Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Profile
2.2. Biological Soil Crust Sample Collection
2.3. Measurement of Biological Soil Crusts’ Physicochemical Properties and Enzyme Activity
2.4. 16S rDNA Extraction and Sequencing
2.5. Data Processing and Analyses
3. Results
3.1. Particle Composition of BSCs Under Different Afforestation Measures
3.2. Physicochemical Properties and Enzyme Activities of BSCs Under Different Afforestation Measures
3.3. Correlation Between BSCs’ Physicochemical Properties and Enzyme Activity
3.4. Bacterial Community Structure of BSCs Under Different Afforestation Measures
3.4.1. Statistical Analysis of OTUs
3.4.2. Soil Bacterial α-Diversity
3.4.3. Composition of Soil Bacterial Communities
3.4.4. PCoA of Soil Bacterial Communities
3.4.5. Between-Group Differences in Dominant Soil Bacterial Phyla
3.5. Correlations of BSCs’ Physicochemical Properties and Enzyme Activities with Bacterial Community Structures
3.5.1. Correlations of Algal Crust Physicochemical Properties and Enzyme Activities with the Bacterial Community Structure
3.5.2. Correlations Between Moss Crust Physicochemical Properties, Enzyme Activity, and Bacterial Community Structure
4. Discussion
4.1. Effect of Different Afforestation Measures on BSCs Particle Composition
4.2. Effect of Different Afforestation Measures on BSCs’ Physicochemical Properties and Enzyme Activity
4.3. Effects of Different Afforestation Measures on the Bacterial Community Structure of BSCs
5. Conclusions
6. Patents
- Shaobo Du, Huichun Xie, Chongyi E., Tianyue Zhao, Shuang Ji, Zhiqiang Dong, Shaoxiong Zhang, Haokun Wu. A plant fixation device for desertification control in deserts[P].utility model, 2024.7.26.
- Shaobo Du, Huichun Xie, Chongyi E., Shujing Qi, Haokun Wu, Shuang Ji, Tianyue Zhao, Zhiqiang Dong. This invention relates to a portable spraying device for desert algae biological control of sand[P].utility model, 2025.3.28.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSC | Biological soil crust |
WLYY | Salix cheilophila + Populus simonii plantation |
SLWL | Salix psammophila +S. cheilophila plantation |
SHNT | Artemisia ordosica + Caragana korshinskii plantation |
NT80 | Caragana korshinskii plantation |
References
- Zhu, Z.D. Status and trend of desertification in northern China. J. Desert Res. 1985, 5, 3–11. [Google Scholar]
- Xue, J.; Gui, D.; Lei, J.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
- Sa, R.; Yin, S.; Bao, Y.; Bao, H. Change of Desertification Based on MODIS Data in the Mongolia Border Region. In Proceedings of the Seventh Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention, Changsha, China, 4–6 November 2016; Volume 128, pp. 837–843. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Li, D.; Zhang, W.; Liu, K.; Shen, J.; Zhang, L. Global desert expansion during the 21st century: Patterns, predictors and signals. Land Degrad. Dev. 2023, 34, 377–388. [Google Scholar] [CrossRef]
- Avni, Y. Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 2005, 63, 185–220. [Google Scholar] [CrossRef]
- Garcia-Pichel, F. The microbiology of biological soil crusts. Ann. Rev. Microbiol. 2023, 77, 149–171. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Y.; Zhang, B.; Chen, Y.; Zhang, Y. Progress in the study of algae and mosses in biological soil crusts. Front. Biol. China 2009, 4, 143–150. [Google Scholar] [CrossRef]
- Yan, G.; Xin, R.; Ying, W.; Zhi, S.; Yan, L. Carbon fixation of cyanobacterial–algal crusts after desert fixation and its implication to soil organic carbon accumulation in desert. Land Degrad. Dev. 2013, 24, 342–349. [Google Scholar] [CrossRef]
- Lu, Q.; Xiao, Y.; Lu, Y. Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. Algal Res. 2022, 65, 102747. [Google Scholar] [CrossRef]
- Elbert, W.; Weber, B.; Burrows, S.; Steinkamp, J.; Budel, B.; Andreae, M.; Poschl, U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 2012, 5, 459–462. [Google Scholar] [CrossRef]
- Thomas, A.D.; Dougill, A.J. Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J. Arid Environ. 2006, 64, 270–283. [Google Scholar] [CrossRef]
- Prasse, R.; Bornkamm, R. Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol. 2000, 150, 65–75. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, X.Q. Summary on formation and developmental characteristics of biological soil crusts in desert areas. Acta Ecol. Sin. 2010, 30, 4484–4492. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, B.; Gao, Y.; Cheng, L.; Jia, X.; Pang, Y.; Zhao, H. Composition and influencing factors of biological soil crust bacterial communities in the Sabina vulgaris community in Mu Us sandy land. J. Desert Res. 2020, 40, 130–141. [Google Scholar]
- He, H.Y.; Liu, W.; Chang, Z.Q.; Hou, C.M.; Sun, L.W.; Chi, X.L. Effects of biological soil crust succession on soil nutrients and microbial community composition in desert regions. Arid Land Geogr. 2024, 47, 1724–1734. [Google Scholar] [CrossRef]
- Cui, Y.; Lü, Y.Z.; Li, B.G. Physicochemical properties of soil biological crusts in the Ordos sandy land. Soil 2004, 2, 197–202. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, B.C.; Kang, Z.; Li, K.K.; Liu, Y.J. Variation of bacterial communities and their driving factors in different types of biological soil crusts in Mu Us sandy land. Biodivers. Sci. 2023, 31, 83–93. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, N.; Qian, H.; Chen, G.; Wang, W.; Lu, J.; Li, Y.; Hu, Y. Effects of different ecological restoration pattern on soil organic nitrogen components in alpine sandy land. Agronomy 2024, 14, 680. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, J.H.; Deng, L. Characteristics and influencing factors of soil moisture changes in sandy vegetation in alpine and semi-arid areas. Acta Ecol. Sin. 2024, 44, 5554–5566. [Google Scholar] [CrossRef]
- Li, Q.X.; Jia, Z.Q.; He, L.X.Z.; Zhao, X.B.; Yang, X.B. The allocation and cycling characteristics of main nutrients for Caragana intermedia with different stand age on alpine sandy land. For. Res. 2023, 36, 119–128. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.X. Effects of biological soil crusts on physicochemical properties of shallow soil in alpine sandy land. J. Arid Land Resour. Environ. 2022, 36, 154–160. [Google Scholar] [CrossRef]
- Zhao, H.J.; Cheng, L.; Jia, X.H.; Wu, B.; Li, Y.S.; Yue, Y.P.; Zhou, H.; Zhao, X.B. Dynamics of soil carbon release under biological soil crust cover in alpine sandy lands. Acta Ecol. Sin. 2020, 40, 6396–6404. [Google Scholar]
- Zhao, H.J.; Yue, Y.P.; Jia, X.H.; Cheng, L.; Wu, B.; Li, Y.S.; Zhou, H.; Zhao, X.B. Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands. Chin. J. Plant Ecol. 2020, 44, 916–925. [Google Scholar] [CrossRef]
- Gu, C.; Jia, X.H.; Wu, B.; Cheng, L.; Yang, Z.W.; Yang, D.F.; Zhao, X.B. Effect of simulated precipitation on the carbon flux in biological soil-crusted soil in alpine sandy habitats. Acta Ecol. Sin. 2017, 37, 4423–4433. [Google Scholar]
- Zhang, M.Y.; Wang, Z.T.; Deng, L.; Zhou, H. Differences in physicochemical properties of biological soil crusts in different shrub communities in the Gonghe Basin. Arid Zone Res. 2023, 40, 1797–1805. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Tatsuno, Y.; Miyasaka, K.; Sasaki, T. Can complementarity in water use help explain diversity-productivity relationships in semi-arid grasslands? J. Arid Environ. 2020, 173, 103994. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Zhang, N.; He, X.; Gao, Y.; Li, Y.; Wang, H.; Ma, D.; Zhang, R.; Yang, S. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Li, M.; Nie, H.G.; Zhang, S.H.; Zhou, F.; Han, D.D.; Zhan, L.Y.; Tian, Y.Y.; Shi, M.; Zhang, E.P. Correlation between FDA enzyme activity and soil fertility under combined application of organic and nitrogen fertilizer in facility vegetable field. Acta Hortic. Sin. 2016, 43, 907–917. [Google Scholar] [CrossRef]
- Hu, B.; Liang, D.; Liu, J.; Lei, L.; Yu, D. Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil. Ecotoxicol. Environ. Saf. 2014, 110, 41–48. [Google Scholar] [CrossRef]
- Wang, L.L.; Mei, W.Q.; Chen, X.L.; Fang, H.X.; Liu, X.Y.; Yang, D.S.; Wang, W.Q. Determination of water-soluble sugar content in rice by colorimetric method with 3,5-dinitrosalicylic acid. J. Chin. Cereals Oils 2020, 35, 168–173. [Google Scholar]
- Wang, A.L.; Ma, R.; Ma, Y.J.; Teng, L.; Tian, Y.S.; Dong, Z.H.; Chai, Q.D. Effects of compound sand control measures on soil bacterial community structure and function. Acta Pratacult. Sin. 2024, 33, 46–60. [Google Scholar] [CrossRef]
- Du, S.; Xie, H.; Zhang, G.; Qiao, F.; Geng, G.E.C. Improvement effects of different afforestation measures on the surface soil of alpine sandy land. Biology 2025, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Zhang, Y.M.; Zhao, Y.G. A study on biological soil crusts: Recent development, trend and prospect. Adv. Earth Sci. 2009, 24, 11–24. [Google Scholar]
- Nadeu, E.; de Vente, J.; Martínez-Mena, M.; Boix-Fayos, C. Exploring particle size distribution and organic carbon pools mobilized by different erosion processes at the catchment scale. J. Soils Sediments 2011, 11, 667–678. [Google Scholar] [CrossRef]
- Xu, G.C.; Li, Z.B.; Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena 2013, 101, 17–23. [Google Scholar] [CrossRef]
- Guo, Y.R.; Zhao, H.L.; Zhao, X.Y.; Zuo, X.A.; Li, Y.Q. Crust development and its influences on soil physicochemical properties in Horqin sandy land. J. Soil Water Conserv. 2007, 1, 135–139. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Yin, L.; Wenninger, J.; Zhang, J.; Hou, G.; Zhang, E.; Uhlenbrook, S. Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in northwest China. Environ. Earth Sci. 2015, 73, 289–301. [Google Scholar] [CrossRef]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Baldock, J.; Setia, D.; Smith, J. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 2013, 465, 267–272. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De-Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Liu, Z.J.; Xu, C.D.; Zhu, X.L.; Zhou, D.M.; Tian, J.J.; Gu, F.Y.; Huang, S.; Li, Z.R.; Zhao, Z.H.; Wang, X. Comprehensive assessment and evolution analysis of soil salinization in artificial oasis in arid desert area. China Environ. Sci. 2022, 42, 367–379. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, K.; Jiang, F.; Liu, W.; Yan, Z.; Sun, J. High-performance solid-state lithium metal batteries achieved by interface modification. J. Energy Chem. 2023, 79, 357–364. [Google Scholar] [CrossRef]
- Fullen, M.A.; Booth, C.A.; Brandsma, R.T. Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in east Shropshire, UK. Soil Tillage Res. 2006, 89, 122–128. [Google Scholar] [CrossRef]
- Belnap, J.; Büdel, B.; Lange, O.L. Biological soil crusts: Characteristics and distribution. In Biological Soil Crusts: Structure, Function, and Management, 1st ed.; Belnap, J., Lange, O.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 3–30. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Su, Y.; Jia, R. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena 2012, 97, 119–126. [Google Scholar] [CrossRef]
- Miralles, I.; De Guevara, M.L.; Chamizo, S.; Rodriguez-Caballero, E.; Ortega, R.; Wesemael, B.; Canton, Y. Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems. Soil Biol. Biochem. 2018, 124, 11–23. [Google Scholar] [CrossRef]
- Si, S.X.; Li, Y.X.; Hui, R.; Liu, L.C.; Xie, M.; Wang, Y.L. Effects of snow on the photosynthetic physiological characteristics of biological soil crusts in a desert region. J. Desert Res. 2018, 38, 560–567. [Google Scholar] [CrossRef]
- He, M.; Hu, R.; Jia, R. Biological soil crusts enhance the recovery of nutrient levels of surface dune soil in arid desert regions. Ecol. Indic. 2019, 106, 105497. [Google Scholar] [CrossRef]
- Miralles, I.; Domingo, F.; García-Campos, E.; Trasar-Cepeda, C.; Carmen Leirós, M.; Gil-Sotres, F. Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol. Biochem. 2012, 55, 113–121. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.P.; Yang, X.X.; Liu, W.T.; Yu, Y.; Cao, Q.; Liu, Y.Z.; Li, C.D.; Gao, J.; Dong, Q.M. Effects of biological soil crusts on soil nutrients and enzyme activities in grassland and desert ecosystems. Acta Agrestia Sin. 2023, 31, 632–640. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, B.C.; Chen, J.; Wu, Z.F.; Zhao, K. Effects of different biological crust types on soil organic carbon and its transformation in the water-wind erosion crisscross region of the Loess Plateau. J. Soil Water Conserv. 2024, 38, 38–44. [Google Scholar] [CrossRef]
- Miralles, I.; Domingo, F.; Cantón, Y.; Trasar-Cepeda, C.; Carmen Leirós, M.; Gil-Sotres, F. Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol. Biochem. 2012, 53, 124–132. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Grinyer, J.; Reich, P.; Singh, B. Relative importance of soil properties and microbial community for soil functionality: Insights from a microbial swap experiment. Funct. Ecol. 2016, 30, 1862–1873. [Google Scholar] [CrossRef]
- Meena, M.D.; Joshi, P.K.; Narjary, B.; Sheoran, P.; Jat, H.S.; Chinchmalatpure, A.R.; Yadav, R.K.; Sharma, D.K. Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system. Soil Res. 2016, 54, 958–969. [Google Scholar] [CrossRef]
- Panke-Buisse, K.; Poole, A.C.; Goodrich, J.K.; Ley, R.E.; Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 2015, 9, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Introduction to soil microbiology. Soil Sci. 1977, 125, 447. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef]
- Chen, X.; Feng, J.; Ding, Z.; Tang, M.; Zhu, B. Changes in soil total, microbial and enzymatic C-N-P contents and stoichiometry with depth and latitude in forest ecosystems. Sci. Total Environ. 2022, 816, 151583. [Google Scholar] [CrossRef]
- Liu, X.F.; Liu, J.J.; Chen, X.F.; Liang, H.R.; Liu, P.S.; Sha, R.T.Y. Bacterial community structure and diversity of biological soil crusts in the Kubuqi Desert. J. Inner Mong. For. Sci. Technol. 2022, 48, 21–27. [Google Scholar] [CrossRef]
- Tang, B.; Xu, H.; Song, F.; Ge, H.; Yue, S. Effects of heavy metals on microorganisms and enzymes in soils of lead–zinc tailing ponds. Environ. Res. 2022, 207, 112174. [Google Scholar] [CrossRef]
- Maphuhla, N.G.; Lewu, F.B.; Oyedeji, O.O. Enzyme activities in reduction of heavy metal pollution from Alice landfill site in eastern cape, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 12054. [Google Scholar] [CrossRef]
Site | Longitude | Latitude | Altitude (m) | Area (m2) | Vegetation Cover (%) | BSC Type | BSC Thickness (mm) | BSC Cover (%) |
---|---|---|---|---|---|---|---|---|
WLYY | 100°15′19.0″ E | 36°15′20.1″ N | 2829 | 2500 | 82 | Bare sand | - | 11.24 ± 3.15 |
Algal crust | 9.14 ± 1.14 | 34.12 ± 6.17 | ||||||
Moss crust | 12.14 ± 1.12 | 54.63 ± 7.62 | ||||||
SLWL | 100°14′16.9″ E | 36°14′5.43″ N | 2824 | 33,330 | 69 | Bare sand | - | 3.01 ± 1.04 |
Algal crust | 11.62 ± 2.15 | 36.58 ± 6.17 | ||||||
Moss crust | 13.16 ± 1.61 | 60.41 ± 8.14 | ||||||
SHNT | 100°15′8.89″ E | 36°14′41.2″ N | 2817 | 19,998 | 66 | Bare sand | - | 19.27 ± 3.48 |
Algal crust | 5.7 7± 1.54 | 38.66 ± 6.62 | ||||||
Moss crust | 9.42 ± 0.46 | 42.08 ± 7.29 | ||||||
NT80 | 100°14′7.28″ E | 36°14′55.7″ N | 2811 | 10,000 | 89 | Bare sand | - | 13.68 ± 6.63 |
Algal crust | 8.15 ± 2.61 | 38.69 ± 4.49 | ||||||
Moss crust | 10.56 ± 0.74 | 47.61 ± 5.45 |
Indicator | Method | Reference |
---|---|---|
Particle composition | laser diffraction analysis | [26] |
pH | potentiometric method (water-to-soil ratio 2.5:1) | [27] |
Electrical conductivity (EC) | conductometric method (water-to-soil ratio 5:1 for extraction) | [27] |
Soil water content (SWC) | drying method | [27] |
Alkaline-hydrolyzable nitrogen (AN) | alkaline hydrolysis diffusion | [27] |
Available phosphorus (AP) | sodium bicarbonate extraction and molybdenum-antimony colorimetric | [27] |
Total potassium (TK) | flame photometry method (Melting of NaOH) | [27] |
Available potassium (AK) | flame photometry method (Extraction with 1 mol/L NH4OAc) | [27] |
Total phosphorus (TP) | NaOH fusion and molybdenum-antimony colorimetric | [27] |
Soil organic matter (SOM) | potassium dichromate-concentrated sulfuric acid external heating | [27] |
Catalase (CAT) | potassium permanganate titration | [28] |
Alkaline phosphatase (ALP) | disodium phenyl phosphate colorimetric | [29] |
Urease (URE) | indole phenol acid colorimetric | [30] |
Sucrase (SUC) | 3,5-dinitrosalicylic acid colorimetric | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Xie, H.; Zhang, G.; Qiao, F.; Geng, G.; E, C. Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land. Biology 2025, 14, 532. https://doi.org/10.3390/biology14050532
Du S, Xie H, Zhang G, Qiao F, Geng G, E C. Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land. Biology. 2025; 14(5):532. https://doi.org/10.3390/biology14050532
Chicago/Turabian StyleDu, Shaobo, Huichun Xie, Gaosen Zhang, Feng Qiao, Guigong Geng, and Chongyi E. 2025. "Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land" Biology 14, no. 5: 532. https://doi.org/10.3390/biology14050532
APA StyleDu, S., Xie, H., Zhang, G., Qiao, F., Geng, G., & E, C. (2025). Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land. Biology, 14(5), 532. https://doi.org/10.3390/biology14050532