilers via the TLR4/ NF-ΚB/MAPK signal pathway. In conclusion, dietary supplementation with 750 mg/kg AOP may be alternatives to antibiotics for enhancing broilers’ health, immunity, and growth performance. Full article
(This article belongs to the Special Issue Immune Response Regulation in Animals)
16 pages, 4841 KiB  
Article
Soil Microbial Community and Their Relationship with Soil Properties across Various Landscapes in the Mu Us Desert
by Lihua Wang and Xuewu Li
Forests 2023, 14(11), 2152; https://doi.org/10.3390/f14112152 - 29 Oct 2023
Cited by 7 | Viewed by 1948
Abstract
Soil microorganisms play crucial roles in maintaining material circulation and energy flow in desert ecosystems. However, the structure and function of soil microorganisms in different forestlands are currently unclear, restricting the use of sand-fixing plants and the understanding of forest ecosystem functions. In [...] Read more.
Soil microorganisms play crucial roles in maintaining material circulation and energy flow in desert ecosystems. However, the structure and function of soil microorganisms in different forestlands are currently unclear, restricting the use of sand-fixing plants and the understanding of forest ecosystem functions. In this study, Artemisia ordosica, Caragana korshinskii, and Salix psammophila, three types of sand-fixing forests widely distributed in the Mu Us Sandy Land, were used to explore the effects of sand-fixing forests on soil physicochemical properties, soil enzyme activity, soil microbial biomass, microbial community structure, and inter-microbial species relationships. Soils of forestlands showed higher soil organic carbon (SOC), total phosphorus (TP), and total nitrogen (TN) contents than bare sandy land. The SOC in bare sandy soil was only 0.84 g kg−1, while it remained 1.55–3.46 g kg−1 in forestland soils. The TN in bare sandy land soil was 0.07 g kg−1, which was significantly lower than that in forestland soils (0.35–0.51 g kg−1). The TP in bare sandy soil was 0.18 g kg−1, significantly lower than that in forestland soils (0.46–0.69 g kg−1). Afforestation of bare sandy land improved soil microbial carbon and nitrogen contents and increased microbial enzyme activities of acid phosphatase and N-acetyl-β-D-glucosaminidase. Significant differences were observed between the three forestlands and bare sandy land in terms of soil microorganisms and community composition. With the establishment of a sand-fixing forest, the alpha diversity of soil bacteria significantly improved, whereas that of soil fungi remained stable. The bacterial community comprised 33 phyla, 106 classes, 273 orders, 453 families, and 842 genera. While five fungal phyla were detected by OTUs at a similarity of 97%, bacterial and fungal community structures were affected by the organic carbon content, sand particle content, soil pH, total nitrogen, and total phosphorus contents of soils. This study is helpful for vegetation construction and protection on sandy lands from the perspective of plant-microbe interactions. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Functions of Forest Microorganisms)
Show Figures

Figure 1

13 pages, 2720 KiB  
Article
Response of Leaf Photosynthesis–Transpiration Coupling to Biotic and Abiotic Factors in the Typical Desert Shrub Artemisia ordosica
by Jun Mao, Yu Luo, Chuan Jin, Minze Xu, Xinhao Li and Yun Tian
Sustainability 2023, 15(13), 10216; https://doi.org/10.3390/su151310216 - 27 Jun 2023
Cited by 3 | Viewed by 2309
Abstract
The environmental regulatory mechanism underlying the coupling of leaf photosynthesis and transpiration in Artemisia ordosica, a typical desert shrub in China, remains unclear. To understand this mechanism, we measured the net leaf photosynthetic rate (Pn), transpiration rate (E [...] Read more.
The environmental regulatory mechanism underlying the coupling of leaf photosynthesis and transpiration in Artemisia ordosica, a typical desert shrub in China, remains unclear. To understand this mechanism, we measured the net leaf photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (gs) from May to October 2019 using a portable photosynthesis analyser. Photosynthetically active radiation, air temperature, relative humidity, and soil water content were simultaneously measured. Both E and Pn are positively correlated with gs. Pn and E exhibited a nonlinear quadratic correlation from May to July and a linear correlation in August and September. The changes in the maximum photosynthetic (Pn−max) and carboxylation rates were mainly affected by air temperature and light. Seasonally, Pn−max initially exhibited an increasing trend, peaking in June and then decreasing. Under low temperature and light conditions, Pn−E was linearly correlated and the coupling relationship was stable. Under higher temperatures and radiation, Pn−E exhibited a nonlinear quadratic correlation, and decoupling occurred with increasing temperature and light intensity. The results of this study provide a better understanding of the responses of desert shrub ecosystems to climate change. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

13 pages, 3241 KiB  
Article
Geostatistical Analysis of the Spatial Variation of Chrysolina aeruginosa Larvae at Different Stages in Desert Ecosystems
by Zeshuai He, Liangyue Chen, Ying Yang, Fuqiang Zhao, Chunmei Zhou and Dazhi Zhang
Insects 2023, 14(4), 379; https://doi.org/10.3390/insects14040379 - 12 Apr 2023
Cited by 2 | Viewed by 1933
Abstract
Chrysolina aeruginosa is a major pest of Artemisia ordosica, and knowledge of the spatial distribution pattern of its larvae in their natural habitat is crucial for the implementation of effective control measures. This study employed geostatistical methods to investigate the damage caused [...] Read more.
Chrysolina aeruginosa is a major pest of Artemisia ordosica, and knowledge of the spatial distribution pattern of its larvae in their natural habitat is crucial for the implementation of effective control measures. This study employed geostatistical methods to investigate the damage caused by larvae of different age groups and their spatial distribution pattern. The distribution of C. aeruginosa larvae, which cause damage to A. ordosica, differed significantly according to their age. Younger larvae were predominantly found in the middle and upper parts of the plant, whereas older larvae were mainly distributed in the middle and lower parts, with significant differences in distribution location. A generalized linear model analysis revealed that the height of the plant, and plant morphological characteristics such as height, crown width, and ground diameter were significantly correlated with the number of larvae present. Furthermore, the interaction of age with other variables had an impact on the number of larvae. Kriging interpolation showed that C. aeruginosa larvae were distributed in aggregated patches with strong spatial heterogeneity. The younger larvae were more abundant in the center of the sample site, while the older larvae tended to be distributed toward the edges. These findings provide valuable information for designing effective control programs. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

11 pages, 1265 KiB  
Communication
Chemical Composition and Antioxidant and Antibacterial Potencies of the Artemisia ordosica Aerial Parts Essential Oil during the Vegetative Period
by Jize Zhang, Qiang Pan, Xiaoqing Zhang and Tana
Molecules 2022, 27(24), 8898; https://doi.org/10.3390/molecules27248898 - 14 Dec 2022
Cited by 4 | Viewed by 2059
Abstract
As one of the vital shrubs growing in crusted areas in China, Artemisia ordosica (belonging to the Asteraceae family) is abundant in essential oil, and its aerial part’s essential oil has been reported to have some biological activities during the flowering and fruit [...] Read more.
As one of the vital shrubs growing in crusted areas in China, Artemisia ordosica (belonging to the Asteraceae family) is abundant in essential oil, and its aerial part’s essential oil has been reported to have some biological activities during the flowering and fruit set stage, and has been used in folk medicine. However, little is known about the biological activities of its aerial part’s essential oil during the vegetative period. Thus, the purpose of this work was to determine the chemical composition and evaluate the antioxidant and antibacterial potencies of the essential oil extracted from A. ordosica aerial parts during the vegetative stage. Gas chromatography coupled with mass spectrometry (GC-MS) revealed that spathulenol (9.93%) and α-curcumene (9.24%), both sesquiterpenes, were the most abundant of the 74 chemical constituents detected in the essential oil of A. ordosica. The antioxidant activity of the essential oil was found to be relatively moderate against 2,2-diphenylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radical (OH) radicals. The essential oil exhibited strong antibacterial activity against Staphylococcus aureus, Salmonella abony and Escherichia coli, with minimum inhibitory concentrations (MICs) of 2.5, 5, and 10 μL/mL, respectively. The results indicate that the essential oil of A. ordosica possesses notable antibacterial properties as well as antioxidant capability and can thus be employed as a natural ingredient which can be used as a substitute for antibiotics in the animal feed industry. However, in vivo toxicological studies are still required to determine the safety level and beneficial outcomes of the A. ordosica essential oil for future utilization. Full article
Show Figures

Figure 1

16 pages, 12080 KiB  
Article
Using Isotopic Labeling to Investigate Artemisia ordosica Root Water Uptake Depth in the Eastern Margin of Mu Us Sandy Land
by Yingming Yang, Xikai Wang, Yunlan He, Kaiming Zhang, Fan Mo, Weilong Zhang and Gang Liu
Sustainability 2022, 14(22), 15149; https://doi.org/10.3390/su142215149 - 15 Nov 2022
Cited by 4 | Viewed by 1750
Abstract
The annual precipitation in the eastern Mu Us sandy land is about 400 mm, but the precipitation varies greatly between years and seasons and severe meteorological and seasonal droughts often occur, which makes the ecological environment very fragile. Artemisia ordosica is the most [...] Read more.
The annual precipitation in the eastern Mu Us sandy land is about 400 mm, but the precipitation varies greatly between years and seasons and severe meteorological and seasonal droughts often occur, which makes the ecological environment very fragile. Artemisia ordosica is the most dominant species in the area. We used depth-controlled deuterium labeling technology to study the root water uptake depth of adult Artemisia ordosica to explore how Artemisia ordosica can survive in extreme droughts. In addition, the soil moisture content was analyzed after the rainy season in October 2020 and the dry season in June 2021. We found that under the influence of an extreme seasonal drought in the study area, the soil layer below 180 cm in depth still maintained high water content of more than 2%; the dry sandy soil in the surface layer inhibited the loss of soil water below 180 cm. The maximum water uptake depth of the roots of adult Artemisia ordosica can reach 240–260 cm. In periods of drought, Artemisia ordosica can still maintain life by absorbing deep soil water. In drought-prone environments, Artemisia ordosica evolved a deeper vertical root system to survive dry periods by absorbing soil water from deeper layers, showing a broad water intake capacity and strong adaptability to arid environments. This study can provide a reference for afforestation projects and ecological restoration in Mu Us sandy land and also provide a reference for the ecological restoration of coal mining areas in this area. Full article
Show Figures

Figure 1

Back to TopTop