Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Petrography and Mineral Chemistry
3.2. Whole Rock Geochemistry
3.3. Sr Isotope Geochemistry of Plagioclase and Matrix
4. Discussion
4.1. Evolution of Tungnárhraun Eruptive Units
4.2. Origin of the Crystal Cargo
- The macrocrysts are too primitive to have formed from their carrier melts. As noted previously [8] the most magnesian melt inclusions from the <100 ka Ljósufjöll tephras are appropriate in composition to have crystallized the most forsteritic olivine and high-Mg# clinopyroxene macrocrysts, and approach compositions with sufficiently high Mg# and Ca# (molar Ca/Ca + Na) to have been in equilibrium with the plagioclase feldspar cores.
- All basalts studied here—as well as those from older and younger Bárðarbunga eruptives—contain a population of plagioclase feldspar macrocrysts with core compositions An85-91. In contrast, the macrocryst rims and groundmass crystal compositions reflect consistently the MgO content of the carrier lavas (Figure 3).
- Plagioclase feldspar macrocryst abundance does not correlate with carrier liquid composition: the volume of plagioclase increases from Early Holocene THb to Mid-Holocene units THdd, THde, and THf and then decreases and becomes markedly heterogeneous in the mixed lavas of units THi and THj (Section 3.1; Figure 2).
- The Sr isotope compositions of the host lavas and feldspar macrocrysts have distinct ranges (Figure 9). The plagioclase macrocrysts have consistently lower 87Sr/86Sr values than those measured in the glassy groundmass matrix of their host basalts; the more primitive lavas and their macrocrysts show narrower isotopic ranges and less separation between macrocrysts and glassy matrix material.
4.3. Timescales of Magmatic Processes in the Tungnárhraun Basalts
4.4. Evolution of the Tungnárhraun Transcrustal Magma System
4.4.1. Formation of Plagioclase Feldspar Macrocrysts
4.4.2. Physical Evolution of the Bárðarbunga Volcanic System
4.4.3. Temporal Evolution of the Bárðarbunga Volcanic System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandsdóttir, B.; Menke, W.; Einarsson, P.; White, R.S.; Staples, R.K. Faroe-Iceland Ridge Experiment. 2. Crustal structure of the Krafla central volcano. J. Geophys. Res. 1997, 102, 7867–7886. [Google Scholar] [CrossRef]
- Sturkell, E.; Einarsson, P.; Sigmundsson, F.; Geirsson, H.; Olafsson, H.; Pedersen, R.; De Zeeuw-van Dalfsen, E.; Linde, A.T.; Sacks, S.I.; Stefansson, R. Volcano geodesy and magma dynamics in Iceland. J. Volcan. Geotherm. Res. 2006, 150, 14–34. [Google Scholar] [CrossRef]
- Neave, D.A.; Passmore, E.; Maclennan, J.; Fitton, G.; Thordarson, T. Crystal–melt relationships and the record of deep mixing and crystallization in the AD 1783 Laki Eruption, Iceland. J. Pet. 2013, 54, 1661–1690. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Jónsdóttir, K.; Hooper, A.; Holohan, E.P.; Halldórsson, S.A.; Ófeigsson, B.G.; Cesca, S.; Vögfjord, K.S.; Sigmundsson, F.; Thódís Högnadóttir, T.; et al. Gradual caldera collapse at Bárðabunga volcano, Iceland, regulated by lateral magma outflow. Science 2016, 353, aaf8988. [Google Scholar] [CrossRef]
- Halldórsson, S.A.; Bali, E.; Hartley, M.E.; Neave, D.A.; Peate, D.W.; Guðfinnsson, G.H.; Bindeman, I.; Whitehouse, M.J.; Riishuus, M.S.; Pedersen, G.B.; et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: Compositional and mineralogical characteristics, temporal variability and magma storage. Contrib. Mineral. Petrol. 2018, 173, 1–25. [Google Scholar] [CrossRef]
- Mclennan, J. Mafic tiers and transient mushes: Evidence from Iceland. Phil. Trans. R. Soc. 2019, A 377, 20180021. [Google Scholar] [CrossRef]
- Baxter, R.J.M.; Maclennan, J.; Neave, D.A.; Thordarson, T. Depth of magma storage under Iceland controlled by magma fluxes. Geochem. Geophys. Geosyst. 2023, 24, e2022GC010811. [Google Scholar] [CrossRef]
- Caracciolo, A.; Bali, E.; Guðfinnsson, G.H.; Kahl, M.; Halldórsson, S.A.; Hartley, M.E.; Gunnarsson, H. Temporal evolution of magma and crystal mush storage conditions in the Bárðarbunga-Veiðivötn volcanic system, Iceland. Lithos 2020, 352, 105234. [Google Scholar] [CrossRef]
- Caracciolo, A.; Bali, E.; Halldórsson, S.A.; Guðfinnsson, G.H.; Kahl, M.; Þórðardóttir, I.; Pálmadóttir, G.L.; Silvestri, V. Magma plumbing architectures and timescales of magmatic processes during historical magmatism on the Reykjanes Peninsula, Iceland. Earth Planet. Sci. Lett. 2023, 621, 118378. [Google Scholar] [CrossRef]
- Eiler, J.M.; Schiano, P.; Kitchen, N.; Stolper, E.M. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 2000, 403, 530–534. [Google Scholar] [CrossRef]
- Hanan, B.B.; Blichert-Toft, J.; Kingsley, R.; Schilling, J.-G. Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? Geochem. Geophys. Geosyst. 2000, 1, 1999GC000009. [Google Scholar] [CrossRef]
- Maclennan, J. Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim. Cosmochim. Acta 2008, 72, 4159–4176. [Google Scholar] [CrossRef]
- Maclennan, J.; McKenzie, D.; Gronvöld, K. Plume-driven upwelling under central Iceland. Earth Planet. Sci. Lett. 2001, 194, 67–82. [Google Scholar] [CrossRef]
- Maclennan, J.; Jull, M.; McKenzie, D.; Slater, L.; Gronvöld, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 2002, 3, 1062. [Google Scholar] [CrossRef]
- Maclennan, J.; McKenzie, D.; Grönvold, K.; Shimizu, N.; Eiler, J.M.; Kitchen, N. Melt mixing and crystallization under Theistareykir, northeast Iceland. Geochem. Geophys. Geosyst. 2003, 4, 8624. [Google Scholar] [CrossRef]
- Slater, L.; McKenzie, D.; Grönvold, K.; Shimizu, N. Melt generation and movement beneath Theistareykir, NE Iceland. J. Pet. 2001, 42, 321–354. [Google Scholar] [CrossRef]
- Harðardóttir, S.; Matthews, S.; Halldorsson, S.A.; Jackson, M.G. Spatial distribution and geochemical characterization of Icelandic mantle end-members: Implications for plume geometry and melting processes. Chem. Geol. 2022, 604, 120930. [Google Scholar] [CrossRef]
- Stracke, A.; Zindler, A.; Salters, V.J.; McKenzie, D.; Blichert-Toft, J.; Albarède, F.; Grönvold, K. Theistareykir revisited. Geochem. Geophys. Geosyst. 2003, 4, 8507. [Google Scholar] [CrossRef]
- Caracciolo, A.; Halldórsson, S.A.; Bali, E.; Marshall, E.W.; Jeon, H.; Whitehouse, M.J.; Barnes, J.D.; Guðfinnsson, G.H.; Kahl, M.; Hartley, M.E. Oxygen isotope evidence for progressively assimilating trans-crustal magma plumbing systems in Iceland. Geology 2022, 50, 796–800. [Google Scholar] [CrossRef]
- Caracciolo, A.; Kahl, M.; Bali, E.; Guđfinnsson, H.G.; Halldórsson, A.S.; Hartley, E.M. Timescales of crystal mush mobilization in the Bárðarbunga-Veiðivötn volcanic system based on olivine diffusion chronometry. Am. Mineral. 2021, 106, 1083–1096. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Deegan, F.M.; Troll, V.R.; Thordarson, T.; Höskuldsson, Á.; Moreland, W.M.; Zorn, E.U.; Shevchenko, A.V.; Walter, T.R. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nature Commun. 2022, 13, 3737. [Google Scholar] [CrossRef] [PubMed]
- Halldórsson, S.A.; Marshall, E.W.; Caracciolo, A.; Matthews, S.; Bali, E.; Rasmussen, M.B.; Ranta, E.; Robin, J.G.; Guðfinnsson, G.H.; Sigmarsson, O.; et al. Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland. Nature 2022, 609, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Kahl, M.; Mutch, E.J.F.; Maclennan, J.; Morgan, D.J.; Couperthwaite, F.; Bali, E.; Thordarson, T.; Guðfinnsson, G.H.; Walshaw, R.; Buisman, I.; et al. Deep magma mobilization years before the 2021 CE Fagradalsfjall eruption, Iceland. Geology 2023, 51, 184–188. [Google Scholar] [CrossRef]
- Marshall, E.W.; Caracciolo, A.; Bali, E.; Halldórsson, S.A.; Matthews, S.; Ranta, E.; Rasmussen, M.B.; Robin, J.G.; Guðfinnson, G.H.; Maclennan, J.; et al. The petrology and geochemistry of the 2021 Fagradalsfjall eruption, Iceland: An eruption sourced from multiple, compositionally diverse, near-Moho sills. AGU Adv. 2024, 5, e2024AV001310. [Google Scholar] [CrossRef]
- Matthews, S.W.; Caracciolo, A.; Bali, E.; Halldórsson, S.A.; Sigmarsson, O.; Guðfinnsson, G.H.; Pedersen, G.B.; Robin, J.G.; Marshall, E.W.; Aden, A.A.; et al. A dynamic mid-crustal magma domain revealed by the 2023 to 2024 Sundhnúksgígar eruptions in Iceland. Science 2024, 386, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.M.; Sims, K.W.; Eiler, J.M.; Banerjee, N. Timescales of storage and recycling of crystal mush at Krafla Volcano, Iceland. Contrib. Mineral. Petrol. 2016, 171, 54. [Google Scholar] [CrossRef]
- Hansen, H.; Grönvold, K. Plagioclase ultraphyric basalts in Iceland: The mush of the rift. J. Volcan. Geotherm. Res. 2000, 98, 1–32. [Google Scholar] [CrossRef]
- Neave, D.A.; Maclennan, J.; Hartley, M.E.; Edmonds, M.; Thordarson, T. Crystal storage and transfer in basaltic systems: The Skuggafjöll eruption, Iceland. J. Pet. 2014, 55, 2311–2346. [Google Scholar] [CrossRef]
- Neave, D.A.; Buisman, I.; Maclennan, J. Continuous mush disaggregation during the long-lasting Laki fissure eruption, Iceland. Am. Mineral. 2017, 102, 2007–2021. [Google Scholar] [CrossRef]
- Passmore, E.; Maclennan, J.; Fitton, G.; Thordarson, T. Mush disaggregation in basaltic magma chambers: Evidence from the AD 1783 Laki eruption. J. Pet. 2012, 53, 2593–2623. [Google Scholar] [CrossRef]
- Óskarsson, B.V.; Andersen, C.B.; Riishuus, M.S.; Sørensen, E.V.; Tegner, C. The mode of emplacement of Neogene flood basalts in Eastern Iceland: The plagioclase ultraphyric basalts in the Grænavatn group. J. Volcan. Geotherm. Res. 2017, 332, 26–50. [Google Scholar] [CrossRef]
- Svavarsdóttir, S.I.; Halldórsson, S.A.; Guðfinnsson, G.H. Geochemistry and petrology of Holocene lavas in the Bárðardalur region, N-Iceland. Part I: Geochemical constraints on source provenance. Jökull 2017, 67, 17–42. [Google Scholar]
- Vilmundardóttir, E.G. Tungnárhraun, Orkustofnun Geologic Report. OS ROD 1977, 7702, 156. [Google Scholar]
- Halldórsson, S.A.; Oskarsson, N.; Gronvöld, K.; Sigurdsson, G.; Sverrisdóttir, G.; Steinthorsson, S. Isotopic-heterogeneity of the Thjorsa lava—Implications for mantle sources and crustal processes within the Eastern Rift Zone, Iceland. Chem. Geol. 2008, 255, 305–316. [Google Scholar] [CrossRef]
- Óladóttir, B.A.; Larsen, G.; Sigmarsson, O. Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland. Bull. Volcan. 2011, 73, 1187–1208. [Google Scholar] [CrossRef]
- Cullen, A.; Vicenzi, E.; McBirney, A.R. Plagioclase-ultraphyric basalts of the Galapagos Archipelago. J. Volcan. Geotherm. Res. 1989, 37, 325–337. [Google Scholar] [CrossRef]
- Fisk, M.R. Mid-ocean ridge basalts from the Galápagos Spreading Center: Direct probes of magma chambers. Geology 1986, 14, 204–207. [Google Scholar] [CrossRef]
- Flower, M.J.F. Accumulation of calcic plagioclase in ocean-ridge tholeiite—An indication of spreading rate. Nature 1980, 287, 530–532. [Google Scholar] [CrossRef]
- Batiza, R.; Rosendahl, B.R.; Fisher, R.L. Evolution of oceanic crust 3. Petrology and chemistry of basalts from the East Pacific Rise and the Siqueiros Transform Fault. J. Geophys. Res. 1977, 82, 265–276. [Google Scholar] [CrossRef]
- Dungan, M.A.; Rhodes, J.M. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: Evidence for magma mixing. Contrib. Mineral. Petrol. 1978, 67, 417–431. [Google Scholar] [CrossRef]
- Kuo, L.C.; Kirkpatrick, R.J. Pre-eruption history of phyric basalts from DSDP Legs 45 and 46—Evidence from morphology and zoning patterns in plagioclase. Contrib. Mineral. Petrol. 1982, 79, 13–27. [Google Scholar] [CrossRef]
- Elthon, D. Plagioclase buoyancy in oceanic basalts: Chemical effects. Geochim. Cosmochim. Acta 1984, 48, 753–768. [Google Scholar] [CrossRef]
- Sinton, C.W.; Christie, D.M.; Coombs, V.L.; Nielsen, R.; Fisk, M.R. Near-primary melt inclusions in anorthite phenocrysts from the Galapagos platform. Earth Planet. Sci. Lett. 1993, 119, 527–537. [Google Scholar] [CrossRef]
- le Roex, A.P.F.; Frey, F.A.; Richardson, S.H. Petrogenesis of lavas from the AMAR Valley and Narrowgate region of the FAMOUS Valley, 36–37 N on the Mid-Atlantic Ridge. Contrib. Mineral. Petrol. 1996, 124, 167–184. [Google Scholar] [CrossRef]
- Hellevang, B.; Pedersen, R.B. Magma ascent and crustal accretion at ultraslow-spreading ridges: Constraints from plagioclase ultraphyric basalts from the Arctic Mid-Ocean Ridge. J. Pet. 2008, 49, 267–294. [Google Scholar] [CrossRef]
- Lange, A.E.; Nielsen, R.L.; Tepley III, F.J.; Kent, A.J. The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochem. Geophys. Geosyst. 2013, 14, 3282–3296. [Google Scholar] [CrossRef]
- Drignon, M.J.; Nielsen, R.L.; Tepley III, F.J.; Bodnar, R.J. Upper mantle origin of plagioclase megacrysts from plagioclase-ultraphyric mid-oceanic ridge basalt. Geology 2019, 47, 43–46. [Google Scholar] [CrossRef]
- Nielsen, R.L.; Ustunisik, G.; Lange, A.E.; Tepley III, F.J.; Kent, A.J. Trace element and isotopic characteristics of plagioclase megacrysts in plagioclase ultraphyric basalts (PUB). Geochem. Geophys. Geosyst. 2020, 21, e2019GC008638. [Google Scholar] [CrossRef]
- Valer, M.; Bachèlery, P.; Schiano, P. The petrogenesis of plagioclase-ultraphyric basalts from La Réunion Island. J. Pet. 2017, 58, 675–698. [Google Scholar] [CrossRef]
- Gudmundsson, A. Formation of crystal magma chambers in Iceland. Geology 1986, 14, 164–166. [Google Scholar] [CrossRef]
- Sigvaldason, G.E.; Annertz, K.; Nilsson, M. Effect of glacier loading/deloading on volcanism: Postglacial volcanic production rate of the Dyngjufjöll area, central Iceland. Bull. Volcan. 1992, 54, 385–392. [Google Scholar] [CrossRef]
- Jull, M.; McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. 1996, 101, 21815–21828. [Google Scholar] [CrossRef]
- Hardarson, B.S.; Fitton, J.G. Mechanisms of crustal accretion in Iceland. Geology 1997, 25, 1043–1046. [Google Scholar] [CrossRef]
- Slater, L.; Jull, M.; McKenzie, D.; Grönvold, K. Deglaciation effects on mantle melting under Iceland: Results from the northern volcanic zone. Earth Planet. Sci. Lett. 1998, 64, 151–164. [Google Scholar] [CrossRef]
- Sinton, J.; Grönvold, K.; Sæmundsson, K. Postglacial eruptive history of the western volcanic zone, Iceland. Geochem. Geophys. Geosyst. 2005, 6, Q12009. [Google Scholar] [CrossRef]
- Benson, L.; Kincaid, D.; Bowden, S.; Oborn, C.; Furman, T. Isotopic Differences Between Plagioclase and Matrix in the Tungnárhraun, South Iceland; GSA Connects: Pittsburgh, PA, USA, 2023. [Google Scholar]
- Kincaid, D.; Oborn, C.; Bowden, S.; Furman, T. Melt Transport at Mid-Ocean Ridge Systems: Perspectives from Iceland; AGU: Washington DC, USA, 2024. [Google Scholar]
- Jakobsson, S.P. Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat. Isl. 1979, 26, 103. [Google Scholar]
- Larsen, G. Recent volcanic history of the Veidivötn fissure swarm, southern Iceland—An approach to volcanic risk assessment. J. Volcan. Geotherm. Res. 1984, 22, 33–58. [Google Scholar] [CrossRef]
- Larsen, G.; Gudmundsson, M.T. Volcanic system: Bárðarbunga system. Cat. Icel. Volcanoes 2014, 1–11. [Google Scholar]
- Blake, S. Magma mixing and hybridization processes at the alkalic, silicic, Torfajökull central volcano triggered by tholeiitic Veidivötn fissuring, south Iceland. J. Volcan. Geotherm. Res. 1984, 22, 1–31. [Google Scholar] [CrossRef]
- Mørk, M.B.E. Magma mixing in the post-glacial Veidivötn fissure eruption, southeast Iceland: A microprobe study of mineral and glass variations. Lithos 1984, 17, 55–75. [Google Scholar] [CrossRef]
- Macdonald, R.; McGarvie, D.W.; Pinkerton, H.; Smith, R.L.; Palacz, A. Petrogenetic evolution of the Torfajökull Volcanic Complex, Iceland I. Relationship between the magma types. J. Pet. 1990, 31, 429–459. [Google Scholar] [CrossRef]
- McGarvie, D.W.; Macdonald, R.; Pinkerton, H.; Smith, R.L. Petrogenetic evolution of the Torfajökull Volcanic Complex, Iceland II. The role of magma mixing. J. Pet. 1990, 31, 461–481. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Sparks, R.S.J. Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J. Pet. 1981, 22, 41–84. [Google Scholar] [CrossRef]
- Thordarson, T.; Self, S.; Oskarsson, N.; Hulsebosch, T. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftar Fires) eruption in Iceland. Bull. Volcan. 1996, 58, 205–225. [Google Scholar] [CrossRef]
- Pinton, A.; Giordano, G.; Speranza, F.; Þórðarson, Þ. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): Implications for flow correlation and ages. Bull. Volcan. 2018, 80, 10. [Google Scholar] [CrossRef]
- Hjartarsson, A.Á. The Thjorsá lava, the largest Holocene lava flow on Earth. Natturufraedingurinn 1988, 58, 1–16. [Google Scholar]
- Peate, D.W.; Breddam, K.; Baker, J.A.; Kurz, M.D.; Barker, A.K.; Prestvik, T.; Grassineau, N.; Skovgaard, A.C. Compositional characteristics and spatial distribution of enriched Icelandic mantle components. J. Pet. 2010, 51, 1447–1475. [Google Scholar] [CrossRef]
- Sigmarsson, O.; Halldórsson, S.A. Delimiting Bárðarbunga and Askja volcanic systems with Sr-and Nd-isotope ratios. Jökull 2015, 65, 17–27. [Google Scholar] [CrossRef]
- Wolfe, C.J.; Bjarnason, I.T.; VanDecar, J.C.; Solomon, S.C. Seismic structure of the Iceland mantle plume. Nature 1997, 385, 245–247. [Google Scholar] [CrossRef]
- Ustunisik, G.K.; Nielsen, R.L.; Walker, D. The missing magmas of MOR: Insights from phase equilibrium experiments on plagioclase ultraphyric basalts. Geochem. Geophys. Geosyst. 2022, 23, e2021GC009943. [Google Scholar] [CrossRef]
- Walker, G.P.L. The Breiddalur central volcano, eastern Iceland. Quart. J. Geol. Soc. 1963, 119, 29–63. [Google Scholar] [CrossRef]
- Kristmannsdóttir, H. Anorthosite inclusions in Tertiary dolerite from the island groups Hrappsey and Purkey, West Iceland. J. Geol. 1971, 79, 741–748. [Google Scholar] [CrossRef]
- Gautason, B. Uppruni Plagíóklasbasalts. 4. árs Verkefni; Háskóli Íslands: Reykjavik, Iceland, 1988. [Google Scholar]
- Hansteen, T.H. Lithospheric Evolution of a Tholeiitic Picrite and a Spatially Associated Plagioclase—Phyric Olivine Tholeiite from the Hengill Area, SW Iceland. In: Investigations on Fluid and Silicate Melt Inclusions in Minerals and Their Application to Problems Related to Genesis and Evolution of Upper Mantle and Crustal Rocks. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 1993. [Google Scholar]
- Kaldal, I.; Hjartarson, Á.; Sæmundsson, K.; Sigurgerisson, M.; Vikingsson, S. Geological Map of the Eastern Volcanic Zone, Iceland—Tungnaá Area; 1:100,000; GeoSurvey, Iceland Power Company and Ministry for the Environment and Natural Resources: Reykjavik, Iceland, 2018. [Google Scholar]
- Kaldal, I.; Vilmundardóttir, E.G.; Larsen, G. Map of Superficial Deposits, Sigalda-Veiðivötn, 3340 J; National Energy Authority, Hydro Power Division and the National Power Company: Reykjavík, Iceland, 1988. [Google Scholar]
- Kaldal, I.; Vilmundardóttir, E.G. Map of Superficial Deposits, Búrfell-Langalda, 3540 J; National Energy Authority, Hydro Power Division and the National Power Company: Reykjavík, Iceland, 1986. [Google Scholar]
- Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand. Geoanalytical Res. 2007, 31, 331–343. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Ingamells, C.O. Lithium metaborate flux in silicate analysis. Anal. Chim. Acta 1970, 52, 323–334. [Google Scholar] [CrossRef]
- Neave, D.A.; Putirka, K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineral. 2017, 102, 777–794. [Google Scholar] [CrossRef]
- Villiger, S.; Ulmer, P.; Müntener, O. Equilibrium and fractional crystallization experiments at 0.7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J. Pet. 2007, 48, 159–184. [Google Scholar] [CrossRef]
- Putirka, K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 1999, 135, 151–163. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Druitt, T.H.; Costa, F.; Deloule, E.; Dungan, M.; Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 2012, 482, 77–80. [Google Scholar] [CrossRef]
- Costa, F.; Coogan, L.A.; Chakraborty, S. The time scales of magma mixing and mingling involving primitive melts and melt-mush interactions at mid-ocean ridges. Contrib. Mineral. Petrol. 2010, 159, 371–387. [Google Scholar] [CrossRef]
- Mutch, E.J.F.; Maclennan, J.; Madden-Nadeau, A.L. The dichotomous nature of Mg partitioning between plagioclase and melt: Implications for diffusion chronometry. Geochim. Cosmochim. Acta 2022, 339, 173–189. [Google Scholar] [CrossRef]
- Rasmussen, M.B.; Halldórsson, S.A.; Gibson, S.A.; Guðfinnsson, G.H. Olivine chemistry reveals compositional source heterogeneities within a tilted mantle plume beneath Iceland. Earth Planet. Sci. Lett. 2020, 531, 116008. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O.; et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Rubin, K.H.; Grönvold, K.; Jurado-Chichay, Z. On the recent bimodal magmatic processes and their rates in the Torfajökull–Veidivötn area, Iceland. Earth Planet. Sci. Lett. 2008, 269, 388–398. [Google Scholar] [CrossRef]
- Le Bas, M.; Maitre, R.L.; Streckeisen, A.; Zanettin, B. IUGS Subcommission on the Systematics of Igneous Rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Pet. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Grönvold, K.; Jóhannesson, H. Eruption in Grímsvötn 1983; course of events and chemical studies of the tephra. Jökull 1984, 34, 1–8. [Google Scholar] [CrossRef]
- Miller, J. The 10th Century Eruption of Eldgjá, Southern Iceland; Nordic Volcanological Institute, 8903, Háskoli Íslands: Reykjavik, Iceland, 1989. [Google Scholar]
- Furman, T.; Frey, F.; Park, K.-H. Chemical constraints on the petrogenesis of mildly alkaline lavas from Vestmannaejyar, Iceland: The Eldfell (1973) and Surtsey (1963–1967) eruptions. Contrib. Mineral. Petrol. 1991, 109, 19–37. [Google Scholar] [CrossRef]
- Sigmarsson, O.; Karlsson, H.R.; Larsen, G. The 1996 and 1998 subglacial eruptions beneath the Vatnajökull ice sheet in Iceland: Contrasting geochemical and geophysical inferences on magma migration. Bull. Volcan. 2000, 61, 468–476. [Google Scholar] [CrossRef]
- Halldorsson, S.A. Petrology and Geochemistry of the Thjórsá Lava. Master’s Thesis, Háskoli Íslands, Reykjavik, Iceland, 2007. [Google Scholar]
- Hartley, M.E.; Thordarson, T. The 1874–1876 volcano-tectonic episode at Askja, North Iceland: Lateral flow revisited. Geochem. Geophys. Geosyst. 2013, 14, 2286–2309. [Google Scholar] [CrossRef]
- Jude-Eton, T.C. Eruption Dynamics Within an Emergent Subglacial Setting: A Case Study of the 2004 Eruption of Grímsvötn Volcano, Iceland. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2013. [Google Scholar]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef]
- Kinzler, R.J.; Grove, T.L. Primary magmas of mid-ocean ridge basalts 2. Applications. J. Geophys. Res. 1992, 97, 6907–6926. [Google Scholar] [CrossRef]
- Gurenko, A.A.; Sobolev, A.V. Crust–primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland. Contrib. Mineral. Petrol. 2006, 151, 495. [Google Scholar] [CrossRef]
- Hewitt, J.B.; Ustunisik, G.K.; Nielsen, R.L. Petrogenesis of plagioclase ultraphyric basalts (PUB) from the northeastern (NE) Pacific Ridge system: Evidence from mineral textures and geochemical characteristics. Geochem. Geophys. Geosyst. 2025, 26, e2024GC011835. [Google Scholar] [CrossRef]
- Costa, F.; Dungan, M. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 2005, 33, 837–840. [Google Scholar] [CrossRef]
- Costa, F.; Dohmen, R.; Chakraborty, S. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 2008, 69, 545–594. [Google Scholar] [CrossRef]
- Lindsley, D.H. Melting relations of plagioclase at high pressures. In Origin of Anorthosite and Related Rocks, New York State Museum Science Service Memoir; Isachsen, Y.A., Ed.; State Education Department, University of the State of New York: New York, NY, USA, 1969; Volume 18, pp. 39–46. [Google Scholar]
- Nekvasil, H.; Lindsley, D.H.; DiFrancesco, N.; Catalano, T.; Coraor, A.E.; Charlier, B. Uncommon behavior of plagioclase and the ancient lunar crust. Geophys. Res. Lett. 2015, 42, 10,573–10,579. [Google Scholar] [CrossRef]
- Chalot-Prat, F.; Falloon, T.J.; Green, D.H.; Hibberson, W.O. An experimental study of liquid compositions in equilibrium with plagioclase+ spinel lherzolite at low pressures (0·75 GPa). J. Pet. 2010, 51, 2349–2376. [Google Scholar] [CrossRef]
- Hartley, M.E.; Bali, E.; Maclennan, J.; Neave, D.A.; Halldórsson, S.A. Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contrib. Mineral. Petrol. 2018, 173, 10. [Google Scholar] [CrossRef]
- Higgins, O.; Stock, M.J. A new calibration of the OPAM thermobarometer for anhydrous and hydrous mafic systems. J. Pet. 2024, 65, egae043. [Google Scholar] [CrossRef]
- Carlson, R.L.; Herrick, C.N. Densities and porosities in the oceanic crust and their variations with depth and age. J. Geophys. Res. 1990, 95, 9153–9170. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Hooper, A.; Hreinsdóttir, S.; Vogfjörd, K.S.; Ófeigsson, B.G.; Heimisson, E.R.; Dumont, S.; Parks, M.; Spaans, K.; Gudmundsson, G.B.; et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 2015, 517, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Ágústsdóttir, T.; Woods, J.; Greenfield, T.; Green, R.G.; White, R.S.; Winder, T.; Brandsdóttir, B.; Steinthórsson, S.; Soosalu, H. Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland. Geophys. Res. Lett. 2016, 43, 1495–1503. [Google Scholar] [CrossRef]
- Darbyshire, F.; White, R.; Priestley, K. Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth Planet. Sci. Lett. 2000, 181, 409–428. [Google Scholar] [CrossRef]
- Hudson, T.S.; White, R.S.; Greenfield, T.; Ágústdóttir, T.; Brisbourne, A.; Green, R.G. Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophys. Res. Lett. 2016, 44, 8785–8794. [Google Scholar] [CrossRef]
- Ágústsdóttir, T.; Winder, T.; Woods, J.; White, R.S.; Greenfield, T.; Brandsdóttir, B. Intense seismicity during the 2014–2015 Bárðarbunga-Holuhraun rifting event, Iceland, reveals the nature of dike-induced earthquakes and caldera collapse mechanisms. J. Geophys. Res. 2019, 124, 8331–8357. [Google Scholar] [CrossRef]
- Pedersen, G.B.M.; Höskuldsson, A.; Dürig, T.; Thordarson, T.; Jonsdóttir, I.; Riishuus, M.S.; Óskarsson, B.V.; Dumont, S.; Magnusson, E.; Gudmundsson, M.T.; et al. Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J. Volcan. Geotherm. Res. 2017, 340, 155–169. [Google Scholar] [CrossRef]
- Brounce, M.; Feineman, M.; LaFemina, P.; Gurenko, A. Insights into crustal assimilation by Icelandic basalts from boron isotopes in melt inclusions from the 1783–1784 Lakagígar eruption. Geochim. Cosmochim. Acta 2012, 94, 164–180. [Google Scholar] [CrossRef]
- Gibson, I.L. The crustal structure of eastern Iceland. Geophys. J. Int. 1966, 12, 99–102. [Google Scholar] [CrossRef]
- McDougall, I.; Kristjansson, L.; Sæmundsson, K. Magnetostratigraphy and geochronology of northwest Iceland. J. Geophys. Res. 1984, 89, 7029–7060. [Google Scholar] [CrossRef]
- Kristjansson, L.; Johannesson, H. Stratigraphy and paleomagnetism of the lava pile south of Ísafjarðardjúp, NW-Iceland. Jökull 1996, 44, 3–16. [Google Scholar]
- Svavarsdóttir, S.I. Geochemistry and Petrology of Holocene Lavas in the Bárðardalur Region and Their Association with the Bárðarbunga Volcanic System. Ph.D. Thesis, Háskoli Íslands, Reykjavik, Iceland, 2017. [Google Scholar]
- Baxter, R.J.M.; Maclennan, J. Influence of magma flux on magma storage depths along the Reykjanes Ridge. Earth Planet. Sci. Lett. 2024, 631, 118633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furman, T.; Kincaid, D.; Brady, C.O. Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System. Minerals 2025, 15, 687. https://doi.org/10.3390/min15070687
Furman T, Kincaid D, Brady CO. Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System. Minerals. 2025; 15(7):687. https://doi.org/10.3390/min15070687
Chicago/Turabian StyleFurman, Tanya, Denali Kincaid, and Collin Oborn Brady. 2025. "Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System" Minerals 15, no. 7: 687. https://doi.org/10.3390/min15070687
APA StyleFurman, T., Kincaid, D., & Brady, C. O. (2025). Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System. Minerals, 15(7), 687. https://doi.org/10.3390/min15070687