Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Data Acquisition
2.2. Plant Multi-Attribute Features Extraction
2.2.1. HSI Features
- (1)
- Spectral Transformation Features
- (2)
- Texture Features
- (3)
- Vegetation Indices
2.2.2. LiDAR Features
- (1)
- Intensity Information
- (2)
- Canopy Height
2.3. Plant Fine Classification Method Based on Multi-Feature Fusion
2.3.1. Random Forest and Multi-Scale Segmentation Fusion Classification
2.3.2. Classification Accuracy Evaluation Method
- (1)
- Producer Accuracy (PA)
- (2)
- User Accuracy (UA)
- (3)
- Overall Accuracy (OA)
- (4)
- Kappa Coefficient
3. Results
3.1. Impact of Asynchronous Data Collection on HSI and LiDAR Data Registration Accuracy
3.2. Feature Screening and Dimensionality Reduction
3.3. Multi-Scale Segmentation Fusion
3.4. Comparative Analysis of Plant Species Taxonomic Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Lei, S.; Cheng, W.; Liu, F.; Wang, W. Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000–2017. J. Arid Land 2019, 11, 837–854. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Lu, Q.; Bian, Z. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef]
- Li, X.; Lei, S.; Liu, Y.; Chen, H.; Zhao, Y.; Gong, C.; Bian, Z.; Lu, X. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002–2017. Remote Sens. 2021, 13, 5040. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Yan, J.; Li, H.; He, J. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Appl. Soil Ecol. 2015, 87, 56–62. [Google Scholar] [CrossRef]
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Hai, W.; Xia, N.; Song, J.; Tang, M. Identification and Monitoring of Surface Elements in Open-Pit Coal Mine Area Based on Multi-Source Remote Sensing Images. Pol. J. Environ. Stud. 2022, 31, 4127–4136. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Wang, Z.; Yang, L.; Xie, Y.; Huang, Y. UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. J. Plant Ecol. 2021, 14, 1003–1023. [Google Scholar] [CrossRef]
- Li, L.; Zheng, X.; Zhao, K.; Li, X.; Meng, Z.; Su, C. Potential Evaluation of High Spatial Resolution Multi-Spectral Images Based on Unmanned Aerial Vehicle in Accurate Recognition of Crop Types. J. Indian Soc. Remote Sens. 2020, 48, 1471–1478. [Google Scholar] [CrossRef]
- Guo, T.; Kujirai, T.; Watanabe, T. Mapping Crop Status from An Unmanned Aerial Vehicle for Precision Agriculture Applications. In Proceedings of the XXII ISPRS Congress, Technical Commission I, Melbourne, Australia, 25 August–1 September 2012; Volume 39-B1, pp. 485–490. [Google Scholar]
- Jeong, C.-H.; Go, S.-H.; Park, J. Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model—Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do -. J. Korean Soc. Rural. Plan. 2022, 28, 57–69. [Google Scholar]
- Mao, Z.; Deng, L.; Sun, J.; Zhang, A.; Chen, X.; Zhao, Y. Research on the Application of UAV Multispectral Remote Sensing in the Maize Chlorophyll Prediction. Spectrosc. Spectr. Anal. 2018, 38, 2923–2931. [Google Scholar]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS-J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar]
- Zhan, Y.; Hu, D.; Wang, Y.; Yu, X. Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 212–216. [Google Scholar] [CrossRef]
- Liang, J.; Li, P.; Zhao, H.; Han, L.; Qu, M. Forest Species Classification of UAV Hyperspectral Image Using Deep Learning. In Proceedings of the 2020 Chinese Automation Congress (CAC 2020), Shanghai, China, 6–8 November 2020; pp. 7126–7130. [Google Scholar]
- Paoletti, M.; Haut, J.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Patro, R.; Subudhi, S.; Biswal, P.; Dell’acqua, F. A Review of Unsupervised Band Selection Techniques: Land Cover Classification for Hyperspectral Earth Observation Data. IEEE Geosci. Remote Sens. Mag. 2021, 9, 72–111. [Google Scholar] [CrossRef]
- Liu, H.; Bruning, B.; Garnett, T.; Berger, B. Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing. Comput. Electron. Agric. 2020, 175, 105621. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, R.; Wang, M.; Zhang, J.; Yu, F.; Ping, Y.; Qiu, L. Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. Plants 2024, 13, 3088. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.; Baek, I.; Kabenge, I.; Cho, B. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Fassnacht, F.; Latifi, H.; Sterenczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Kim, D.; Song, Y.; Kim, H.; Kwon, O.; Yeon, Y.; Lim, T. Airborne multi-seasonal LiDAR and hyperspectral data integration for individual tree-level classification in urban green spaces at city scale. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104319. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.K.K.; Fung, T. Mapping multi-layered mangroves from multispectral, hyperspectral, and LiDAR data. Remote Sens. Environ. 2021, 258, 112403. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Rizos, C. Improved decentralized multi-sensor navigation system for airborne applications. GPS Solut. 2018, 22, 78. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L.; Cerra, D.; Pato, M.; Carmona, E.; Prasad, S.; Yokoya, N.; Hänsch, R.; Le Saux, B. Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1709–1724. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Gao, S.; Zhong, Y.; Gu, C. Multi-sensor Optimal Data Fusion for INS/GNSS/CNS Integration Based on Unscented Kalman Filter. Int. J. Control Autom. Syst. 2018, 16, 129–140. [Google Scholar] [CrossRef]
- Elamin, A.; Abdelaziz, N.; El-Rabbany, A. A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments. Sensors 2022, 22, 9908. [Google Scholar] [CrossRef] [PubMed]
- Dronova, I.; Taddeo, S. Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 2022, 110, 1460–1484. [Google Scholar] [CrossRef]
- You, D.; Hao, Y.; Xu, J.; Yang, L. Research on Attitude Detection and Flight Experiment of Coaxial Twin-Rotor UAV. Sensors 2022, 22, 9572. [Google Scholar] [CrossRef]
- Lin, H.; Zhan, J. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement 2023, 206, 112256. [Google Scholar] [CrossRef]
- Wu, Z. Design of Helicopter Rotor Noise Laboratory (Anechoic Chamber). Noise Vib. Control 2020, 40, 207–209. [Google Scholar]
- Feng, Z.; Hao, Y.; You, D.; Yang, L.; Sun, S.; Zhong, T. Experimental Study on the Effect of Coaxial UAV Rotor Disk Vibration on Attitude Stability. Vib. Shock 2025, 44, 151–159. [Google Scholar]
- Xu, Y.; Li, J.; Du, C.; Chen, H. NBR-Net: A Nonrigid Bidirectional Registration Network for Multitemporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5620715. [Google Scholar] [CrossRef]
- Liu, Y. Research on Vegetation Restoration Guided by Damaged Vegetation in Semi-arid Coal Mine Areas. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, Web of Science. 2020. Available online: https://link.cnki.net/doi/10.27623/d.cnki.gzkyu.2020.000513 (accessed on 20 April 2025).
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Carter, G.A.; Miller, R.L. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sens. Environ. 1994, 50, 295–302. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS-1 Symposium NASA, NASA SP-351; NASA: Washington, DC, USA; pp. 309–317.
- Gamon, J.A.; Green, R.O.; Roberts, D.A. Deriving photosynthetic function from calibrated imaging spectrometry. In Proceedings of the International Colloqium Photosynthesis and Remote Sensing, Montpellier, Paris, 28–30 August 1995; EARSeL: Montpellier, France, 1995; pp. 55–60. [Google Scholar]
- Merton, R. Multi-Temporal Analysis of Community Scale Vegetation Stress with Imaging Spectroscopy. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, Semantic Scholar. 1999. Available online: https://www.semanticscholar.org/paper/Multi-Temporal-Analysis-Of-Community-Scale-Stress-Merton/d9d8e9eafdabd2ed87fec11c80ee01ee716c9328 (accessed on 20 April 2025).
- Blackburn, G.A. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Lang, M.W.; Kim, V.; McCarty, G.W.; Li, X.; Yeo, I.; Huang, C.; Du, L. Improved Detection of Inundation below the Forest Canopy using Normalized LiDAR Intensity Data. Remote Sens. 2020, 12, 707. [Google Scholar] [CrossRef]
- Tian, Y.; Bian, Z.; Lei, S.; Ji, C.; Zhao, Y.; Zhang, S.; Duan, L.; V, S. A Process-Oriented Method for Rapid Acquisition of Canopy Height Model From RGB Point Cloud in Semiarid Region. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 12187–12198. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Chabrillat, S.; Milewski, R.; Schmid, T.; Rodriguez, M.; Escribano, P.; Pelayo, M.; Palacios-Orueta, A. Potential of Hyperspectral Imagery for the Spatial Assessment of Soil Erosion Stages in Agricultural Semi-Arid Spain at Different Scales. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2918–2921. [Google Scholar]
- Ilangakoon, N.T.; Glenn, N.F.; Dashti, H.; Painter, T.H.; Mikesell, T.D.; Spaete, L.P.; Mitchell, J.J.; Shannon, K. Constraining plant functional types in a semi-arid ecosystem with waveform lidar. Remote Sens. Environ. 2018, 209, 497–509. [Google Scholar] [CrossRef]
- Almeida, C.T.D.; Galvão, L.S.; Aragão, L.E.D.O.; Ometto, J.P.H.B.; Jacon, A.D.; Pereira, F.R.D.S.; Sato, L.Y.; Lopes, A.P.; Graça, P.M.L.D.; Silva, C.V.D.J.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Ghoussein, Y.; Faour, G.; Fadel, A.; Haury, J.; Abou-Hamdan, H.; Nicolas, H. Hyperspectral discrimination of Eichhornia crassipes covers, in the red edge and near infrared in a Mediterranean river. Biol. Invasions. 2023, 25, 3619–3635. [Google Scholar] [CrossRef]
- Braga, A.F.; Chiconi, L.A.; Bacha, A.L.; de Almeida Teixeira, G.H.; Cunha, L.C., Jr.; da Costa Aguiar Alves, P.L. Discrimination of morningglory species (Ipomoea spp.) using near-infrared spectroscopy and multivariate analysis. Weed Sci. 2023, 71, 104–111. [Google Scholar] [CrossRef]
- Picos, J.; Bastos, G.; Míguez, D.; Alonso, L.; Armesto, J. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sens. 2020, 12, 885. [Google Scholar] [CrossRef]
- Erfanifard, Y.; Pourhashemi, M.; Alimahmoodi Sarab, S. The impact of coppice management on spatial structure and intraspecific interactions of Brant’s oak (Quercus brantii Lindl.) semi-arid woodlands. Acta Oecologica 2021, 113, 103787. [Google Scholar] [CrossRef]
- Cheng, J.; Chu, P.; Chen, D.; Bai, Y. Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Funct. Ecol. 2016, 30, 985–997. [Google Scholar] [CrossRef]
- Dai, Y.S.; Yang, T.; Shen, L.; Wang, X.Y.; Zhang, W.L.; Liu, T.T.; Lu, W.H.; Li, L.H.; Zhang, W. Root growth, distribution, and physiological characteristics of alfalfa in a poplar/alfalfa silvopastoral system compared to sole-cropping in northwest Xinjiang, China. Agrofor. Syst. 2021, 95, 1137–1153. [Google Scholar] [CrossRef]
- Berone, G.D.; Sardiña, M.C.; Moot, D.J. Animal and forage responses on lucerne (Medicago sativa L.) pastures under contrasting grazing managements in a temperate climate. Grass Forage Sci. 2020, 75, 192–205. [Google Scholar] [CrossRef]
- Erfanifard, Y.; Kraszewski, B.; Stereńczak, K. Integration of remote sensing in spatial ecology: Assessing the interspecific interactions of two plant species in a semi-arid woodland using unmanned aerial vehicle (UAV) photogrammetric data. Oecologia 2021, 196, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tian, Y.; Lei, S.; Li, Y.; Hua, X.; Guo, D.; Ji, C. A Comprehensive Correction Method for Radiation Distortion of Multi-Strip Airborne Hyperspectral Images. Remote Sens. 2023, 15, 1828. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Lei, S.; Ji, C.; Duan, L.; Sedlák, V. Automatic Calibration Method for Airborne LiDAR Systems Based on Approximate Corresponding Points Model. J. Sens. 2022, 2022, 4853419. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Im, J.; Zhao, Y.; Zhen, Z. A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR. Ecol. Indic. 2024, 159, 111680. [Google Scholar] [CrossRef]
Texture Features | Abbreviation | Calculation Formula | Description |
---|---|---|---|
Mean | PCA1_M; PCA2_M; PCA3_M | Indicates the average degree of grayscale in the image | |
Variance | PCA1_V; PCA2_V; PCA3_V | Indicates the degree of grayscale change in the image | |
Homogeneity | PCA1_H; PCA2_H; PCA3_H | Represents local homogeneity in the image | |
Contrast | PCA1_Ct; PCA2_Ct; PCA3_Ct | Indicates the sharpness of the image and the depth of the grooves in the texture | |
Differences | PCA1_D; PCA2_D; PCA3_D | Represents a localized area texture feature in an image | |
Information entropy | PCA1_E; PCA2_E; PCA3_E | A measure of randomness that represents the amount of information contained in an image | |
Second-order moment | PCA1_S; PCA2_S; PCA3_S | Represents the uniformity of the grayscale distribution of the image and the thickness of the texture | |
Correlation | PCA1_CoPCA2_Co; PCA3_Co | Indicates how similar the image is at the gray level |
Abbreviation | Description | Calculation Formula | Bibliography |
---|---|---|---|
B30 | Reflectance at 550 nm (green peak) | Haboudane et al. [37] | |
B67 | Reflectance at 750 nm (NIR shoulder) | Haboudane et al. [37] | |
C1 | Chlorophyll Index 1 | Datt [38] | |
C2 | Chlorophyll Index 2 | Datt [38] | |
PSI | Plant Stress Index | Carter and Miller [39] | |
NDVI | Normalized Difference Vegetation Index | Rouse et al. [40] | |
PRI | Photochemical Reflectance Index | Gamon et al. [41] | |
RVSI | Red-edge Vegetation Stress Index | Merton [42] | |
PSSR | Pigment Specific Simple Ratio | Blackburn [43] | |
WBI | Water Band Index | Penuelas et al. [44] |
Datasets | POS Precision | Relative Offset (cm) | HSI Variability (Trees, Irrigation Book, Herb, and Earth) | ||
---|---|---|---|---|---|
Location (m) | Attitude (°) | ||||
Synchronous acquisition | HSI/LiDAR | [0.0235, 0.0292, 0.0411] | [0.0489, 0.0504, 0.1732] | 14.1 | [1.27, 2.16, 1.76, 1.67] |
Asynchronous acquisition | HSI LiDAR | [0.0235, 0.0292, 0.0411] [0.0258, 0.0272, 0.0460] | [0.0489, 0.0504, 0.1732] [0.0423, 0.0457, 0.1654] | 32.3 | [1.39, 2.44, 1.94, 1.71] |
Dataset | Tree OA (%) | Shrub OA (%) | Herb OA (%) | 12 Species OA (%) | 12 Species Kappa |
---|---|---|---|---|---|
HSI | 60.2 | 78.1 | 78.7 | 71.7 | 0.68 |
Synchronous HSI + LiDAR | 83.0 | 86.1 | 84.5 | 84.7 | 0.83 |
Asynchronous HSI + LiDAR | 75.5 | 83.1 | 80.0 | 80.2 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Feng, Z.; Tu, L.; Ji, C.; Han, J.; Zhao, Y.; Zhou, Y. Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas. Remote Sens. 2025, 17, 1530. https://doi.org/10.3390/rs17091530
Tian Y, Feng Z, Tu L, Ji C, Han J, Zhao Y, Zhou Y. Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas. Remote Sensing. 2025; 17(9):1530. https://doi.org/10.3390/rs17091530
Chicago/Turabian StyleTian, Yu, Zehao Feng, Lixiao Tu, Chuning Ji, Jiazheng Han, Yibo Zhao, and You Zhou. 2025. "Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas" Remote Sensing 17, no. 9: 1530. https://doi.org/10.3390/rs17091530
APA StyleTian, Y., Feng, Z., Tu, L., Ji, C., Han, J., Zhao, Y., & Zhou, Y. (2025). Exploring the Effectiveness of Fusing Synchronous/Asynchronous Airborne Hyperspectral and LiDAR Data for Plant Species Classification in Semi-Arid Mining Areas. Remote Sensing, 17(9), 1530. https://doi.org/10.3390/rs17091530