Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = Al2O3/Ti system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 (registering DOI) - 1 Aug 2025
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 393
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 329
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

14 pages, 4112 KiB  
Article
Thermal–Alkaline Etching of SiC Nanoparticles for Colloidal Stabilization and Enhanced Wear Resistance in Electrodeposited Co/SiC Coatings
by Mengnan Wu, Qipeng Bao, Rui Qin and Zhongwei Zhan
Coatings 2025, 15(7), 770; https://doi.org/10.3390/coatings15070770 - 29 Jun 2025
Viewed by 426
Abstract
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often [...] Read more.
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often introducing residual stresses, organic impurities, or thermal damage to substrates. This study addresses these challenges through a novel thermal-assisted alkaline etching (TAE) protocol that synergistically removes surface oxides and enhances colloidal stability in β-SiC nanoparticles. By combining NaOH-based etching with low-temperature calcination (250 °C), the method achieves oxide-free SiC surfaces with elevated hydrophilicity and a ζ-potential of −25 mV, enabling submicron clustering (300 nm) without surfactants. Electrodeposited Co/SiC coatings incorporating TAE-SiC exhibited current-modulated reinforcement, achieving optimal SiC incorporation (5.9 at% Si) at 8 A/dm2 through electrophoretic–hydraulic synergy, along with uniform cross-sectional distribution validated by SEM. Tribological assessments revealed shorter wear tracks in TAE-SiC-enhanced coatings compared to their untreated counterparts, suggesting enhanced interfacial coherence despite a comparable mass loss. Demonstrating scalability through cost-effective aqueous-phase chemistry, this methodology provides a generalized framework applicable to other ceramic-reinforced systems (e.g., Al2O3 and TiC), offering transformative potential for next-generation protective coatings in harsh operational environments. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

25 pages, 3819 KiB  
Article
Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System
by Tanya Furman, Denali Kincaid and Collin Oborn Brady
Minerals 2025, 15(7), 687; https://doi.org/10.3390/min15070687 - 27 Jun 2025
Viewed by 443
Abstract
The Tungnárhraun basalts in southern Iceland record a transcrustal magma system formed during Holocene deglaciation. These large-volume (>1 km3) Early through Mid-Holocene lavas contain ubiquitous plagioclase feldspar macrocrysts that are too primitive to have grown from the host lavas. Thermobarometry based [...] Read more.
The Tungnárhraun basalts in southern Iceland record a transcrustal magma system formed during Holocene deglaciation. These large-volume (>1 km3) Early through Mid-Holocene lavas contain ubiquitous plagioclase feldspar macrocrysts that are too primitive to have grown from the host lavas. Thermobarometry based on plagioclase melt and clinopyroxene melt equilibrium reveals a transcrustal structure with at least three distinct storage regions. A lower-crustal mush zone at ~14–30 km is fed by primitive, low 87Sr/86Sr magmas with diverse Ti/K and Al/Ti signatures. Plagioclase feldspar growth is controlled by an experimentally determined pseudoazeotrope where crystals develop inversely correlated An and Mg contents. The rapid ascent of magmas to mid-crustal levels (~8–9 km) allows the feldspar system to revert to conventional thermodynamic phase constraints. Continued plagioclase growth releases heat, causing olivine and pyroxene to be resorbed and giving the magmas their characteristic high CaO/Al2O3 values (~0.8–1.0) and Sc contents (~52 ppm in matrix material). Mid-Holocene MgO-rich lavas with abundant plagioclase feldspar macrocrysts erupted directly from this depth, but both older and younger magmas ascended to a shallow-crustal storage chamber (~5 km) where they crystallized olivine, clinopyroxene, and plagioclase feldspar and evolved to lower MgO contents. The Sr isotope differences between the plagioclase macrocrysts and their carrier melts suggest that the fractionation involves the minor assimilation of country rock. This model does not require the physical disruption of an established and long-lived gabbroic cumulate mush. The transcrustal structures documented here existed in south Iceland at least throughout the Holocene and likely influenced much of Icelandic magmatism. Full article
Show Figures

Figure 1

13 pages, 1429 KiB  
Article
Rheological Characterization and Shale Inhibition Potential of Single- and Dual-Nanomaterial-Based Drilling Fluids for High-Pressure High-Temperature Wells
by Muhammad Waqiuddin Bin Irfan and Bashir Busahmin
Processes 2025, 13(7), 1957; https://doi.org/10.3390/pr13071957 - 20 Jun 2025
Viewed by 391
Abstract
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance [...] Read more.
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance rheological behavior and shale inhibition potential. Using secondary experimental datasets and computational modeling, five nanomaterials—SiO2, Al2O3, TiO2, Fe2O3, and Fe3O4—were evaluated individually and in dual combinations with polymers. Key performance metrics, including plastic viscosity, fluid loss, and shale recovery, were analyzed and fitted to the Herschel–Bulkley rheological model. The results showed that single-nanomaterial systems modestly improved viscosity and fluid loss control, with SiO2 and Fe2O3 offering the best standalone performance. Dual systems—particularly SiO2–Al2O3 and Fe3O4–polymer combinations—demonstrated superior rheological performance with reduced viscosity (down to 19 cP), minimized fluid loss (<4 mL/30 min), and enhanced shale recovery (>90%). These improvements suggest synergistic effects between nanomaterials, supporting their use in designing advanced, thermally stable drilling fluids for extreme HPHT wells. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

20 pages, 14949 KiB  
Article
The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials
by Kaiwen Shi, Guanli Xu, Di Wu, Zhen Li, Hao Wang, Huaiming Liu, Jie Li and Jiangfan Liang
Minerals 2025, 15(6), 596; https://doi.org/10.3390/min15060596 - 2 Jun 2025
Viewed by 368
Abstract
This study systematically reveals the fundamental mechanisms controlling redox-induced phase transformations occurring in basalt melting processes via integrated high-temperature redox experiments combined with thermodynamic simulations. Our findings demonstrate that oxidizing conditions drive clinopyroxene dissolution and concurrent crystallization of refractory phases—hematite [(Fe,Ti,Al)2O [...] Read more.
This study systematically reveals the fundamental mechanisms controlling redox-induced phase transformations occurring in basalt melting processes via integrated high-temperature redox experiments combined with thermodynamic simulations. Our findings demonstrate that oxidizing conditions drive clinopyroxene dissolution and concurrent crystallization of refractory phases—hematite [(Fe,Ti,Al)2O3] and magnesioferrite [(Mg,Fe)(Fe,Al)2O4]—where distinct crystallization pathways govern magnesioferrite morphology evolution. Conversely, reducing environments suppress oxide mineral formation while promoting phase transformation from high-melting-point plagioclase to low-melting-point clinopyroxene solid solutions, thus lowering the system’s liquidus temperature to achieve full melting. This provides a theoretical basis for optimizing energy consumption in basalt fiber production and offers new insights into the effects of material melting temperature. Full article
Show Figures

Figure 1

17 pages, 3451 KiB  
Article
TPA and PET Photo-Degradation by Heterogeneous Catalysis Using a (Al2O3)0.75TiO2 Coating
by Mónica A. Camacho-González, Alberto Hernández-Reyes, Aristeo Garrido-Hernández, Octavio Olivares-Xometl, Natalya V. Likhanova and Irina V. Lijanova
Surfaces 2025, 8(2), 34; https://doi.org/10.3390/surfaces8020034 - 21 May 2025
Cited by 2 | Viewed by 1517
Abstract
The combination of the catalytic properties of Al2O3/TiO2 formed an efficient system to degrade the ubiquitous pollutants TPA and PET. The coating (Al2O3)0.75TiO2 was characterized by X-ray diffraction. Stainless steel disks [...] Read more.
The combination of the catalytic properties of Al2O3/TiO2 formed an efficient system to degrade the ubiquitous pollutants TPA and PET. The coating (Al2O3)0.75TiO2 was characterized by X-ray diffraction. Stainless steel disks with photo-catalyst coating were placed transversely in a 3.0 L vertical glass reactor with ascending airflow for supplying oxygen to the reaction medium and visible light lamps for photo-activation. The analysis of the coating homogeneity, morphology and particle size distribution of the TiO2 coatings and (Al2O3)0.75TiO2 system were confirmed by SEM. Optical properties and band-gap energy were calculated by using the Tauc equation. UV–Vis spectrophotometry (UV–Vis) and chemical oxygen demand (COD) were the quantitative techniques to measure the reduction in the initial TPA and PET concentrations. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

16 pages, 3812 KiB  
Article
Formation of Electrode Materials in the Process of Carbothermic Flux Smelting of Ilmenite Concentrate and Hydrothermal Refining of Titanium Slag
by Kuralai Akhmetova, Sergey Gladyshev, Nessipbay Tussupbayev, Bagdaulet Kenzhaliev and Leila Imangaliyeva
Processes 2025, 13(5), 1554; https://doi.org/10.3390/pr13051554 - 17 May 2025
Viewed by 461
Abstract
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of [...] Read more.
The present study demonstrates, for the first time, the fundamental possibility of producing electrode materials for sodium-ion batteries through low-temperature carbothermic smelting of ilmenite concentrate fluxed with calcined soda and diatomite, followed by aqueous refining of titanium slag. The primary phase composition of the slag includes Na2Ti3O7 (48.2%), Na0.23TiO2 (22.0%), Na2TiSiO5 (11%), and Na0.67Al0.1Mn0.9O2 (8.5%), which, upon hydrolysis, transform into a monophase titanium dioxide with intercalated sodium—Na0.23TiO2. Thermodynamic analysis of the heat effects of chemical reactions among raw materials and resulting products substantiates the role of silicon and sodium oxides, carbon, oxygen, and water in the formation of various electrode materials during carbothermic flux conversion and aqueous refining. Insights into the mechanisms of thermochemical formation and hydrothermal phase transformations offer a scientific basis for the development of intercalation systems from abundant and low-cost natural raw materials, bypassing the need for expensive precursor synthesis. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 2241 KiB  
Article
Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash
by Hwiho Hwang, Gyeonghae Kim, Dayeon Yu and Hyungjin Kim
Biomimetics 2025, 10(5), 318; https://doi.org/10.3390/biomimetics10050318 - 15 May 2025
Viewed by 648
Abstract
In this study, we propose a neuromorphic computing system based on a 3D-NAND flash architecture that utilizes analog input voltages applied through wordlines (WLs). The approach leverages the velocity saturation effect in short-channel MOSFETs, which enables a linear increase in drain current with [...] Read more.
In this study, we propose a neuromorphic computing system based on a 3D-NAND flash architecture that utilizes analog input voltages applied through wordlines (WLs). The approach leverages the velocity saturation effect in short-channel MOSFETs, which enables a linear increase in drain current with respect to gate voltage in the saturation region. A NAND flash array with a TANOS (TiN/Al2O3/Si3N4/SiO2/poly-Si) gate stack was fabricated, and its electrical and reliability characteristics were evaluated. Output characteristics of short-channel (L = 1 µm) and long-channel (L = 50 µm) devices were compared, confirming the linear behavior of short-channel devices due to velocity saturation. In the proposed system, analog WL voltages serve as inputs, and the summed bitline (BL) currents represent the outputs. Each synaptic weight is implemented using two paired devices, and each WL layer corresponds to a fully connected (FC) layer, enabling efficient vector-matrix multiplication (VMM). MNIST pattern recognition is conducted, demonstrated only a 0.32% accuracy drop for the short-channel device compared to the ideal linear case, and 0.95% degradation under 0.5 V threshold variation, while maintaining robustness. These results highlight the strong potential of 3D-NAND flash memory, which offers high integration density and technological maturity, for neuromorphic computing applications. Full article
(This article belongs to the Special Issue Advances in Brain–Computer Interfaces 2025)
Show Figures

Figure 1

19 pages, 5224 KiB  
Article
Effect of Metal Oxides on the Pyrolytic Behavior and Combustion Performance of 5-Aminotetrazole/Sodium Periodate Gas Generators in Atmospheric Environment
by Chengkuan Shi, Zefeng Guo, Bohuai Zhou, Yichao Liu, Jun Huang and Hua Guan
Materials 2025, 18(10), 2249; https://doi.org/10.3390/ma18102249 - 13 May 2025
Viewed by 371
Abstract
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2 [...] Read more.
5-aminotetrazole (5AT)-based gas generators, particularly the 5AT/NaIO4 system, have garnered interest for their high gas production and energy potential. This study investigates the impact of various metal oxides (MnO2, Al2O3, TiO2, CuO, Fe2O3, MgO, ZnO, and MoO3) on the thermal decomposition and combustion performance of 5AT/NaIO4. The REAL calculation program was used to infer reaction products, which indicated that the gas products are almost all harmless, with negligibly low percentages of NO and CO. Thermogravimetric analysis revealed that metal oxides, especially MoO3, significantly advance the decomposition process above 400 °C, reducing the activation energy by 130 kJ/mol and lowering critical ignition and thermal explosion temperatures. Combustion performance tests and closed bomb tests confirmed MoO3’s positive effect, accelerating reaction rates and enhancing decomposition efficiency. The system’s high Gibbs free energy indicates non-spontaneous reactions. These findings provide valuable insights for designing environmentally friendly gas generators, highlighting MoO3’s potential as an effective catalyst. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

18 pages, 4989 KiB  
Article
Effect of TiO2 Content on the Corrosion and Thermal Resistance of Plasma-Sprayed Al2O3-TiO2 Coatings
by Viktorija Grigaitienė, Liutauras Marcinauskas, Airingas Šuopys, Romualdas Kėželis and Egidijus Griškonis
Crystals 2025, 15(5), 439; https://doi.org/10.3390/cryst15050439 - 3 May 2025
Viewed by 750
Abstract
Modern industrial systems and biomass-fired furnaces require surface treatments that can withstand aggressive chemical, thermal, and corrosive environments. This study investigates the corrosion and thermal resistance of plasma-sprayed Al2O3-TiO2 coatings produced using a DC air–hydrogen plasma spray process. [...] Read more.
Modern industrial systems and biomass-fired furnaces require surface treatments that can withstand aggressive chemical, thermal, and corrosive environments. This study investigates the corrosion and thermal resistance of plasma-sprayed Al2O3-TiO2 coatings produced using a DC air–hydrogen plasma spray process. Coatings of compositions of Al2O3, Al2O3-3 wt.% TiO2, Al2O3-13 wt.% TiO2, and Al2O3-40 wt.% TiO2 were deposited on steel substrates with a Ni/Cr bond layer by plasma spraying. The coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) to evaluate their morphology, elemental composition, and crystalline phases. Electrochemical tests were performed in a naturally aerated 0.5 mol/L NaCl solution and cyclic thermal–chemical exposure tests (500 °C using 35% KCl) to assess their corrosion kinetics and thermal stability. The results indicate that pure Al2O3 and low TiO2 (3 wt.%) coatings exhibit fine barrier properties, while coatings with a higher TiO2 content develop additional phases (e.g., Ti3O5, Al2TiO5) that improve thermal resistance but reduce chemical durability. Full article
Show Figures

Figure 1

15 pages, 15656 KiB  
Article
Oxidation of the Alloy Based on the Intermetallic Phase FeAl in the Temperature Range of 700–1000 °C in Air and Possibilities of Practical Application
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor and Andrzej Swinarew
Materials 2025, 18(8), 1835; https://doi.org/10.3390/ma18081835 - 16 Apr 2025
Viewed by 451
Abstract
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology [...] Read more.
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology of the oxides formed were determined. In addition, the paper presents the possibility of applying the technology of surfacing Fe40Al5Cr0.2TiB alloy on the surface of steel grade S235JR as a protective coating that is resistant to high temperatures. The process was carried out using the TIG method by direct current (DC). After the surfacing, the structure of the surfacing weld made of the tested material on the base of structural steel grade S235JR was determined. It was found that a protective Al2O3 oxide layer is formed on the surface of the oxidized alloy based on the intermetallic phase from the FeAl system, and the oxidation kinetics have a parabolic course. Moreover, it was found that the morphology of the oxides formed on the surface varies depending on the oxidation temperature, which clearly indicates a different mechanism of oxide layer formation. The formation of a stable α-Al2O3 oxide variety on the surface of the Fe40Al5Cr0.2TiB alloy protects the material from further corrosion, which favors the application of this alloy on structures and fittings operating at elevated temperatures. The aim of the research was to use the Fe40Al5Cr0.2TiB alloy with very good oxidation resistance as a layer overlay on ordinary quality S235JR steel. In this way, conditions were created that fundamentally changed the surface condition (structure and physicochemical properties) of the system: steel as a substrate—intermetallic phase Fe40Al5Cr0.2TiB as a surfacing layer, in order to increase resistance to high-temperature corrosion and erosion (in the environment of gases and solid impurities in gases) often occurring in corrosive environments, especially in the power industry (boilers, pipes, installation elbows) and the chemical industry (fittings). At the same time, the surfacing method used is one of the cheapest methods of changing the surface properties of the material and regenerating or repairing the native material with a material with better properties, especially for applications in high-temperature corrosion conditions. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

38 pages, 10252 KiB  
Review
High Foot Traffic Power Harvesting Technologies and Challenges: A Review and Possible Sustainable Solutions for Al-Haram Mosque
by Fatimah Alotibi and Muhammad Khan
Appl. Sci. 2025, 15(8), 4247; https://doi.org/10.3390/app15084247 - 11 Apr 2025
Viewed by 1749
Abstract
The growing global demand for sustainable energy solutions has led to increased interest in kinetic energy harvesting as a viable alternative to traditional power sources. High-foot-traffic environments, such as public spaces and religious sites, generate significant mechanical energy that often remains untapped. This [...] Read more.
The growing global demand for sustainable energy solutions has led to increased interest in kinetic energy harvesting as a viable alternative to traditional power sources. High-foot-traffic environments, such as public spaces and religious sites, generate significant mechanical energy that often remains untapped. This study explores energy-harvesting technologies applicable to public areas with heavy foot traffic, focusing on Al-Haram Mosque in Saudi Arabia—one of the most densely populated religious sites in the world. The research investigates the potential of piezoelectric, triboelectric, and hybrid systems to convert pedestrian foot traffic into electrical energy, addressing challenges such as efficiency, durability, scalability, and integration with existing infrastructure. Piezoelectric materials, including PVDF and BaTiO3, effectively convert mechanical stress from footsteps into electricity, while triboelectric nanogenerators (TENGs) utilize contact electrification for lightweight, flexible energy capture. In addition, this study examines material innovations such as 3D-printed biomimetic structures, MXene-based composites (MXene is a two-dimensional material made from transition metal carbides, nitrides, and carbonitrides), and hybrid nanogenerators to improve the longevity and scalability of energy-harvesting systems in high-density footfall environments. Proposed applications for Al-Haram Mosque include energy-harvesting mats embedded with piezoelectric and triboelectric elements to power IoT devices, LED lighting, and environmental sensors. While challenges remain in material degradation, scalability, and cost, emerging hybrid systems and advanced composites present a promising pathway toward sustainable, self-powered infrastructure in large-scale, high-foot-traffic settings. These findings offer a transformative approach to energy sustainability, reducing reliance on traditional energy sources and contributing to Saudi Arabia’s Vision 2030 for renewable energy adoption. Full article
Show Figures

Figure 1

Back to TopTop