Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,740)

Search Parameters:
Keywords = Al4C3 phases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4859 KB  
Article
Tailoring a Heterogeneous Bimodal Structure for Superior Strength–Ductility Synergy in Dilute Mg-0.4Al-0.3Ca-0.2Mn-xSn Alloy: The Critical Role of Trace Sn Microalloying
by Guo Li, Jiahao Zhang, Li Sun, Xinyang Ge, Bin Li and Guobing Wei
Materials 2026, 19(3), 507; https://doi.org/10.3390/ma19030507 - 27 Jan 2026
Abstract
To achieve an optimal balance of mechanical properties in low-cost alloy systems, this study tailored a heterogeneous bimodal structure in dilute Mg-0.4Al-0.3Ca-0.2Mn-xSn alloys (x = 0, 0.1 wt.%) and systematically investigated the critical role of trace Sn microalloying during hot extrusion. Mg-0.4Al-0.3Ca-0.2Mn-xSn alloys [...] Read more.
To achieve an optimal balance of mechanical properties in low-cost alloy systems, this study tailored a heterogeneous bimodal structure in dilute Mg-0.4Al-0.3Ca-0.2Mn-xSn alloys (x = 0, 0.1 wt.%) and systematically investigated the critical role of trace Sn microalloying during hot extrusion. Mg-0.4Al-0.3Ca-0.2Mn-xSn alloys were fabricated via melting, homogenization, and subsequent hot extrusion at 320 °C. Trace Sn addition induced the formation of uniformly distributed CaMgSn phases within the homogenized matrix, facilitating a synergistic enhancement of strength and ductility. Specifically, the extruded alloys exhibited a characteristic bimodal grain structure consisting of coarse un-dynamic recrystallized (unDRXed) grains and fine dynamic recrystallized (DRXed) grains. Sn microalloying effectively refined the DRXed grains from 2.66 μm to 2.11 μm and significantly boosted the elongation (EL) from 12.9% to 26.3% while maintaining an Ultimate Tensile Strength (UTS) of 274 MPa. The Sn-containing secondary phases served as potent sites for particle-stimulated nucleation (PSN), thereby promoting the DRX process and reducing the texture intensity from 20.89 to 9.99. Overall, the superior strength-ductility synergy is primarily governed by the formation of the heterogeneous bimodal structure, where trace Sn facilitates grain refinement and texture weakening through PSN mechanisms, providing a robust strategy for the design of high-performance dilute magnesium alloys. Full article
28 pages, 3392 KB  
Article
Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption
by Diana Guaya, María José Jara and José Luis Cortina
Molecules 2026, 31(3), 437; https://doi.org/10.3390/molecules31030437 - 27 Jan 2026
Abstract
This study presents a sustainable valorization strategy for wastewater treatment plant (WWTP) residual sands through their hydrothermal conversion into a dual-phase FAU/LTA zeolite and evaluates its adsorption performance toward methylene blue (MB) as a model cationic contaminant. The synthesized material (ZEO-RS) exhibited a [...] Read more.
This study presents a sustainable valorization strategy for wastewater treatment plant (WWTP) residual sands through their hydrothermal conversion into a dual-phase FAU/LTA zeolite and evaluates its adsorption performance toward methylene blue (MB) as a model cationic contaminant. The synthesized material (ZEO-RS) exhibited a low Si/Al ratio (~1.7), well-developed FAU supercages with minor LTA domains, and high structural integrity, as confirmed by XRD, FTIR, XRF, SEM and PZC analyses. ZEO-RS demonstrated rapid adsorption kinetics, reaching approximately 92% of equilibrium uptake within 30 min and following a pseudo-second-order kinetic model (k2= 2.73 g·mg−1·h−1). Equilibrium data were best described by the Langmuir isotherm, yielding a maximum adsorption capacity of 34.2 mg·g−1 at 20 °C, with favorable separation factors (0 < rL < 1), while Freundlich fitting indicated moderate surface heterogeneity. Thermodynamic analysis revealed that MB adsorption is spontaneous (ΔG° = −11.98 to −12.56 kJ·mol−1), mildly endothermic (ΔH° = +5.26 kJ·mol−1), and entropy-driven (ΔS° = +0.059 kJ·mol−1·K−1). FTIR evidence, combined with pH-dependent behavior, indicates that adsorption proceeds via synergistic electrostatic attraction, pore confinement within FAU domains, and partial ion-exchange interactions. Desorption efficiencies conducted under mild acidic, neutral, and alkaline conditions resulted in low MB release (1–8%), indicating strong dye retention and high framework stability. Overall, the results demonstrate that WWTP residual sands are an effective and scalable low-cost precursor for producing zeolitic adsorbents, supporting their potential application in sustainable water purification and circular-economy-based wastewater treatment strategies. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Figure 1

17 pages, 5227 KB  
Article
Synergistic Regulation of Microstructure and Mechanical Property in TiAl Alloys via Rolling and Cyclic Heat Treatment
by Shiwei Tian, Zhiqian Liao, Dejun Song, Chong Li, Kuishan Sun, Lin Yuan and Haitao Jiang
Metals 2026, 16(1), 126; https://doi.org/10.3390/met16010126 - 22 Jan 2026
Viewed by 38
Abstract
The presence of the brittle β/B2 phase in TiAl alloys often deteriorates their mechanical properties, posing a significant challenge for manufacturing large-sized, high-performance sheets. To address this issue, this study systematically investigates the synergistic effect of pack rolling and subsequent heat treatment on [...] Read more.
The presence of the brittle β/B2 phase in TiAl alloys often deteriorates their mechanical properties, posing a significant challenge for manufacturing large-sized, high-performance sheets. To address this issue, this study systematically investigates the synergistic effect of pack rolling and subsequent heat treatment on the microstructure evolution and mechanical properties of a Ti-44Al-4Nb-1.5Mo-0.1B-0.1Y alloy. Sheets with two different deformation levels (R7: 69.8% and R11: 83.0% reduction) were prepared via pack rolling. This was followed by a series of heat treatments at different temperatures (1150–1350 °C) and cyclic heat treatments at 1250 °C (3, 6, and 9 cycles). The results demonstrate that the higher deformation level (R11) promoted extensive dynamic recrystallization, resulting in a uniform microstructure of equiaxed γ, α2, and β phases, while the lower deformation (R7) retained a significant fraction of deformed γ/α2 lamellae. Heat treatment at 1250 °C was identified as optimal for transforming the microstructure into fine lamellar colonies while effectively reducing the β/B2 phase. Cyclic heat treatment at this temperature further decreased the β-phase content to 4.1% after 9 cycles. The elimination mechanism was determined to follow the β→ α → γ + α2 phase transformation sequence, driven by the combined effect of rolling-induced defects and cyclic thermal stress. Cyclic heat treatment at this temperature was particularly effective in generating a high density of nucleation sites within the lamellar colonies, leading to significant refinement of the lamellar structure. Consequently, the R11 sheet subjected to 9 cycles of heat treatment exhibited a 15.5% increase in tensile strength and an 8.3% improvement in elongation compared to the hot-isostatically pressed state. This enhancement is primarily attributed to the significant refinement of lamellar colonies and the reduction in interlamellar spacing. This work presents an effective integrated processing strategy for fabricating high-performance TiAl alloy sheets with superior strength and toughness. Full article
(This article belongs to the Special Issue Microstructure and Deformation Mechanisms of Alloys)
Show Figures

Figure 1

18 pages, 4345 KB  
Article
The Influence of Different Zirconium Oxide Processing Variants on Selected Parameters of Roughness, Surface Wettability, and Phase Transformations
by Beata Śmielak, Leszek Klimek, Marco Ferrari and Kamil Krześniak
Ceramics 2026, 9(1), 10; https://doi.org/10.3390/ceramics9010010 - 21 Jan 2026
Viewed by 60
Abstract
How does zirconia processing affect the degree of tetragonal to monoclinic phase transformation (t ⟶ m) and the development and wettability of the surface? One hundred and twenty-four samples made of sintered zirconium were divided into four groups based on the following treatments: [...] Read more.
How does zirconia processing affect the degree of tetragonal to monoclinic phase transformation (t ⟶ m) and the development and wettability of the surface? One hundred and twenty-four samples made of sintered zirconium were divided into four groups based on the following treatments: grinding, polishing, sandblasting with Al2O3, or sandblasting with SiC. After surface treatment, the samples were subjected to the following tests: X-ray diffraction, microscopic examination, surface roughness measurements, and surface wettability. The highest values are achieved after the grinding process (Ra = 0.63; Rz = 9.29; Rq = 1.28), and the lowest values are found after polishing (Ra = 0.11; Rz = 0.71; Rq = 0.36). All samples, apart from those sandblasted with Al2O3 (Θ = 121.59°), showed wettability with the polar liquid. The best wettability was noted for sandblasted SiC samples (Θ = 41.22°) and the lowest was noted for polished samples (Θ = 80.61°). All samples showed wettability with an apolar liquid (Θ < 90°). A significant transformation (t ⟶ m) was noted in all tested samples: about 14% for ground, 17% for polished, 13.8% for Al2O3 sandblasting, and 13.1% for SiC sandblasting samples. The type of processing method has a significant impact on the selected parameters of roughness, surface wettability, and phase transformations. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

17 pages, 2190 KB  
Article
New Strategy Based on Click Reaction for Preparation of 3-Acyl-4-hydroxycoumarin-Modified Silica as a Perspective Material for the Separation of Rare Earth Elements
by Dzhamilya N. Konshina, Ekaterina S. Spesivaya, Ida A. Lupanova, Anton S. Mazur and Valery V. Konshin
Molecules 2026, 31(2), 369; https://doi.org/10.3390/molecules31020369 - 20 Jan 2026
Viewed by 130
Abstract
The separation of rare earth elements (REEs) with similar chemical properties remains a relevant challenge today, most often addressed using liquid–liquid and solid-phase extraction with various chelating agents. Excellent complexing agents for REEs are 1,3-diketones and their analogs. We have for the first [...] Read more.
The separation of rare earth elements (REEs) with similar chemical properties remains a relevant challenge today, most often addressed using liquid–liquid and solid-phase extraction with various chelating agents. Excellent complexing agents for REEs are 1,3-diketones and their analogs. We have for the first time proposed a method for preparing a material consisting of a covalently immobilized 3-acyl-4-hydroxycoumarin ligand on silica. For its synthesis, we employed a strategy based on the “click” reaction of 3-azidopropyl silica with a propargyl-containing coumarin–chalcone conjugate—this approach is the most tolerant and does not affect the coordinationally active fragment of the ligand. The material was characterized by thermal analysis, IR spectroscopy, and 13C NMR. The potential of the synthesized material for REE preconcentration was demonstrated at pH 5–5.5: high extraction efficiency for Gd(III), Dy(III), Er(III), Eu(III), Sm(III), and Yb(III) was observed, with fast adsorption kinetics (30 min) and extraction degrees of ~98%. Under unified conditions of static and dynamic extraction for Gd(III), Dy(III), Er(III), Eu(III), Sm(III), and Yb(III), affinity series toward the surface were obtained as a function of the distribution coefficient. It was shown that 10-fold molar excesses of Fe(III), Al(III), Cu(II), Ni(II), and Co(II) allow retention of more than 95% extraction for Dy(III) and Er(III). After adsorption of Dy(III) and Er(III), shifts in the carbonyl group absorption bands are visible in the IR spectra of the material, indicating a chelating mechanism of sorption. Additional studies are required for implementation in analytical and preparative REE separation schemes; however, preliminary data show that the material is a highly active adsorbent. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 8446 KB  
Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
by Trung Van Trinh, Trang Huyen Dang, Anh Hoang Pham, Gia Khanh Pham and Ulrich E. Klotz
Metals 2026, 16(1), 121; https://doi.org/10.3390/met16010121 - 20 Jan 2026
Viewed by 105
Abstract
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by [...] Read more.
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components. Full article
Show Figures

Graphical abstract

24 pages, 15635 KB  
Article
Effect of Post-Printing Methods on the Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy Samples Fabricated Using Laser Powder Bed Fusion
by Krzysztof Żaba, Stanislav Rusz, Alicja Haslik-Sopata, Łukasz Kuczek, Ilona Różycka, Maciej Balcerzak and Tomasz Trzepieciński
Materials 2026, 19(2), 401; https://doi.org/10.3390/ma19020401 - 19 Jan 2026
Viewed by 198
Abstract
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods [...] Read more.
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods are crucial, as they reduce porosity, reduce residual stresses, and stabilize the microstructure. The aim of this paper was to determine the effect of post-printing methods on the microhardness and microstructure of Ti6Al4V titanium alloy samples fabricated using the LPBF process in different orientations. Hot isostatic pressing (HIP) at various temperatures (910 °C, 1150 °C, 1250 °C), annealing at 1020 °C, and twist channel angular pressing using a 90° channel ending with a helical exit were considered postprocessing methods for LPBF-produced samples. Printing orientation significantly determined the effectiveness of HIP and the heat treatment processes. Higher microhardness was observed on the cross-section oriented perpendicular to the 3D printing direction. Annealing under appropriately selected conditions favors the precipitation of fine particles of the α phase in the β phase, leading to a strengthening effect by precipitation. Based on the microhardness measurements, clear differences were observed in the mean values, statistical ranges, and result distributions depending on the printing plane, HIP process parameters, and the use of an additional heat treatment. The HIP process leads to a more pronounced homogenization of microstructure and defect reduction, with the morphology of the microstructure and microhardness distribution dependent on the HIP process temperature. Full article
Show Figures

Graphical abstract

16 pages, 5511 KB  
Article
Enhancing Lithium Extraction: Effect of Mechanical Activation on the Sulfuric Acid Leaching Behavior of Lepidolite
by Yuik Eom, Laurence Dyer, Aleksandar N. Nikoloski and Richard Diaz Alorro
Minerals 2026, 16(1), 87; https://doi.org/10.3390/min16010087 - 16 Jan 2026
Viewed by 209
Abstract
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 [...] Read more.
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 RPM with a 20:1 ball-to-feed weight ratio (BFR, g:g) and the samples activated for different durations were characterized for amorphous phase content, particle size, and morphology using various solid analyses. X-ray diffraction (XRD) revealed the progressive amorphization of lepidolite, with the amorphous fraction increased from 34.1% (unactivated) to 81.4% after 60 min of mechanical activation. Scanning electron microscopy (SEM) showed that mechanically activated particles became fluffy and rounded, whereas unactivated particles retained lamellar and angular shapes. The reactivity of minerals after mechanical activation was evaluated through a 2 M H2SO4 leaching test at different leaching temperatures (25–80 °C) and time periods (30–180 min). Although the leaching efficiencies of Li and Al slightly improved at higher leaching temperatures and longer leaching times, the leaching of these metals was primarily governed by the mechanical activation time. The highest Li and Al leaching efficiencies—87.0% for Li and 79.4% for Al—were obtained from lepidolite that was mechanically activated for 60 min under leaching conditions of 80 °C and a 10% (w/v) solid/liquid (S/L) ratio for 30 min. The elemental mapping images of leaching feed and residue produced via energy dispersive spectroscopy (EDS) indicated that unactivated particles in the leaching residue had much higher metal content than mechanically activated particles. Kinetic analysis further suggested that leaching predominantly occurs at mechanically activated sites and the apparent activation energies calculated in this study (<3.1 kJ·mol−1) indicate diffusion-controlled behavior with weak temperature dependence. This result confirmed that mechanical activation significantly improves reactivity and that the residual unleached fraction can be attributed to unactivated particles. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

16 pages, 6793 KB  
Article
Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel
by Yufei Sun, Qiuwan Shen, Shian Li and He Miao
J. Mar. Sci. Eng. 2026, 14(2), 188; https://doi.org/10.3390/jmse14020188 - 16 Jan 2026
Viewed by 200
Abstract
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, [...] Read more.
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, reducing costs and increasing efficiency while helping achieve zero carbon throughout the entire lifecycle, which has important practical significance. The key technology for MSR technology is the performance of the catalyst. A series of Cu1−xMnxAl2O4 catalysts were successfully synthesized and applied for hydrogen production in this study. The catalyst structure was characterized using physicochemical techniques including XRD, SEM, and EDS. Hydrogen production performance was evaluated in a fixed-bed reactor under the following conditions: a liquid hourly space velocity (LHSV) of 20 h−1, a water-to-methanol molar ratio of 3:1, and a reaction temperature range of 275 °C–350 °C. The results demonstrate that A-site Mn substitution significantly enhanced the catalytic performance. In addition, XRD analysis revealed that Mn incorporation effectively suppressed the formation of segregated CuO phases. However, excessive substitution (x is 0.9) led to the generation of an MnAl2O4 impurity phase. Finally, the Cu0.7Mn0.3Al2O4 catalyst achieved a methanol conversion of 68.336% at 325 °C, with a hydrogen production rate of 5.611 mmol/min/gcat, and maintained CO selectivity below 1%. The results demonstrate that the hydrogen production catalyst developed in this study is a promising material for meeting the requirements of online hydrogen sources for ships. Full article
(This article belongs to the Special Issue Alternative Fuels and Emission Control in Maritime Applications)
Show Figures

Figure 1

25 pages, 23886 KB  
Article
Co-Disposal of Coal Gangue and Aluminum Dross for Fiber-Reinforced Cemented Foamed Backfill
by Chong Liu, Shouxin Wu, Shaoqi Kong, Shiyu Zhang, Guoan Ren and Ruixue Feng
Minerals 2026, 16(1), 81; https://doi.org/10.3390/min16010081 - 15 Jan 2026
Viewed by 154
Abstract
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, [...] Read more.
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, and deformation characteristics, the research identifies critical mechanisms for optimizing backfill performance. Calcination of MCG at 700 °C enhances gelling activity via amorphous phase formation, while modified aluminum dross (MAD) treated at 950 °C develops dense α-Al2O3 and spinel phases, significantly improving chemical stability. In acidic environments, the suppression of calcium silicate hydrate (C-S-H) is offset by the development of Al3+-driven C-A-S-H gels. These gels adopt a tobermorite-like structure, substantially increasing acid resistance. Mechanical testing reveals that while 1% fiber reinforcement promotes nucleation and densification, a 2% concentration hinders hydration. Compressive strength at 28 days shows constrained growth due to pore inhibition, and failure modes transition from multi-crack parallel failure (3-day) to single-crack tensile-shear failure. Under acidic conditions, strain concentration in the upper sample highlights a competitive mechanism between Al3+ migration and fiber anchorage. Ultimately, the coordinated regulation of MCG/MAD and fiber content provides a robust solution for roof support in challenging thermo-chemical mining environments. Full article
Show Figures

Figure 1

18 pages, 4040 KB  
Article
Non-Uniform Microstructural Evolution Rules and Mechanisms of Ti2AlNb-Based Alloy Stiffened Panels Subjected to Electrically Assisted Press Bending
by Xiao-Li Zhang, Si-Liang Yan, Zi-Long Liu, Yu-Hong Gong and Miao Meng
Metals 2026, 16(1), 97; https://doi.org/10.3390/met16010097 - 15 Jan 2026
Viewed by 199
Abstract
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors [...] Read more.
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors and microstructure evolution of Ti2AlNb-based alloy stiffened panels in different characteristic deformation regions during electrically assisted press bending (EAPB). The quantitative relationships between electro-thermal–mechanical routes, microstructural features, and mechanical properties of EAPBed stiffened panels were initially established, and the underlying mechanisms of electrically induced phase transformation and morphological transformation were unveiled. Results show that the temperature of the panel first increases then deceases with forming time in most regions, but it increases monotonically and reaches its peak value of 720.1 °C in the web region close to the central transverse rib. The higher accumulated strain and precipitation of the acicular O phase at mild temperature leads to strengthening of the longitudinal ribs at near blank holder regions, resulting in an ideal microstructure of 3~4% blocky α2 phase + a dual-scale O structure in a B2 matrix with a maximal hardness of 389.4 ± 7.2 HV0.3. While the dissolution of the α2 phase and the spheroidization and coarsening of the O phase bring about softening (up to 9.29%) of the lateral ribs and web near the center region, the differentiated evolution of microstructure and the mechanical property in EAPB results in better deformation coordination and resistance to wrinkling and thickness variation in the rib–web structure. The present work will provide valuable references for achieving shape-performance coordinated manufacturing of Ti2AlNb-based stiffened panels. Full article
(This article belongs to the Special Issue Thermomechanical Performance of Metallic Alloys)
Show Figures

Figure 1

28 pages, 8828 KB  
Article
Oil-Water Biphasic Metal-Organic Supramolecular Gel for Lost Circulation Control: Formulation Optimization, Gelation Mechanism, and Plugging Performance
by Qingwang Li, Songlei Li, Ye Zhang, Chaogang Chen, Xiaochuan Wu, Menglai Li, Shubiao Pan and Junfei Peng
Gels 2026, 12(1), 74; https://doi.org/10.3390/gels12010074 - 15 Jan 2026
Viewed by 161
Abstract
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid [...] Read more.
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid in situ sealing in OBDF loss zones. The optimized formulation uses an oil-phase to aqueous gelling-solution volume ratio of 10:3, with 2.0 wt% Span 85, 12.5 wt% TXP-4, and 5.0 wt% NaAlO2. Apparent-viscosity measurements and ATR–FTIR analysis were used to evaluate the effects of temperature, time, pH, and shear on MOSG gelation. Furthermore, the structural characteristics and performances of MOSGs were systematically investigated by combining microstructural characterization, thermogravimetric analysis, rheological tests, simulated fracture-plugging experiments, and anti-shear evaluations. The results indicate that elevated temperatures (30–70 °C) and mildly alkaline conditions in the aqueous gelling solution (pH ≈ 8.10–8.30) promote P–O–Al coordination and strengthen hydrogen bonding, thereby facilitating the formation of a three-dimensional network. In contrast, strong shear disrupts the nascent network and delays gelation. The optimized MOSGs rapidly exhibit pronounced viscoelasticity and thermal resistance (~193 °C); under high shear (380 rpm), the viscosity retention exceeds 60% and the viscosity recovery exceeds 70%. In plugging tests, MOSG forms a dense sealing layer, achieving a pressure-bearing gradient of 2.27 MPa/m in simulated permeable formations and markedly improving the fracture pressure-bearing capacity in simulated fractured formations. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

17 pages, 6454 KB  
Article
High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy
by Jing Qu, Faqin Xie, Xiangqing Wu, Guangrui Gao and Dong Han
Coatings 2026, 16(1), 116; https://doi.org/10.3390/coatings16010116 - 15 Jan 2026
Viewed by 314
Abstract
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and [...] Read more.
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and oxidation time were obtained for the uncoated and the coated samples at 850 °C with rate exponents of 2.38 and 2.14, respectively. After oxidation at 850 °C for 200 h, a continuous and dense oxide layer primarily composed of α-Al2O3 with a low oxidation reaction rate was formed, and the mass gain of the coated sample was 1/9 times that of the uncoated sample. Additionally, the addition of Cr and Nb in the TiAlCrSiNbY coating can increase the activity of Al and promoted the formation of stable and dense Al2O3 oxide films, the presence of a strong high-temperature stability Ti5Si3 phase inhibited the affinity of Ti and O, which maintained structural integrity and enhanced high-temperature oxidation resistance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 3839 KB  
Article
Characteristics of Steel Slag and Properties of High-Temperature Reconstructed Steel Slag
by Zhiqiang Xu and Xiaojun Hu
Metals 2026, 16(1), 85; https://doi.org/10.3390/met16010085 - 13 Jan 2026
Viewed by 138
Abstract
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden [...] Read more.
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden calculation, the chemical composition ratio of this reconstructed steel slag approximated the silicate phase region. The high-temperature reconstruction process outside the furnace was simulated through reheating. The composition, structure, and cementitious characteristics of the reconstructed steel slag were investigated through X-ray diffraction (XRD), FactSage software (FactSage version 7.0 (GTT-Technologies, Aachen, Germany, 2015))analysis, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis, setting time determination, compressive strength measurement, and thermodynamic computation. The findings indicated that the primary mineral compositions of the reconstructed steel slag were predominantly silicates, such as Ca3Al2O6, Ca2SiO4, Ca2MgSi2O7, Ca2Al(AlSiO7), Ca2(SiO4), and FeAlMgO4. In comparison with the original steel slag, these compositions underwent substantial alterations. The α′-C2S phase appears at 1100 K and gradually transforms into α-C2S at 1650 K. The liquid phase begins to precipitate at approximately 1550 K. Spinel exists in the temperature range from 1300 to 1700 K, and Ca3MgSi2O8 melts into the liquid phase at 1400 K. As the temperature increases to 1600 K, the minerals C2AF, Ca2Fe2O5, and Ca2Al2O5 gradually melt into the liquid phase. Melilite melts into the liquid phase at 1700 K. It was observed that the initial and final setting times of the reconstructed steel slag exhibited reductions of 7 and 43 min, respectively, in comparison to those of the original steel slag. In comparison with steel slag, the compressive strength of the reconstructed steel slag exhibited an increase of 0.6 MPa at the 3-day strength stage, 1.6 MPa at the 7-day strength stage, and 3.4 MPa at the 28-day strength stage. The reduction in setting time and the enhancement in compressive strength verified the improved cementitious activity of the reconstructed steel slag. Thermodynamic calculations of the principal reactions of the reconstructed steel slag at elevated temperatures verified that the primary reaction at 1748 K is thermodynamically favorable. Full article
Show Figures

Graphical abstract

16 pages, 9602 KB  
Article
Effect of In Situ Synthesized Al2O3 and TiC on the Microstructure and Properties of 6061 Aluminum Matrix Composites
by Wei Long, Jiaxin Zhou, Xinbin Hu, Sheng Liu and Wenming Jiang
Materials 2026, 19(2), 308; https://doi.org/10.3390/ma19020308 - 12 Jan 2026
Viewed by 186
Abstract
Al2O3-TiC/6061Al composites were fabricated via in situ powder metallurgy using 6061 Al, TiO2, and graphite powders as starting materials. The effects of sintering temperature and ceramic particle content on the microstructure and mechanical properties of the composites [...] Read more.
Al2O3-TiC/6061Al composites were fabricated via in situ powder metallurgy using 6061 Al, TiO2, and graphite powders as starting materials. The effects of sintering temperature and ceramic particle content on the microstructure and mechanical properties of the composites were investigated. The wear performance of composites sintered at 1200 °C with varying ceramic particle content was also examined. The results indicate that the microstructure of the composite varied with the sintering temperature. At 1000 °C and 1100 °C, the microstructure primarily consisted of Al3Ti, Al2O3, and TiC phases. At 1200 °C and 1250 °C, the microstructure was predominantly composed of Al2O3 and TiC phases. The 6061 Al-12% (TiO2 + C) composite sintered at 1200 °C exhibited a tensile strength of 246 MPa, an elongation of 12.7%, and a microhardness of 104.2 HV0.1. Regarding wear performance, the wear behavior of the composites under different loads at 1200 °C was studied. Under a 30 N load, the 6061 Al-12% (TiO2 + C) composite demonstrated the lowest friction coefficient and wear rate, measured at 0.253 and 0.396 mm3·N−1·m−1, respectively. Analysis of the worn surface morphology under a 30 N load indicates that the dominant wear mechanism for the 6061 aluminum alloy is delamination wear, whereas for the 6061 Al-12% (TiO2 + C) composite, it is primarily abrasive wear. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop