Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = Al foams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1379 KiB  
Article
Enzymatic Hydrolysis of Gluten in Beer: Effects of Enzyme Application on Different Brewing Stages on Beer Quality Parameters and Gluten Content
by Carolina Pedroso Partichelli, Vitor Manfroi and Rafael C. Rodrigues
Foods 2025, 14(14), 2519; https://doi.org/10.3390/foods14142519 - 18 Jul 2025
Viewed by 342
Abstract
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at [...] Read more.
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at mashing, boiling, post-boiling, or post-fermentation, plus a control. Three mashing profiles (Mash A, B, C) were also tested. Gluten was quantified by R5 ELISA (LOQ > 270 mg/L). Color, bitterness, ABV, and foam stability were assessed. Statistical analysis involved ANOVA and Tukey’s HSD (p < 0.05). Enzyme activity and thermal inactivation were also evaluated. Initial gluten levels consistently exceeded LOQ. Significant gluten reduction occurred only post-fermentation. Mashing, boiling, and post-boiling additions effectively lowered gluten to below 20 mg/L. Post-fermentation addition resulted in significantly higher residual gluten (136.5 mg/L). Different mashing profiles (A, B, C) with early enzyme addition achieved similar low-gluten levels. AN-PEP showed optimal activity at 60–65 °C, inactivating rapidly at 100 °C. Physicochemical attributes (color, extract, bitterness, ABV) were largely unaffected. However, foam stability was significantly compromised by mashing and post-fermentation additions, while preserved with boiling and post-boiling additions. AN-PEP effectively produces low-gluten beers. Enzyme addition timing is critical: while mashing, boiling, or post-boiling additions reduce gluten to regulatory levels, only the beginning of boiling or post-boiling additions maintain desirable foam stability. These findings offer practical strategies for optimizing low-gluten beer production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 241
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

15 pages, 3887 KiB  
Article
Cold Consolidation of Waste Glass by Alkali Activation and Curing by Traditional and Microwave Heating
by Francesco Carollo, Emanuele De Rienzo, Antonio D’Angelo, Paolo Sgarbossa, Luisa Barbieri, Cristina Leonelli, Isabella Lancellotti, Michelina Catauro and Enrico Bernardo
Materials 2025, 18(11), 2628; https://doi.org/10.3390/ma18112628 - 4 Jun 2025
Viewed by 622
Abstract
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can [...] Read more.
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can be eligible to produce sustainable alkali-activated materials (AAMs) reducing at the same time consumption of raw materials and CO2 emissions. The ‘weak’ alkaline attack (NaOH < 3 M) determines the gelation of glass suspensions. Condensation reactions occur in hydrated surface layers, leading to strong bonds (Si-O-Si, Al-O-Si, etc.) between individual glass particles. Alkali are mostly expelled from the gel due to the formation of water-soluble hydrated carbonates. Microwave treatment has been implemented on samples after precuring at 40 °C, saving time and energy and achieving better mechanical properties. To improve the stability and reduce the release of glass components into solution, the consolidated monoliths were subjected to boiling/drying cycles. The chemical stability, cytotoxicity and antibacterial behavior of the final products have been investigated with the purpose of obtaining new competitive and sustainable materials. For further stabilization and for finding new applications, the activated and boiled samples can be fired at low temperature (700 °C) to obtain, respectively, a homogeneous foam or a compact material with glass-like density and microstructure. Full article
Show Figures

Figure 1

36 pages, 10035 KiB  
Article
Effects of Porous Filling and Nanofluids on Heat Transfer in Intel i9 CPU Minichannel Heat Sinks
by Lie Li and Jik Chang Leong
Electronics 2025, 14(10), 1922; https://doi.org/10.3390/electronics14101922 - 9 May 2025
Viewed by 683
Abstract
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the [...] Read more.
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the current study targets this processor and explores the advantages of more complex minichannel path designs. In addition, this work investigates the enhanced heat transfer performance by integrating metal foams into microchannels. Using a computational approach, this study evaluates the thermal performance of uni-path, dual-path, and staggered-path (SP) minichannel heat sinks with water, Al2O3, and CuO nanofluids at varying Reynolds numbers. The impact of aluminum foam filling has also been examined. Results confirm that higher Reynolds numbers enhance fluid flow, reduce heat sink temperature, and improve temperature uniformity. Among the configurations, the SP heat sink combined with Al2O3 nanofluid achieves the best trade-off between cooling efficiency and energy consumption. While lower porosity foam and higher nanofluid volume fractions enhance heat transfer, they also increase flow resistance, leading to higher energy consumption. Due to its high specific heat capacity, Al2O3 nanofluid outperforms CuO, with optimal cooling observed at a 3–4% volume fraction. The performance evaluation criterion (PEC) captures the trade-off between heat dissipation and energy efficiency. It shows that the SP model with high-porosity aluminum foam and Al2O3 nanofluid turns out to be the most effective design. This combination maximizes cooling efficiency while minimizing excessive energy costs, demonstrating superior thermal management for high-performance microelectronic devices. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

10 pages, 3871 KiB  
Article
Effect of the Addition of Al-5Ti-0.25C and Annealing on the Mechanical Properties of Open-Cell Al Foams
by Omar Novelo-Peralta, Manuel Farid Azamar, Julio Esteban Méndez Durán, Yessica Lizbeth Ávila, Antonio Enrique Salas Reyes, Ramiro Bazáez, Ignacio Alejandro Figueroa and Gabriel Ángel Lara Rodríguez
Materials 2025, 18(9), 2147; https://doi.org/10.3390/ma18092147 - 7 May 2025
Viewed by 489
Abstract
Commercially pure aluminum (Al) was refined through the addition of the Al-5Ti-0.25C master alloy, resulting in the formation of Al3Ti and TiC phases, which serve as refining agents. Open-cell metallic foams were successfully produced using the replication casting technique, with pore [...] Read more.
Commercially pure aluminum (Al) was refined through the addition of the Al-5Ti-0.25C master alloy, resulting in the formation of Al3Ti and TiC phases, which serve as refining agents. Open-cell metallic foams were successfully produced using the replication casting technique, with pore sizes ranging from 1.00 to 3.35 mm. For the infiltration process, refined aluminum was used, while unrefined aluminum served as a baseline reference. The resultant foams underwent multiple annealing cycles at 480 °C, with the most refined and homogeneous microstructure observed after 504 h. Comprehensive microstructural characterization was conducted utilizing scanning electron microscopy and optical microscopy. Additionally, uniaxial compression tests were performed to generate stress–strain profiles for the foams, facilitating an assessment of their energy absorption capacity. The findings indicated an enhancement in energy absorption capacity by a factor of 2.4 to 3, which can be attributed to the incorporation of Al-5Ti-0.25C and the subsequent annealing process. Full article
Show Figures

Figure 1

13 pages, 4801 KiB  
Article
Annealing Time Effect on the Microstructure, Phase Evolution, and Magnetic Properties of Self-Foaming AlCuFe Alloy
by Rodolfo López, José Manuel Hernández, Carlos Damián, Ismeli Alfonso Lopez, Gonzalo Gonzalez and Ignacio Alejandro Figueroa
Inorganics 2025, 13(5), 149; https://doi.org/10.3390/inorganics13050149 - 6 May 2025
Viewed by 490
Abstract
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing [...] Read more.
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing time on the resulting microstructure and physical properties remains insufficiently explored. In the present study, the effects of annealing time on the microstructure, phase evolution, and magnetic properties of self-foaming Al58Cu27Fe15 alloys are investigated. Metallic foams were synthesized using the self-foaming method, heat-treating the samples at 850 °C for 6, 9, 15, and 24 h. X-ray diffraction (XRD), differential thermal analysis (DTA), and scanning electron microscopy (SEM) reveal that prolonged annealing increases porosity, reaching 64% and 61% after 15 and 24 h, respectively. The porosity formation mechanism was attributed to a peritectic reaction involving the liquid metastable τ phase and the solid λ and β phases. Magnetic measurements indicated complex behavior consistent with the Curie–Weiss law, influenced by phase composition and interactions between Coulomb forces, Hund’s rule exchange, and Fe 3d–Al s, p orbital hybridization. Full article
Show Figures

Graphical abstract

13 pages, 786 KiB  
Article
Standardization of Lung CT Number Using COPD Gene2 Phantom Under Various Scanning Protocols
by Hoondong Song, Hanjoo Jang and Jongduk Baek
Sensors 2025, 25(9), 2906; https://doi.org/10.3390/s25092906 - 4 May 2025
Viewed by 494
Abstract
Lung computed tomography (CT) images are widely used to diagnose chronic obstructive pulmonary disease (COPD) by evaluating signs of lung tissue destruction. Accurate diagnosis requires standardizing the CT numbers in lung CT images to distinguish between normal and damaged tissue. The CT number [...] Read more.
Lung computed tomography (CT) images are widely used to diagnose chronic obstructive pulmonary disease (COPD) by evaluating signs of lung tissue destruction. Accurate diagnosis requires standardizing the CT numbers in lung CT images to distinguish between normal and damaged tissue. The CT number standardization method proposed by Chen-Mayer et al., which uses the linearity of Martinez’s formula, showed promising results in phantom studies. However, our findings reveal that the CT number of water varies significantly, depending on scanning conditions and the characteristics of its container, making it an unreliable reference for lung CT number standardization. To enhance the standardization method, we modified the approach to exclude water and used only solid foams from the COPD gene2 phantom as references. To evaluate the proposed method, we collected 234 CT images of the COPD gene2 phantom from 8 different CT scanners and assessed performance by analyzing CT number standard deviations and variations. The modification resulted in improved reliability and consistency in CT number standardization. Additionally, for a detailed analysis, we segmented the dataset based on CT dose index (CTDI), X-ray tube potential, and reconstruction algorithms to examine the impact of different scanning protocols on standardization performance. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 10646 KiB  
Article
Influence of Silicate Modulus and Eggshell Powder on the Expansion, Mechanical Properties, and Thermal Conductivity of Lightweight Geopolymer Foam Concrete
by Mohamed Abdellatief, Mohamed Mortagi, Hassan Hamouda, Krzysztof Skrzypkowski, Krzysztof Zagórski and Anna Zagórska
Materials 2025, 18(9), 2088; https://doi.org/10.3390/ma18092088 - 2 May 2025
Cited by 5 | Viewed by 649
Abstract
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this [...] Read more.
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this study is to investigate the influence of replacing precursor materials with 5–20% ESP on the expansion behavior, physical, mechanical characteristics, and thermal conductivity of LWGFC. Additionally, the study examines the effect of varying the silicate modulus (SiO2/Na2O ratios of 1.0, 1.25, and 1.5) on the properties of LWGFC. Incorporating ESP from 5% to 20% with a constant SiO2/Na2O ratio reduced the initial setting time, while a high SiO2/Na2O ratio controlled the setting time and expansion volume. The high SiO2/Na2O ratio decreased the porosity and enhanced the compressive strength of the LWGFC but increased the thermal conductivity. The inclusion of more than 10% ESP content negatively affected compressive strength; however, a high SiO2/Na2O ratio can mitigate this detrimental effect. The thermal conductivity of optimal-content ESP mixtures with a SiO2/Na2O ratio of 1.0 was about 0.84 W/m·K, which is 2.1% lower than mixtures with a ratio of 1.25 and 18.6% lower than those with a ratio of 1.5. High-content ESP mixtures had a density of 1707 kg/m3, 0.97 W/m·K, and a compressive strength of 18.9 MPa at a low SiO2/Na2O ratio. Finally, the inclusion of ESP in the LWGFC, along with the use of an appropriate silicate modulus, resulted in improved strength development while decreasing porosity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 2302 KiB  
Article
Investigation of the Factors and Mechanisms Affecting the Foaming of Triethylene Glycol in Natural Gas Purification
by Hongyi Liang, Qian Huang, Xin Li, Quan Wu, Han Yan, Jiang Meng and Xueyuan Long
Processes 2025, 13(5), 1261; https://doi.org/10.3390/pr13051261 - 22 Apr 2025
Cited by 1 | Viewed by 637
Abstract
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive [...] Read more.
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive single-factor TEG regeneration experiments simulating field conditions. Through precise measurements of foaming height, defoaming time, and interfacial tension, we established clear correlations between impurity types and TEG foaming characteristics. Our results demonstrate a distinct hierarchy of foaming influence: chemical additives > solid impurities > water-soluble inorganic salts > MDEA > hydrogen sulfide > hydrocarbons. Chemical additives showed the most pronounced effect on surface tension, reducing it to 31.1 mN/m at 1500 mg/L. Water-soluble inorganic salts affected foaming through combined decomposition and crystalline morphology effects, ranked as MgCl2 > NaHCO3 > KCl > NaCl > Na2SO4 > CaCl2 (MgCl2 achieving 33.8 mN/m at 2000 mg/L). Solid impurity impacts correlated strongly with particle morphology (CaCO3 > Fe2O3 > CaSO4 > ZnO > CuO > Al2O3 > FeS), stabilizing at 1.5 mg/L. Hydrocarbons showed negligible influence, while hydrogen sulfide and MDEA caused only minor surface tension reductions with limited foaming effects. Based on these findings, we propose targeted mitigation strategies for industrial implementation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 7242 KiB  
Article
Production and Mechanical Characterization by Compression Tests of Al Alloys with Weaire–Phelan Cells Manufactured by the Lost-PLA Technique
by Alessandra Ceci, Corrado Cerini, Girolamo Costanza and Maria Elisa Tata
Materials 2025, 18(6), 1261; https://doi.org/10.3390/ma18061261 - 13 Mar 2025
Viewed by 631
Abstract
In this study, the mechanical behavior of AA6082 foams with Weaire–Phelan (WP) cell structures under compressive loading was analyzed. The foams were produced using the lost-PLA replication method, a cost-effective and straightforward manufacturing technique. A total of six aluminum alloy samples were fabricated [...] Read more.
In this study, the mechanical behavior of AA6082 foams with Weaire–Phelan (WP) cell structures under compressive loading was analyzed. The foams were produced using the lost-PLA replication method, a cost-effective and straightforward manufacturing technique. A total of six aluminum alloy samples were fabricated and subjected to compression tests to assess both their mechanical performance and the repeatability of the results. The produced foams demonstrated a well-defined morphology and high-quality surface finish, accurately replicating the geometries of the original PLA 3D-printed templates. The experimental density of the foams closely matched theoretical values, confirming the consistency of the replication process. The compressive stress–strain response of the Weaire–Phelan cell foams displayed an initial linear elastic region, followed by three distinct plateau regions with increasing stress levels. The final densification phase occurred when the structure could no longer accommodate further plastic deformation, leading to a sharp increase in the compression load. From the stress–strain data, the specific energy absorption of the foams was calculated. The average specific energy absorption was measured to be 4 J/cm3, with a standard deviation of 0.49 J/cm3 across the six tested samples. These results indicate reliable mechanical performance and reproducibility of the manufacturing process, making these foams suitable for applications requiring energy absorption and lightweight structural components. Full article
Show Figures

Graphical abstract

16 pages, 20095 KiB  
Article
Finite Element Analysis of Soft-Pad Moldless Stamping of Bistable Circular Micro Shells
by Mark M. Kantor, Asaf Asher, Rivka Gilat and Skava Krylov
Micromachines 2025, 16(3), 294; https://doi.org/10.3390/mi16030294 - 28 Feb 2025
Viewed by 715
Abstract
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, [...] Read more.
Bistable microstructures are promising for implementation in many mictroelectromechanical system (MEMS)-based applications due to their ability to stay in several equilibrium states, high tunability and unprecedented sensitivity to external stimuli. As opposed to the extensively investigated one-dimensional curved beam-type devices of this kind, microfabrication of non-planar two-dimensional bistable structures, such as plates or shells, represents a remarkable challenge. Recently reported by us, a new moldless stamping procedure, based on pressing a soft stamp over a thin suspended metallic film, was demonstrated to be a feasible direction for the fabrication of initially curved micro plates. However, reliable implementation of this fabrication paradigm and its further development requires better understanding of the role of the process parameters, and of the effect of both the plate and the stamp material properties on the shape of the formed shell and on the postfabrication residual stresses, and therefore on the shell behavior. The need for an appropriate choice of these parameters requires the development of a systematic modeling approach to the stamping process. Here, we report on a finite element (FE)-based methodology for modeling the processing sequences of a successfully fabricated aluminum (Al) micro shell of realistic geometry. The model accounts for the elasto-plastic behavior of the plate material, the nonlinear material behavior of the foam and the contact between them. It was found that the stamping pressure and the plate material parameters are the key parameters affecting the residual shell curvature as well as its shape. Consistently with previously presented experimental results, we show that the fabrication procedure partially relieves the prestresses emerging during preceding fabrication steps, leaving a nontrivial distribution of residual stresses in the formed shell. The presented analysis approach and results provide tools for designers and manufacturers of systems including micro structural elements of shell type. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

25 pages, 10152 KiB  
Article
Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads
by Herbert W. Doty, Ehab Samuel, Agnes M. Samuel, Victor Songmene and Fawzy H. Samuel
Materials 2025, 18(5), 1024; https://doi.org/10.3390/ma18051024 - 26 Feb 2025
Viewed by 644
Abstract
The present study was performed on real-life I4-aluminum cylinder heads produced industrially by applying the lost foam technique to Al-Si-Mg alloys (356 and 357). This work, in addition, introduces a new Al-Cu alloys coded 220 alloy. The main aim of this study is [...] Read more.
The present study was performed on real-life I4-aluminum cylinder heads produced industrially by applying the lost foam technique to Al-Si-Mg alloys (356 and 357). This work, in addition, introduces a new Al-Cu alloys coded 220 alloy. The main aim of this study is to analyze the effects of liquid metal treatment on the hardness and tensile properties of such castings. The effects of liquid metal treatment (modification with 200 ppm Sr, grain refining with 150 ppm B and degassing using pure Ar) of the castings produced by the lost foam technique on the tensile strength and hardness properties were evaluated. Hydrogen plays an important role in the formation of porosity. At the same time, the foam mold leaves an impression on the casting surface taking the shape of fine holes. In addition, segregation of hydrogen occurs in front of the solidification front. Thus, the porosity is a combination of hydrogen level and the solidification rate. Gains of 17% and 24% are observed for the hardness and yield strength for alloy 357 compared to alloy 356, caused by the difference in their magnesium (Mg) contents in the sense that, in the T6 heat-treated condition, precipitates in the form of ultra-fine Mg2Si phase particles are formed. The enhancement in the mechanical properties of the used alloy depends mainly of the volume fraction of the precipitated Mg2Si particles. The hardness of alloy 220 increases by 18% and the yield strength by 15% compared to that measured for alloy 356. In this case, the hardening phase Al2Cu is responsible for this increase. Thus, this study demonstrates that liquid metal treatments significantly enhance the hardness and yield strength of Al-Si-Mg and Al-Cu alloys, with the gain attributed to refined microstructures and reduced porosity. Full article
Show Figures

Figure 1

25 pages, 17504 KiB  
Article
The Influence of Rare Earth Metals on the Microstructure and Mechanical Properties of 220 and 356.1 Alloys for Automotive Industry
by Herbert W. Doty, Shimaa El-Hadad, Ehab Samuel, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(5), 941; https://doi.org/10.3390/ma18050941 - 21 Feb 2025
Cited by 1 | Viewed by 602
Abstract
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. [...] Read more.
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. Strontium (Sr) was used as a modifier, while titanium boride (TiB2) was added as a grain refiner. Measured amounts of Ce and La were added to both alloys (max. 1 wt.%). The alloy melts were poured in a preheated metallic mold. The main part of the study was conducted on tensile testing at room temperature. The results show that although RE would cause grain refining to be about 30–40% through the constitutional undercooling mechanism, grain refining with TiB2 would lead to approximately 90% refining (heterogenous nucleation mechanism). The addition of high purity Ce or La (99.9% purity) has no modification effect regardless of the alloy composition or the concentration of RE. Depending on the alloy ductility, the addition of 0.2 wt.%RE has a hardening effect that causes precipitation of RE in the form of dispersoids (300–700 nm). However, this increase vanishes with the decrease in alloy ductility, i.e., with T6 treatment, due to intensive precipitation of ultra-fine coherent Mg2Si-phase particles. There is no definite distinction in the behavior of Ce or La in terms of their high affinity to interact with other transition elements in the matrix, particularly Ti, Fe, Cu, and Sr. When the melt was properly degassed using high-purity argon and filtered using a 20 ppi ceramic foam filter, prior to pouring the liquid metal into the mold sprue, no measurable number of RE oxides was observed. In conclusion, the application of RE to aluminum castings would only lead to formation of a significant volume fraction of brittle intermetallics. In Ti-free alloys, identification of Ce- or La-intermetallics is doubtful due to the fairly thin thickness of the precipitated platelets (about 1 µm) and the possibility that most of the reported Al, Si, and other elements make the reported values for RE rather ambiguous. Full article
Show Figures

Figure 1

18 pages, 4220 KiB  
Article
Catalytic OBSiC Open Cell Foams for Methane-Rich Gas Production Through Hydrogasification of Plastic Waste
by Emilia Saraceno, Eugenio Meloni, Alberto Giaconia and Vincenzo Palma
Catalysts 2025, 15(2), 152; https://doi.org/10.3390/catal15020152 - 6 Feb 2025
Cited by 1 | Viewed by 919
Abstract
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A [...] Read more.
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A notable innovation is transforming plastic waste into methane-rich streams via catalytic hydrogasification, a process in which carbon-based feedstocks interact with hydrogen using a selective catalyst. In this study, a structured catalyst was developed, characterized, and tested for converting plastic waste samples. The thermal degradation properties of plastic waste were first studied using thermogravimetric analysis. The catalyst was prepared using an Oxygen Bonded Silicon Carbide (OBSiC) open-cell foam as the carrier, coated with γ-Al2O3-based washcoat, CeO2, and Ni layers. It was characterized in terms of specific surface area, coating adhesion, pore distribution, acidity, and the strength of its active sites. Experimental tests revealed that a hydrogen-enriched atmosphere significantly enhances CH4 formation. Specifically, during catalytic hydrogasification, methane selectivity reached approximately 59%, compared to 6.7%, 13.7%, and 7.8% observed during pyrolysis, catalyzed pyrolysis, and non-catalyzed hydrogasification tests, respectively. This study presents a novel and effective approach for converting plastic waste using a structured catalyst, a method rarely explored in literature. Full article
Show Figures

Figure 1

15 pages, 2601 KiB  
Article
Physicochemical Studies of Opoka as a Raw Material Component of Sodium Silicate Mixture for Subsequent Synthesis of Foam Glass Material Based on It
by Bibol Zhakipbayev, Alexandr Kolesnikov, Samal Syrlybekkyzy, Leila Seidaliyeva, Akmaral Koishina and Lyailim Taizhanova
J. Compos. Sci. 2025, 9(2), 70; https://doi.org/10.3390/jcs9020070 - 4 Feb 2025
Cited by 1 | Viewed by 1007
Abstract
The present article presents the results of physical and chemical studies of opoka. In particular, the opoka was subjected to chemical analysis, X-ray phase, differential thermal analysis, scanning microscopy, and X-ray energy dispersive elemental microanalysis. The opoka was studied with the aim of [...] Read more.
The present article presents the results of physical and chemical studies of opoka. In particular, the opoka was subjected to chemical analysis, X-ray phase, differential thermal analysis, scanning microscopy, and X-ray energy dispersive elemental microanalysis. The opoka was studied with the aim of using it as an available raw material for obtaining a sodium silicate mixture and, in the future, developing an energy-saving technology for obtaining a building heat-insulating and sound-insulating foam glass material based on it, using synthesis. As a result of the studies, the chemical composition of the opoka was determined, which is 69–80% represented by silica. The elemental composition of the opoka was established, which is represented by 94.25% oxides of Si, Al, and Fe. The presence of such oxides makes it an ideal raw material component of a silicate-sodium mixture for the subsequent synthesis of foam glass material from it. Experimental exploratory studies on the synthesis of foam glass based on opoka have been carried out. The experimentally obtained sample of foam glass material consists of 93.37% Si, Al, Mg, and Na oxides, has a porous structure with a pore size of 2–5 microns, an average density of 375 kg/m3, thermal conductivity of 0.063 W/(m °C) at 25 °C, and noise absorption of 51.6 Db. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

Back to TopTop