The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation Method of Melting Samples
2.3. Analytical Methods
2.3.1. ICP-OES Element Analysis
2.3.2. X-Ray Diffraction
2.3.3. Scanning Electron Microscopy
3. Results
3.1. Raw Material Analysis
3.2. Variation in Valence States of Iron
3.3. Melting Samples Analysis
4. Thermodynamic Calculation
5. Discussion
5.1. Influence of Atmosphere on Melting Temperature of Basalt
5.2. The Influence of Redox Atmosphere on the Crystallization Behavior of Basalt Materials During the Melting Process
5.2.1. Influence of the Oxidizing Atmosphere on Basalt Melting Process
5.2.2. Influence of the Reducing Atmosphere on Basalt Melting Process
3CaAl2SiO6·(Ca,Mg,Fe)Al2SiO6·Ca(Mg,Fe)Si2O6(s) + 4SiO2(l)
6. Conclusions
- In an oxidizing atmosphere, the melting process is hindered due to the crystallization of high-melting-point minerals such as hematite and magnesioferrite. Conversely, a reducing atmosphere can lower the melting temperature by approximately 50. This decrease in melting temperature is attributed to the suppression of high-melting-point minerals (hematite and magnesioferrite), as well as the transformation of plagioclase into lower-melting-point clinopyroxene;
- Atmospheric conditions influence the melting of major minerals. Clinopyroxene melts more readily under oxidizing conditions, whereas plagioclase melts more easily under reducing conditions;
- Sheet-shaped hematite can crystallize from the liquid phase as Fe2+ oxidizes to Fe3+ at the liquid’s surface. Magnesioferrite crystallization can occur through two mechanisms: one involves the oxidation of Fe2+ and its combination with Mg2+ to form octahedral granular magnesioferrite, while the other involves the counter-diffusion of Mg2+ through the lattice of pre-crystallized hematite. Under reducing conditions, plagioclase partially transforms into the solid solution of diopside-Ca-Tschermak.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, L.; Chu, F.; Tuo, W.; Zhao, X.; Wang, Y.; Zhang, P.; Gao, Y. Review of research on basalt fibers and basalt fiber-reinforced composites in China (I): Physicochemical and mechanical properties. Polym. Polym. Compos. 2021, 29, 1612–1624. [Google Scholar] [CrossRef]
- Jiang, T.; Cao, S.; Yilmaz, E. Exploring Pore Structure Features, Crack Propagation and Failure Behavior of Fiber Reinforced Foam Tail Fill by CT Imaging and 3D Reconstruction. Minerals 2025, 15, 354. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Bella, G.; Valenza, A. A review on basalt fiber and its composites. Compos. Part B 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhang, W. Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete. Minerals 2025, 15, 348. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B 2015, 73, 66–180. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Zhao, X.; Ouyang, J.; Yang, H.; Tan, Q. Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites. Minerals 2020, 10, 490. [Google Scholar] [CrossRef]
- Liu, J.; Ding, L.; Wang, Q.; Luo, L.; Wang, H. Recycling of arsenic residue to basalt fiber via vitrification. Ceram. Int. 2024, 50, 6622–36630. [Google Scholar] [CrossRef]
- Ivanitskii, S.G.; Gorbachev, G.F. Continuous basalt fibers: Production aspects and simulation of forming processes. I. State of the art in continuous basalt fiber technologies. Powder Metall. Met. Ceram. 2011, 50, 125. [Google Scholar] [CrossRef]
- Dou, H.; Wang, Y.; Bai, J.; Kong, L.; Bai, Z.; Li, H.; Guo, Z.; Li, W. Effect of melt homogenization on the structure and properties of zirconium-rich basalt fibers. Ceram. Int. 2024, 50, 16940–16949. [Google Scholar] [CrossRef]
- Novitskii, A.G. High-Temperature Heat-Insulating Materials Based on Fibers from Basalt-Type Rock Materials. Refract. Ind. Ceram. 2004, 45, 144–146. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Hui, D.; Chen, M.; Wu, Z. Study of melting properties of basalt based on their mineral components. Compos. Part B 2017, 16, 53–60. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Q.; Wang, Q.; Xiao, J.; Liu, J.; Ding, L.; Jiang, W. Effect of the Iron Reduction Index on the Mechanical and Chemical Properties of Continuous Basalt Fiber. Materials 2019, 12, 2472. [Google Scholar] [CrossRef]
- Gutnikov, S.I.; Manylov, M.S.; Lipatov, Y.V.; Lazoryak, B.I.; Pokholok, K.V. Effect of the reduction treatment on the basalt continuous fiber crystallization properties. J. Non-Cryst. Solids 2013, 368, 45–50. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Luo, L.; Yan, T.; Liu, J.; Ding, L.; Jiang, W. Effects of high-temperature treatment and iron reduction index on tensile strength of basalt continuous fiber. J. Non-Cryst. Solids 2021, 564, 120836. [Google Scholar] [CrossRef]
- Wang, S.; Kuang, F.; Yan, Q.; Ge, C.; Qi, L. Crystallization and infrared radiation properties of iron ion doped cordierite glass-ceramics. J. Alloys Compd. 2011, 509, 2819–2823. [Google Scholar] [CrossRef]
- Sharma, K.; Deo, M.N.; Kothiyal, G.P. Effect of iron oxide addition on structural properties of calcium silico phosphate glass/glass-ceramics. J. Non-Cryst. Solids 2012, 358, 1886–1891. [Google Scholar] [CrossRef]
- Sørensen, P.M.; Pind, M.; Yue, Y.Z.; Rawlings, R.D.; Boccaccini, A.R.; Nielsen, E.R. Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses. J. Non-Cryst. Solids 2005, 351, 1246–1253. [Google Scholar] [CrossRef]
- Du, Y.; Li, B.; Zhang, X.; Jia, X. Influence of Content and Valence of Iron on Crystallization Characteristics and Properties of Baiyunebo Tailing Glass-Ceramics. J. Synthetic Cryst. 2013, 42, 2170–2176. [Google Scholar] [CrossRef]
- Karamanov, A.; Pisciella, P.; Pelino, M. The crystallisation kinetics of iron rich glass in different atmospheres. J. Eur. Ceram. Soc. 2000, 20, 2233–2237. [Google Scholar] [CrossRef]
- Karamanov, A.; Pelino, M. Crystallization phenomena in iron-rich glasses. J. Non-Cryst. Solids 2001, 281, 139–151. [Google Scholar] [CrossRef]
- Manylov, M.S.; Gutnikov, S.I.; Lipatov, Y.V.; Malakho, A.P.; Lazoryak, B.I. Effect of deferrization on continuous basalt fiber properties. Mendeleev Commun. 2015, 25, 386–388. [Google Scholar] [CrossRef]
- El-Shennawi, A.W.A.; Morsi, M.M.; Abdel-Hameed, S.A.M. Effect of fluoride nucleating catalysts on crystallization of cordierite from modified basalt-based glasses. J. Eur. Ceram. Soc. 2007, 27, 1829–1835. [Google Scholar] [CrossRef]
- Liu, J.Q.; Ren, Z.Y.; Nichols, A.R.L.; Song, M.S.; Qian, S.P.; Zhang, Y.; Zhao, P.P. Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines. Geochim. Cosmochim. Acta 2015, 152, 89–121. [Google Scholar] [CrossRef]
- Guo, Y.F.; Guo, X.M. Formation of [Mg1-x, Fex]O•Fe2O3 in Solid-state Reactions between MgO and Fe2O3 in the Fe2O3-rich System. ISIJ Int. 2017, 57, 228–235. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Wei, F. Phase Transitions and Reaction Mechanism of Ilmenite Oxidation. Met. Mater. Trans. A 2010, 41, 1338–1348. [Google Scholar] [CrossRef]
- Chen, F.; Lv, W.; Zhou, G.; Liu, Z.; Chu, M.; Lv, X. Effects of pre-oxidation on the hydrogen-rich reduction of Panzhihua ilmenite concentrate powder: Reduction kinetics and mechanism. Int. J. Hydrogen Energy 2023, 48, 13415–13429. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contr. Contrib. Mineral. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Berman, R.G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrol. 1988, 29, 445–522. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: The system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J. Metamorph. Geol. 1990, 8, 89–124. [Google Scholar] [CrossRef]
- Johnson, L.A.; McCauley, R.A. The thermal behavior of albite as observed by DTA. Thermochim. Acta 2005, 437, 134–139. [Google Scholar] [CrossRef]
- Navrotsky, A.; Ziegler, D.; Oestrike, R.; Maniar, P. Calorimetry of silicate melts at 1773 K: Measurement of enthalpies of fusion and of mixing in the systems diopside-anorthite-albite and anorthite-forsterite. Contrib. Mineral. Petrol. 1989, 101, 122–130. [Google Scholar] [CrossRef]
- Guimarães, W.G.; de Lima, G.F.; Duarte, H.A. Exploring the effect of isomorphically Al-substituted on the thermodynamical and structural properties of hematite and goethite—A DFT investigation. Hydrometallurgy 2023, 221, 106125. [Google Scholar] [CrossRef]
- Ghiorso, M.S. Thermodynamic properties of hematite—ilmenite—geikielite solid solutions. Contr. Mineral. Petrol. 1990, 104, 645–667. [Google Scholar] [CrossRef]
- McKibbin, S.J.; O’Neill, H.S.C. Petrogenesis of D’Orbigny-like angrite meteorites and the role of spinel in the angrite source. Meteorit. Planet. Sci. 2018, 53, 306–325. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Navrotsky, A. Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Min. 1983, 68, 181–194. [Google Scholar]
- Marinoni, N.; Levy, D.; Dapiaggi, M.; Pavese, A.; Smith, R.I. In situ high-temperature X-ray and neutron powder diffraction study of cation partitioning in synthetic Mg(Fe0.5Al0.5)2O4 spinel. Phys. Chem. Miner. 2011, 38, 11–19. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 1973, 6, 1181–1203. [Google Scholar] [CrossRef]
- Zhang, Y. Diffusion in Minerals and Melts: Theoretical Background. Rev. Mineral. Geochem. 2010, 72, 5–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, B. Diffusive Mg isotope fractionation in silicate melts during mineral dissolution. Chem. Geol. 2025, 681, 122720. [Google Scholar] [CrossRef]
- Pertermann, M.; Hirschmann, M.M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 2003, 108, 2125. [Google Scholar] [CrossRef]
- Li, H.; Ma, R.; Liang, Y.; Chi, X.; Dong, C. Melting sequence and dynamics of the major minerals of gabbro in the process of dynamic melting. Acta Petrol. Sin. 2005, 21, 1749–1758. [Google Scholar]
- Burakovsky, L.; Preston, D.L. Analysis of dislocation mechanism for melting of elements. Solid State Commun. 2000, 115, 341–345. [Google Scholar] [CrossRef]
- Liu, K.; Chen, H. Statistical mechanics of melting mediated by two types of defects. Phys. Lett. A 2008, 372, 1109–1113. [Google Scholar] [CrossRef]
- Sun, X.; Wu, D.; Zou, L.; House, S.D.; Chen, X.; Li, M.; Zakharov, D.N.; Yang, J.C.; Zhou, G. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 2022, 607, 708–713. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Tong, X.; Guo, L.; Miao, S.; Jiang, L.; Li, Y.; Li, H.; Liu, C. Effects of raw material homogenization on the structure of basalt melt and performance of fibers. Ceram. Int. 2022, 48, 11998–12005. [Google Scholar] [CrossRef]
- Xing, D.; Chang, C.; Xi, X.-Y.; Hao, B.; Zheng, Q.; Gutnikov, S.I.; Lazoryak, B.I.; Ma, P.-C. Morphologies and mechanical properties of basalt fibre processed at elevated temperature. J. Non-Crystalline Solids 2022, 582, 121439. [Google Scholar] [CrossRef]
- Liu, H.-P.; Huang, X.-F.; Ma, L.-P.; Chen, D.-L.; Shang, Z.-B.; Jiang, M. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag. Int. J. Miner. Met. Mater. 2017, 24, 316–323. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Marcial, J.; McCloy, J. Crystallization of iron-containing sodium aluminosilicate glasses in the NaAlSiO4-NaFeSiO4 join. J. Geophys. Res. Solid Earth 2017, 122, 2504–2524. [Google Scholar] [CrossRef]
- Yue, Y.; Korsgaard, M.; Kirkegaard, L.F.; Heide, G. Formation of a Nanocrystalline Layer on the Surface of Stone Wool Fibers. J. Am. Ceram. Soc. 2009, 92, 62–67. [Google Scholar] [CrossRef]
- Deraz, N.M.; Alarifi, A. Novel preparation and properties of magnesioferrite nanoparticles. J. Anal. Appl. Pyrolysis 2012, 97, 55–61. [Google Scholar] [CrossRef]
- Pakhomova, A.; Simonova, D.; Koemets, I.; Koemets, E.; Aprilis, G.; Bykov, M.; Gorelova, L.; Fedotenko, T.; Prakapenka, V.; Dubrovinsky, L. Polymorphism of feldspars above 10 GPa. Nat. Commun. 2020, 11, 2721. [Google Scholar] [CrossRef]
- Mccarthy, T.C.; Patiño Douce, A.E. Empirical calibration of the silica–Ca-tschermak’s–anorthite (SCAn) geobarometer. J. Metamorph. Geol. 1998, 16, 675–686. [Google Scholar] [CrossRef]
- Ma, C.; Simon, S.B.; Rossman, G.R.; Grossman, L. Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterization. Am. Mineral. 2009, 94, 1483–1486. [Google Scholar] [CrossRef]
- Salama, S.N.; Darwish, H.; Abo-Mosallam, H.A. Crystallization and properties of glasses based on diopside–Ca-Tschermak’s–fluorapatite system. J. Eur. Ceram. Soc. 2005, 25, 1133–1142. [Google Scholar] [CrossRef]
- Zeng, R. Experimental Studies In Silicate Systems: I. The Undersaturated Part of the System NaAlSiO4-KAlSiO4-SiO2-H2O at PH2O = 5 kb. II. A Study of Diopside Solid Solution in the System CaMgSi2O6-CaAl2SiO6 at 1 Atmosphere. Ph.D. Thesis, The University of Manchester, Manchester, UK, 1983. ProQuest Dissertations & Theses. Available online: https://www.proquest.com/dissertations-theses/experimental-studies-silicate-systems-i/docview/2485526967/se-2 (accessed on 18 March 2025).
- Sánchez-Navas, A.; Melchor, S.; Ortega-Castro, J.; Vidal-Daza, I.; Castro, A. A case study of depolymerization in silicates: Melting of quartz and zircon crystallization at high pressure. Chem. Geol. 2024, 661, 122156. [Google Scholar] [CrossRef]
- Wood, B.J. Activity-composition relationships in Ca(Mg,Fe)Si2O6-CaAl2SiO6 clinopyroxene solid solutions. Am. J. Sci. 1979, 279, 854–875. [Google Scholar] [CrossRef]
- Benisek, A.; Etzel, K.; Cemič, L. Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: II. Heat of mixing and activity–composition relationships. Phys. Chem. Miner. 2007, 34, 747–755. [Google Scholar] [CrossRef]
- Jozwiak, W.K.; Kaczmarek, E.; Maniecki, T.P.; Ignaczak, W.; Maniukiewicz, W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A 2007, 326, 17–27. [Google Scholar] [CrossRef]
- Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A.E. Microwave-Specific Enhancement of the Carbon–Carbon Dioxide (Boudouard) Reaction. J. Phys. Chem. C 2013, 117, 26871–26880. [Google Scholar] [CrossRef]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar] [CrossRef]
- Haugen, N.E.L.; Loong, B.K.Y.; Mitchell, R.E. Numerical approaches for thermochemical conversion of char. Prog. Energy Combust. Sci. 2022, 91, 100993. [Google Scholar] [CrossRef]
- Tabereaux, A.T.; Peterson, R.D. Chapter 2.5—Aluminum Production. Treatise Process Metall. 2014, 3, 839–917. [Google Scholar] [CrossRef]
- Liu, J.; Chen, M.; Jian, Z.; Wu, Z.-S. W. Determination of Total Iron and Fe2+in Basalt. Spectrosc. Spectr. Anal. 2015, 35, 2312–2315. [Google Scholar]
Atmosphere | Sample | Melting Temperature | |||
---|---|---|---|---|---|
1100 °C | 1200 °C | 1250 °C | 1300 °C | ||
Oxidizing | B1 | B1-O-1100 | B1-O-1200 | B1-O-1250 | B1-O-1300 |
B2 | B2-O-1100 | B2-O-1200 | B2-O-1250 | B2-O-1300 | |
Reducing | B1 | B1-R-1100 | B1-R-1200 | B1-R-1250 | - |
B2 | B2-R-1100 | B2-R-1200 | B2-R-1250 | - |
Sample Number | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 53.12 | 1.91 | 13.74 | 5.78 | 4.85 | 0.14 | 5.64 | 8.46 | 3.32 | 1.02 | 0.33 | 1.65 | 99.96 |
B2 | 53.44 | 1.65 | 13.43 | 5.19 | 5.5 | 0.18 | 6.60 | 9.00 | 3.04 | 0.62 | 0.28 | 0.28 | 99.21 |
Sample Number | Plagioclase | Clinopyroxene | Ilmenite | Montmorillonite | Amorphous Phase | |
---|---|---|---|---|---|---|
Pigeonite | Diopside | |||||
B1 | 63.60 | 17.91 | 10.91 | 1.65 | 0.55 | 5.38 |
B2 | 55.64 | 21.19 | 12.04 | 2.46 | - | 8.68 |
Mineral | Formula | (kJ·mol−1) | (J·K−1·mol−1) | k0 | k1 × 10−2 | k2 × 10−5 | k3 × 10−7 |
---|---|---|---|---|---|---|---|
Albite | NaAlSi3O8 | −3921.618 | 224.412 | 393.64 | −24.155 | −78.928 | 107.064 |
Anorthite | CaAl2Si2O8 | −4213.249 | 207.223 | 439.37 | −37.341 | 0 | -31.702 |
Diopside | CaMgSi2O6 | −3200.583 | 142.5 | 305.41 | −16.049 | −71.66 | 92.184 |
Hedenbergite | CaFeSi2O6 | −2845.389 | 171.431 | 307.89 | −15.973 | −69.925 | 93.522 |
Hematite | Fe2O3 | −822 | 87.4 | 146.86 | 0 | −55.768 | 52.563 |
Ilmenite | FeTiO3 | −1231.947 | 108.628 | 150 | −4.416 | −33.237 | 34.815 |
Magnesioferrite | MgFe2O4 | −1406.465 | 122.765 | 196.66 | 0 | −74.922 | 81.007 |
Magnetite | FeFe2O4 | −1117.403 | 146.114 | 207.93 | 0 | −72.433 | 66.436 |
Hercynite | FeAl2O4 | −1947.681 | 115.362 | 235.19 | −14.37 | −46.913 | 64.564 |
Spinel | MgAl2O4 | −2300.313 | 84.535 | 235.9 | −17.666 | −17.104 | 4.062 |
Ca-Tschermak | CaAl2SiO6 | −3298.767 | 140.751 | 310.7 | −16.716 | −74.553 | 94.878 |
Melt | (K) | (J·K−1·mol−1) | (kJ·mol−1) | (J·K−1·mol−1) | k0 | k1 × 10−2 | k2 × 10−5 | k3 × 10−7 | |
---|---|---|---|---|---|---|---|---|---|
SiO2 | 1999 | 4.46 | 81.373 | −901.554 | 48.475 | 127.3 | −0.00010777 | 4.3127 | −0.00004638 |
TiO2 | 1870 | 35.824 | 109.2 | −944.75 | 50.46 | 77.84 | 0 | −33.678 | 40.294 |
Al2O3 | 2320 | 48.61 | 170.3 | −1675.7 | 50.82 | 155.02 | −8.284 | −38.614 | 40.908 |
Fe2SiO4 | 1490 | 59.9 | 240.2 | −1479.36 | 150.93 | 248.93 | −19.239 | 0 | −13.91 |
Mg2SiO4 | 2163 | 57.2 | 271 | −2174.42 | 94.01 | 238.64 | −20.013 | 0 | −11.624 |
CaSiO3 | 1817 | 31.5 | 172.4 | −1627.427 | 85.279 | 141.16 | −4.172 | −58.576 | 94.074 |
Na2SiO3 | 1361 | 38.34 | 180.2 | −1561.427 | 113.847 | 234.77 | −22.189 | 0 | 13.53 |
Formula | (kJ·mol−1) | (J·K−1·mol−1) | V | a | B × 10−2 | C × 10−5 | D × 10−7 | (K−1) | (kbar−1) |
---|---|---|---|---|---|---|---|---|---|
O2(g) | 0 | 205.2 | 0 | 48.3 | −0.00000691 | 4.992 | −0.00004207 | 0 | 0 |
CO(g) | −110.53 | 197.67 | 0 | 45.7 | −0.00000097 | 6.627 | −0.00004147 | 0 | 0 |
CO2(g) | −393.51 | 213.7 | 0 | 87.8 | −0.00002644 | 7.064 | −0.00009989 | 0 | 0 |
Mineral | Formular | (K) | (K) | × 102 (J/mol)−0.5 K−1 | × 105 (J/mol)−0.5 K−1 |
---|---|---|---|---|---|
Hematite | Fe2O3 | 298 | 955 | −7.403 | 27.921 |
Magnesioferrite | MgFe2O4 | 665 | 15.236 | −53.571 | |
Magnetite | FeFe2O4 | 848 | −19.502 | 61.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Xu, G.; Wu, D.; Li, Z.; Wang, H.; Liu, H.; Li, J.; Liang, J. The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials. Minerals 2025, 15, 596. https://doi.org/10.3390/min15060596
Shi K, Xu G, Wu D, Li Z, Wang H, Liu H, Li J, Liang J. The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials. Minerals. 2025; 15(6):596. https://doi.org/10.3390/min15060596
Chicago/Turabian StyleShi, Kaiwen, Guanli Xu, Di Wu, Zhen Li, Hao Wang, Huaiming Liu, Jie Li, and Jiangfan Liang. 2025. "The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials" Minerals 15, no. 6: 596. https://doi.org/10.3390/min15060596
APA StyleShi, K., Xu, G., Wu, D., Li, Z., Wang, H., Liu, H., Li, J., & Liang, J. (2025). The Impact of Redox Atmosphere on the High-Temperature Melting Behavior of Basalt Materials. Minerals, 15(6), 596. https://doi.org/10.3390/min15060596