Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Archard theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7404 KB  
Article
Degradation Law Analysis and Life Estimation of Transmission Accuracy of RV Reducer Based on Tooth Surface and Bearing Wear
by Chang Liu, Wankai Shi, He Yu and Kun Liu
Lubricants 2025, 13(8), 362; https://doi.org/10.3390/lubricants13080362 - 15 Aug 2025
Viewed by 290
Abstract
As a core component of industrial robots, the transmission accuracy life (TAL) of rotary vector (RV) reducers constitutes a primary factor determining the high-precision operation of robotic systems. However, current life evaluation methods for RV reducers predominantly rely on conventional bearing strength life [...] Read more.
As a core component of industrial robots, the transmission accuracy life (TAL) of rotary vector (RV) reducers constitutes a primary factor determining the high-precision operation of robotic systems. However, current life evaluation methods for RV reducers predominantly rely on conventional bearing strength life calculations, while neglecting its transmission accuracy degradation during operation. To address this limitation, a static analysis model of RV reducers is established, through which a calculation method for transmission accuracy and TAL is presented. Simultaneously, tooth surface and bearing wear models are developed based on Archard’s wear theory. Through coupled analysis of the aforementioned models, the transmission accuracy degradation law of RV reducers is revealed. The results show that during the operation of the RV reducer, the transmission error (TE) maintains relative stability over time, whereas the lost motion (LM) exhibits a continuous increase. Based on this observation, LM is defined as the evaluation metric for TAL, and a novel TAL estimation model is proposed. The feasibility of the developed TAL estimation model is ultimately validated through accelerated transmission accuracy degradation tests on RV reducers. The error between the predicted and experimental results is 11.06%. The proposed TAL estimation model refines the life evaluation methodology for RV reducers, establishing a solid foundation for real-time transmission accuracy compensation in reducer operation. Full article
Show Figures

Figure 1

20 pages, 5568 KB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Viewed by 385
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 8433 KB  
Article
Development of an Advanced Wear Simulation Model for a Racing Slick Tire Under Dynamic Acceleration Loading
by Alfonse Ly, Christopher Yoon, Joseph Caruana, Omar Ibrahim, Oliver Goy, Moustafa El-Gindy and Zeinab El-Sayegh
Machines 2025, 13(8), 635; https://doi.org/10.3390/machines13080635 - 22 Jul 2025
Viewed by 788
Abstract
This study investigates the development of a tire wear model using finite element techniques. Experimental testing was conducted using the Hoosier R25B slick tire mounted onto a Mustang Dynamometer (MD-AWD-500) in the Automotive Center of Excellence, Oshawa, Ontario, Canada. A general acceleration/deceleration procedure [...] Read more.
This study investigates the development of a tire wear model using finite element techniques. Experimental testing was conducted using the Hoosier R25B slick tire mounted onto a Mustang Dynamometer (MD-AWD-500) in the Automotive Center of Excellence, Oshawa, Ontario, Canada. A general acceleration/deceleration procedure was performed until the battery was completely exhausted. A high-fidelity finite element tire model using Virtual Performance Solution by ESI Group, a part of Keysight Technologies, was developed, incorporating highly detailed material testing and constitutive modeling to simulate the tire’s complex mechanical behavior. In conjunction with a finite element model, Archard’s wear theory is implemented algorithmically to determine the wear and volume loss rate of the tire during its acceleration and deceleration procedures. A novel application using a modified wear theory incorporates the temperature dependence of tread hardness to measure tire wear. Experimental tests show that the tire loses 3.10 g of mass within 45 min of testing. The results from the developed finite element model for tire wear suggest a high correlation to experimental values. This study demonstrates the simulated model’s capability to predict wear patterns, ability to quantify tire degradation under dynamic loading conditions and provides valuable insights for optimizing performance and wear estimation. Full article
(This article belongs to the Special Issue Advanced Technologies in Vehicle Interior Noise Control)
Show Figures

Figure 1

18 pages, 6221 KB  
Article
A Study on the Wear Characteristics of a Point Contact Pair of Angular Contact Ball Bearings Under Mixed Lubrication
by Yongjian Yu, Zifan Dong, Yujun Xue, Haichao Cai and Jun Ye
Machines 2025, 13(4), 312; https://doi.org/10.3390/machines13040312 - 11 Apr 2025
Viewed by 477
Abstract
Under mixed lubrication, the macro size is affected by the wear of the surface roughness peaks, which results in degradation of the bearing accuracy. To study the wear characteristics of rolling bearings under mixed lubrication, based on the elastohydrodynamic lubrication theory and Archard [...] Read more.
Under mixed lubrication, the macro size is affected by the wear of the surface roughness peaks, which results in degradation of the bearing accuracy. To study the wear characteristics of rolling bearings under mixed lubrication, based on the elastohydrodynamic lubrication theory and Archard wear model, and considering the coupling of the oil film and roughness, a wear prediction model of angular contact ball bearings under mixed lubrication was established, and the influence of the working parameters and hardness on bearing wear was analyzed. The results show that the wear depth of the outer grove increases with an increase in the load, or a decrease in the rotational speed or the initial viscosity of lubricating oil. The load has the most significant effect on the wear depth of the outer grove. There is a critical value for the load, rotational speed, and initial viscosity of the lubricating oil, which varies with the parameters of other working conditions and the hardness of the materials. When the increase in load exceeds the critical value or the rotational speed and initial viscosity of lubricating oil are less than the critical value, the outer groove fails because the wear depth exceeds the critical value of wear depth. The ratio of the load on the rolling element to the hardness of the outer grove at different entrainment speeds and initial viscosities of lubricating oil can be used to predict the wear degree of the outer grove. When the ratio is greater than a certain threshold, the outer grove is faulted owing to wear, and the threshold decreases with an increase in the initial viscosity of lubricating oil or the decrease in rotational speed. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

17 pages, 5754 KB  
Article
Study of Stress and Wear Behavior of Internal Components in Hydrogen-Based Shaft Furnaces Based on the Discrete Element Method (DEM) Model
by Hongzhi Ling, Yan Jin, Zhengchao Huang, Ziyu Liu and Peng Lin
Processes 2025, 13(3), 857; https://doi.org/10.3390/pr13030857 - 14 Mar 2025
Viewed by 592
Abstract
In the context of the “carbon peaking and carbon neutrality” era, China’s steel industry, as one of the pillars of the national economy, must accelerate the exploration and adoption of innovative production processes to effectively reduce its carbon footprint. The numerical simulation of [...] Read more.
In the context of the “carbon peaking and carbon neutrality” era, China’s steel industry, as one of the pillars of the national economy, must accelerate the exploration and adoption of innovative production processes to effectively reduce its carbon footprint. The numerical simulation of hydrogen-based shaft furnaces is an important method for studying the internal characteristics of steelmaking processes. Its objective is to set reasonable furnace parameters to significantly enhance production efficiency and environmental friendliness, ensuring that sustainability and economic benefits coexist in the steel manufacturing process. In order to develop a new shaft furnace, which simplifies the cooling parts, the mathematical model was used to conduct a numerical simulation analysis of hydrogen-based shaft furnaces. The Discrete Element Method (DEM) was employed to focus on the stress and wear behavior of internal components within the hydrogen-based shaft furnace. The results indicated that during the charging of iron ore pellets, the outlet area experienced friction and compression from Direct Reduced Iron (DRI), resulting in a maximum stress of 47,422.1 Pa at the output section. The stresses on the loosening roller were locally concentrated due to its clockwise rotational motion, with a maximum shear stress of 219,896.1 Pa. By applying the Archard wear theory and the moving bed model, the theoretical wear degrees of the refractory materials in the reduction section and the steel shell in the cooling section were obtained; the monthly wear rate of the loosening roller was approximately 0.601 mm. Reasonably setting the parameters and feeding speed of the hydrogen-based shaft furnace can optimize the force and wear conditions of internal components, achieving optimal operating conditions. This provides a reference for factories to effectively extend the service life of hydrogen-based shaft furnaces and offers reasonable suggestions for the future industrial application of hydrogen metallurgy. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 8510 KB  
Article
Study on the Wear Performance of Spiroid Worm Drive with Steel–Steel Meshing
by Yan Chen, Yun Pu and Yonghong Chen
Machines 2025, 13(3), 205; https://doi.org/10.3390/machines13030205 - 28 Feb 2025
Cited by 1 | Viewed by 700
Abstract
Worm drive belongs to the inclined plane transmission principle, and there is severe wear on the conjugate tooth surface. To reveal the wear mechanism and realize steel–steel meshing in the spiroid worm drive, the meshing performance model of conjugate tooth surface is established [...] Read more.
Worm drive belongs to the inclined plane transmission principle, and there is severe wear on the conjugate tooth surface. To reveal the wear mechanism and realize steel–steel meshing in the spiroid worm drive, the meshing performance model of conjugate tooth surface is established based on differential geometry theory and gear meshing principle, and the wear performance model is inferred by the Archard model and microscopic meshing performance. The wear performance of conjugate tooth surface is analyzed through the digital calculation, the pin-disk friction, and wear testing, as well as the spiroid worm drive prototype performance testing. The results show that there are good lubrication and anti-wear characteristics between the conjugate tooth surfaces, the wear amount on the right flank is twice that of the left flank, the wear depth at the loaded flank of the spiroid gear surface is smaller than that at the unloaded flank, as well as the feasibility of steel–steel meshing in worm drive has been confirmed. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 2644 KB  
Review
Comparative Analysis of Wear Models for Accurate Wear Predictions
by Guntis Springis and Irina Boiko
Lubricants 2025, 13(3), 100; https://doi.org/10.3390/lubricants13030100 - 25 Feb 2025
Cited by 4 | Viewed by 1576
Abstract
The development of innovative technologies and the employment of diverse material compositions have contributed to the enhancement of wear prediction methods. However, the accurate forecasting of service life and the identification of critical influencing factors remain challenging due to the complex interactions governing [...] Read more.
The development of innovative technologies and the employment of diverse material compositions have contributed to the enhancement of wear prediction methods. However, the accurate forecasting of service life and the identification of critical influencing factors remain challenging due to the complex interactions governing wear behaviour. Throughout history, various methodological approaches have been developed to model wear, primarily categorised into analytical calculations and experimental investigations. Analytical methods, including Archard’s equation and its variations, provide a theoretical basis for wear estimation. However, these models frequently depend on empirical coefficients derived from extensive experimentation, which restricts their predictive accuracy. Moreover, classical wear models do not fully account for material fatigue effects and 3D surface texture parameters, which are critical for solving complex engineering problems. Recent advancements have sought to address these limitations by integrating probabilistic surface modelling, fatigue-based degradation theories, and numerical simulations to enhance wear predictions. Experimental investigations remain essential for validating analytical models, as they provide empirical data necessary for parameter calibration. However, these experiments require specialised equipment and are often time-consuming and costly. The integration of modern measurement tools and numerical simulations, such as finite element analysis (FEA) and machine learning-based models, presents a promising direction for improving wear predictions. This review highlights the strengths and limitations of existing wear models and emphasises the need for further refinement of analytical approaches to incorporate fatigue wear mechanisms, real surface roughness effects, and environmental influences for more accurate and reliable wear assessments. Full article
Show Figures

Figure 1

23 pages, 10799 KB  
Article
The Development and Experimental Validation of a Real-Time Coupled Gear Wear Prediction Model Considering Initial Surface Topography, Dynamics, and Thermal Deformation
by Jingqi Zhang, Jianxing Zhou, Quanwei Cui, Ning Dong, Hong Jiang and Zhong Fang
Machines 2024, 12(10), 734; https://doi.org/10.3390/machines12100734 - 17 Oct 2024
Viewed by 1390
Abstract
Errors affect the actual meshing process of gears, alter the actual wear pattern of the tooth profile, and may even impact the overall service life of machinery. While existing research predominantly focuses on individual errors or a narrow set of factors, this study [...] Read more.
Errors affect the actual meshing process of gears, alter the actual wear pattern of the tooth profile, and may even impact the overall service life of machinery. While existing research predominantly focuses on individual errors or a narrow set of factors, this study explores the combined effects of multiple errors on tooth profile wear. A comprehensive gear wear prediction model was developed, integrating the slice method, lumped mass method, Hertz contact model, and Archard’s wear theory. This model accounts for initial tooth surface topography, thermal deformation, dynamic effects, and wear, establishing strong correlations between gear wear prediction and key factors such as tooth surface morphology, temperature, and vibration. Experimental validation demonstrated the model’s high accuracy, with relatively small deviations from the observed wear. Initial profile errors (IPEs) at different positions along the tooth width result in varying relative sliding distances, leading to differences in wear depth despite a consistent overall trend. Notably, large IPEs at the dedendum and addendum can influence wear progression, either accelerating or decelerating the wear process over time. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

14 pages, 7651 KB  
Article
Optimization of Motor Rotor Punch Wear Parameters Based on Response Surface Method
by Shaobo Wen, Ran She, Zhendong Zhao and Yipeng Gong
Machines 2024, 12(10), 671; https://doi.org/10.3390/machines12100671 - 25 Sep 2024
Cited by 1 | Viewed by 1176
Abstract
To reduce the wear of the motor rotor punching punch and ensure the efficiency is the highest in actual production, the finite element analysis software Deform-3Dv11 is used to simulate the punch wear based on the Archard model theory. With punch wear as [...] Read more.
To reduce the wear of the motor rotor punching punch and ensure the efficiency is the highest in actual production, the finite element analysis software Deform-3Dv11 is used to simulate the punch wear based on the Archard model theory. With punch wear as the response target and punch speed, punch clearance, and punch edge fillet as the main factors, 17 groups of response surface Box–Behnken test designs are established, as well as a quadratic polynomial regression model between the main factors and the response. The results revealed that: the influence of various parameters on punch wear is in the order of punch edge fillet C > punch clearance B > punch speed A; the order of the interactive influence of various factors is as follows: punch speed and punch edge fillet AC > punch speed and punch clearance AB > punch clearance and punch edge fillet BC. The optimal blanking process combination obtained by using Design-Expert13 software is as follows: blanking speed 50 mm/s, blanking clearance 0.036 mm, and die cutting edge rounded corner 0.076 mm; the predicted response surface value is 6.95 × 10−12 mm. Through simulation verification, the actual optimized simulation value is 6.93 × 10−12 mm, with an absolute relative error of 2.5% for the predicted response value. Moreover, the optimized simulation value is reduced by 30.4% compared to the one before optimization, effectively reducing the punch wear of the motor rotor punching forming and providing a theoretical foundation for further wear optimization. Full article
(This article belongs to the Special Issue Advances in Design and Manufacturing in Die Casting and Metal Forming)
Show Figures

Figure 1

13 pages, 4047 KB  
Article
The Wear Behaviour of a New Eccentric Meshing Reducer with Small Teeth Difference
by Renqiang Yang, Zhengjun Guan, Dongdong Yang, Shuaidong Zou, Haifeng He and Guangjian Wang
Machines 2024, 12(9), 605; https://doi.org/10.3390/machines12090605 - 1 Sep 2024
Cited by 1 | Viewed by 1197
Abstract
Eccentric meshing reducers are widely used in agriculture, industrial robots, and other fields due to their ability to achieve a high reduction ratio within a compact volume. However, the contact wear problem seriously affects the service performance of the eccentric meshing reducer, thereby [...] Read more.
Eccentric meshing reducers are widely used in agriculture, industrial robots, and other fields due to their ability to achieve a high reduction ratio within a compact volume. However, the contact wear problem seriously affects the service performance of the eccentric meshing reducer, thereby limiting their range of applications. To effectively address this issue, this study involved a stress analysis of the contact pairs and a surface wear analysis of a new eccentric meshing reducer. The wear equation for the contact pairs was derived using Archard’s wear theory, incorporating geometric and material parameters from both the reducer gear contact pair and the spline contact pair. In parallel, a wear simulation was conducted by integrating the UMESHMOTION subprogram with ALE adaptive grids. Additionally, the effects of load amplitudes on contact pair stress and surface wear were systematically investigated. It is revealed that the contact pair stress of the reducer gear was higher than that of the spline contact pair. Furthermore, the internal spline exhibited the highest wear rate, followed by the output shaft gear, external spline, and input shaft gear, in that order. This work provides a comprehensive and in-depth understanding of the wear behaviors of general reducers with small teeth differences and offers valuable scientific references for design optimization, fault diagnosis, and maintenance strategy formulation. Full article
Show Figures

Figure 1

17 pages, 8370 KB  
Article
The Effect of Cycloid Gear Wear on the Transmission Accuracy of the RV Reducer
by Yourui Tao, Huishan Liu, Miaojie Wu, Nanxian Zheng and Jiaxing Pei
Machines 2024, 12(8), 511; https://doi.org/10.3390/machines12080511 - 29 Jul 2024
Cited by 4 | Viewed by 1718
Abstract
The cycloid gear wear of RV reducers leads to the degradation of the industrial robots’ transmission accuracy, but the degradation law with respect to the wear volume is still unclear. In this paper, a method for determining transmission error (TE) through a combination [...] Read more.
The cycloid gear wear of RV reducers leads to the degradation of the industrial robots’ transmission accuracy, but the degradation law with respect to the wear volume is still unclear. In this paper, a method for determining transmission error (TE) through a combination of numerical and simulation analysis is proposed. The wear model of cycloid gear was ascertained based on the theory of Archard. Then, the full rigid body and rigid–flexible coupling model of RV reducers were established using the multibody dynamics theory. Finally, the static transmission error (STE) and dynamic transmission error (DTE) were investigated. The results show that as working hours increase, the cycloid gear wear volume increases, and transmission accuracy deteriorates, but the rate tends to slow down. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

17 pages, 9396 KB  
Article
Finite Element Simulation of Dry Wear of Prosthesis Made of UHMWPE and 316LVM Stainless Steel
by Tomas de la Mora Ramírez, Elías Crispín López, Daniel Maldonado Onofre, Elvis Coutiño Moreno, Noé López Perrusquia, Marco A. Doñu Ruíz and Christhopher René Torres San Miguel
Coatings 2024, 14(7), 876; https://doi.org/10.3390/coatings14070876 - 12 Jul 2024
Cited by 1 | Viewed by 1711
Abstract
The study of wear is currently one of the most important aspects of applied mechanics. The damage caused by this phenomenon involves the total replacement of parts in devices ranging from industrial machinery to biomedical implants. The focus of these work is aimed [...] Read more.
The study of wear is currently one of the most important aspects of applied mechanics. The damage caused by this phenomenon involves the total replacement of parts in devices ranging from industrial machinery to biomedical implants. The focus of these work is aimed at the analysis and prediction of mechanical wear in prostheses manufactured using UHMWPE materials and 316 LVM stainless steel by means of the finite element method using Abaqus® software V. 2020. The wear mechanism between the surfaces of the UHMWPE material specimen and a 316 LVM stainless steel specimen was modeled using Archard’s wear theory to determine the parameters of damage, plastic deformation, and fatigue. The attrition process was discretized into several steps, including developing a program in Fortran code, and integrating a pre-established subroutine known as UMESHMOTION, followed by a Mesh update whenever contact nodes were deformed. For the simulation process, the variables of the thermal properties of conductivity, specific heat, and the parameters of the Johnson-Cook plastic model were taken into account. The simulation results were validated by laboratory tests. Full article
Show Figures

Graphical abstract

17 pages, 1770 KB  
Article
A Wear Prediction Framework for Ball-Screw of Electro-Mechanical Brake Unit on Railway Trains
by Tianhe Ma, Jingjing Weng, Chun Tian and Mengling Wu
Actuators 2024, 13(4), 135; https://doi.org/10.3390/act13040135 - 8 Apr 2024
Viewed by 1828
Abstract
The electro-mechanical brake is a new advancement in railway train braking. Ball-screws are important components of electro-mechanical braking units (EMBUs), and their wear can cause EMBUs to degrade in performance or even fail to function. In this paper, we present a framework for [...] Read more.
The electro-mechanical brake is a new advancement in railway train braking. Ball-screws are important components of electro-mechanical braking units (EMBUs), and their wear can cause EMBUs to degrade in performance or even fail to function. In this paper, we present a framework for prediction of ball-screw wear with discrete operating conditions as inputs, taking into account the time-varying characteristics of EMBUs. The framework includes determining the contact type, analyzing relative motion, calculating contact deformations, and estimating wear. The contact type is determined based on the quasi-static approach of Hertz theory. A dynamics model using multiple coordinate systems is established to analyze how balls and raceways move in relation to each other. The contact deformations of the ball–raceway contact are determined using numerical calculation. Then, the wear depth increment is calculated using the Archard model. The results of the calculation and the endurance test indicate that the wear on the screw raceway is greater than that on the nut raceway. The effect of velocity is greater than the effect of axial force. The presented calculation framework is reasonable and can be used for predicting EMBU ball-screw wear. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

16 pages, 7122 KB  
Article
Analysis of Dynamic Wear Characteristics of Joint Contact Friction Pair of Excavators Working Device
by Xuehui Chen, Lei Zhang, Wei Li, Zijian Wang, Zhengbin Zhang, Ting Gao and Wei Liu
Lubricants 2024, 12(4), 113; https://doi.org/10.3390/lubricants12040113 - 29 Mar 2024
Cited by 2 | Viewed by 2055
Abstract
The working device of an excavator in construction machinery is prone to damage and wear under ordinary working conditions. Based on a model of an excavator under typical working conditions, the dynamic load-bearing situation of the three main joint friction subsets of the [...] Read more.
The working device of an excavator in construction machinery is prone to damage and wear under ordinary working conditions. Based on a model of an excavator under typical working conditions, the dynamic load-bearing situation of the three main joint friction subsets of the working device is simulated by using the virtual prototype technology; the location of the functional device with high stress is identified based on finite element analysis, and the correctness of the simulation results is verified by designing strain gauges. Based on this, the dynamic contact stress variation law of the contact surface of the end-face friction subsets was explored, and the end-face wear depth was calculated by combining Archard wear theory and finite element wear simulation technology; the specimens were worn on the end-face wear tester, and the surface wear was observed under the scanning electron microscope to summarize the wear mechanism and analyze the element content changes of the worn surface. The results show that the three main joints of the working device produce large dynamic fluctuations and are prone to wear, and the destructive degree is more prominent; the wear process is accompanied by higher temperatures, fatigue wear, and abrasive wear on the wear surface, and the wear depth value of the right end face is significantly larger than that of the left end face. This method has a significant reference value for reliability analysis and optimization improvement when using construction machinery’s main joint friction pairs. Full article
Show Figures

Figure 1

18 pages, 6157 KB  
Article
Investigation on Tooth Surface Wear of Cycloid Drives Considering Tooth Profile Modifications
by Xuan Li, Haidong Yang, Weilong Niu, Ran Guo and Lining Sun
Lubricants 2023, 11(8), 323; https://doi.org/10.3390/lubricants11080323 - 30 Jul 2023
Cited by 9 | Viewed by 2248
Abstract
Cycloid drives are widely used in various mechanical systems due to their high reduction ratio, compact size, and high efficiency. Tooth surface wear is a major problem that affects the reliability and durability of cycloid drives. However, compared to the research on the [...] Read more.
Cycloid drives are widely used in various mechanical systems due to their high reduction ratio, compact size, and high efficiency. Tooth surface wear is a major problem that affects the reliability and durability of cycloid drives. However, compared to the research on the wear of involute gears, the prediction of tooth surface wear in cycloid drives is relatively limited and less extensive. To fill this gap, the theoretical wear model of the tooth surface of cycloid-pin gear pairs is proposed based on the Hertz contact theory and Archard’s formula, with consideration of tooth profile modifications. Firstly, the loaded tooth contact analysis model is established to determine the relative sliding velocity and tooth contact stress. Secondly, the calculation steps of single tooth surface wear are presented within one gear mesh cycle. With this, the effects of the tooth profile modifications, the operating conditions such as output torque, input speed, and the assembly eccentricity on the wear depth within one gear mesh cycle are investigated. This study gives a deeper understanding of the tooth surface wear mechanisms of cycloid drives and could be employed to assist gear design and to improve the wear resistance. Full article
(This article belongs to the Special Issue Advances in Gear Tribology)
Show Figures

Figure 1

Back to TopTop