Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads
Abstract
:1. Introduction
2. Experimental Process
3. Results and Discussion
3.1. Effect of Alloy Composition
3.2. Effect of the Strontium Concentration of the Modifying Agent
3.3. Effect of Boron Grain Refining
3.4. Effect of Hydrogen
3.5. Mechansim of Grain Refining with B
4. Conclusions
- The values of the ultimate and yield strengths of the samples from the lost foam process are consistent with the mechanical properties presented in most reference works for the same secondary dendritic arm spacing; however, the value of ductility is reduced by half by the porosity observed in the LFC samples.
- The values of hardness and yield strength vary according to the chemical composition of the alloy used. Gains of 17% and 24% are observed for hardness and the yield strength for alloy 357 compared to alloy 356. This difference is caused by the different concentrations of magnesium which, under the action of the T6 heat treatment, precipitate in the form of Mg2Si.
- The hardness of alloy 220 increases by 18% and the yield strength by 15% compared to that measured for alloy 356. In this case, the hardening phase Al2Cu is responsible for this increase. All these increases in the hardness value are independent of the type of mold used. In addition, the hardness value is affected by the solidification rate.
- No effect was observed with the concentration of strontium in the master alloy used for modification i.e., Al-3%Sr or Al-10%Sr, on the mechanical properties of samples from any type of molds.
- The addition of 150 ppm boron decreases the ductility of samples of alloy 356 by 23% and increases the ductility of samples of alloy 220 by 150%.
- The properties of alloy 356 are controlled by the eutectic, and any influence on grain size per se is secondary. However, for alloy 220, the grain size is particularly important for the distribution of intermetallic particles, since grain refining redistributes these particles in a more favorable manner.
- The study confirms that Sr modification, B refining, and degassing reduce SDAS and porosity, yielding superior mechanical properties. These findings can provide useful information in the production of high-strength automotive components using lost foam casting.
- Boron-treated samples exhibited increased nucleation density of the α-Al grains, reducing SDAS and enhancing yield strength by ~15%.
Suggested Ideas for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shroyer, H.F. Cavityless Casting Mold and Method of Making Same. U.S. Patent 2,830,343, 15 April 1958. [Google Scholar]
- Ambert, P.; Barge, H.; Bourhis, J.R.; Esperou, J. Mise en évidence, âge et niveau technique des exploitations préhistoriques cuprifères de Cabrières (Hérault). Archéol. Languedoc 1985, 3, 91–95. [Google Scholar]
- Barron, J.H. Full Mold Process-the Direct Approach to Metal Casting. AFS Trans. 1965, 73, 129–132. [Google Scholar]
- Dieter, H.B.; Paoli, A.J. Sand Without Binder for Making Full Mold Castings. AFS Trans. 1967, 75, 146–160. [Google Scholar]
- McElroy, J. Lost Foam Casting Breaks Into High Volume. Automot. Ind. 1982, 162, 43–44. [Google Scholar]
- Mullins, P.J. Adhesives Europe—The New Ties That Bind. Automot. Ind. 1984, 164, 60. [Google Scholar]
- Lincoln, M. Lost Foam Finds New Applications. Mach. Prod. Eng. 1984, 142, 28. [Google Scholar]
- Gellert, R. Styropor and Lost Foam Casting Technology. In Proceedings of the 4th annual EPC Conference, Copenhagen, Denmark, 4–7 June 1989; pp. 63–76. [Google Scholar]
- Alfredo, D.D. Progress in the FIeld of Casting Quality Through Innovation and Evaluation of Tooling and Cluster Preparation Equipment. In Proceedings of the 4th annual EPC Conference, Copenhagen, Denmark, 4–7 June 1989; pp. 107–120. [Google Scholar]
- Rodgers, R.C. Navistar Restructures its Indianapolis Foundry for Global Competition. Foundry Manag. Technol. 1989, 117, 32–38. [Google Scholar]
- Sonnenberg, F. Recent Innovations With EPS Lost Foam Beads. AFS Trans. 2003, 111, 1214–1230. [Google Scholar]
- Deev, V.B.; Ponomareva, K.V.; Kutsenko, A.I.; Prikhodko, O.G.; Smetanyuk, S.V. Influence of melting conditions of aluminum alloys on the properties and quality of castings obtained by lost foam casting. Russ. J. Non-Ferr. Met. 2017, 58, 470–474. [Google Scholar] [CrossRef]
- Jiang, W.; Li, G.; Fan, Z.; Wang, L.; Liu, F. Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting. Met. Mater. Trans. A 2016, 47, 2462–2470. [Google Scholar] [CrossRef]
- Griffiths, W.D.; Ainsworth, M.J. Instability of the Liquid Metal–Pattern Interface in the Lost Foam Casting of Aluminum Alloys. Met. Mater. Trans. A 2016, 47, 3137–3149. [Google Scholar] [CrossRef]
- Singh, C.V.; Warner, D.H. Mechanisms of Guinier–Preston zone hardening in the thermal limit. Acta Mater. 2010, 58, 5797–5805. [Google Scholar] [CrossRef]
- Duparc, O.H. The Preston of the Guinier-Preston Zones. Guinier. Met. Mater. Trans. A 2010, 41, 1873–1882. [Google Scholar] [CrossRef]
- Tavitas-Medrano, F.J.; Mohamed, A.M.A.; Gruzleski, J.E.; Samuel, F.H.; Doty, H.W. Precipitation-hardening in cast Al–Si–Cu–Mg alloys. J. Mater. Sci. 2010, 45, 641–651. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Effect of Aging Conditions on Precipitation Hardening in Al–Si–Mg and Al–Si–Cu–Mg Alloys. Inter. Met. 2017, 11, 274–286. [Google Scholar] [CrossRef]
- Liu, M.; Fu, H.; Xu, C.; Xiao, W.; Peng, Q.; Yamagata, H.; Ma, C. Precipitation kinetics and hardening mechanism in Al-Si solid solutions processed by high pressure solution treatment. Mater. Sci. Eng. A 2018, 712, 757–764. [Google Scholar] [CrossRef]
- Wilm, A. Physikalisch-metallurgische Untersuchungen über magnesiumhaltige Aluminiumlegierungen. Métallurgie 1911, 8, 225. [Google Scholar]
- Joseph, S.; Kumar, S. Role of Si modification on the compressive flow behavior of Al–Si based alloy. Mater. Charact. 2015, 110, 272–281. [Google Scholar] [CrossRef]
- Joseph, S.; Kumar, S. A systematic investigation of fracture mechanisms in Al–Si based eutectic alloy—Effect of Si modification. Mater. Sci. Eng. A 2013, 588, 111–124. [Google Scholar] [CrossRef]
- Zhang, W.X.; Chen, Y.Z.; Zhou, L.; Zhao, T.T.; Wang, W.Y.; Liu, F.; Huang, X.X. Simultaneous increase of tensile strength and ductility of Al-Si solid solution alloys: The effect of solute Si on work hardening and dislocation behaviors. Mater. Sci. Eng. A 2023, 869, 144792. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lee, M.-G.; Hariharan, K.; Hong, S.-T.; Choi, I.-S.; Kim, D.; Oh, K.H.; Han, H.N. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. Int. J. Plast. 2017, 94, 148–170. [Google Scholar] [CrossRef]
- Samuel, A.M.; Samuel, F.H. Various aspects involved in the production of low-hydrogen aluminium castings. J. Mater. Sci. 1992, 27, 6533–6563. [Google Scholar] [CrossRef]
- DiGiovanni, M.T.; de Menezes, J.T.O.; Cerri, E.; Castrodeza, E.M. Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy. J. Mater. Res. Technol. 2020, 9, 1286–1295. [Google Scholar] [CrossRef]
- Dash, S.S.; Chen, D. A Review on Processing–Microstructure–Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Robles Hernandez, F.C.; Herrera Ramírez, J.M.; Mackay, R. Applications in the Automotive and Aerospace Industries. In Al-Si Alloys; Springer International Publishing: Cham, Switzerland, 2017; pp. 163–171. [Google Scholar]
- Pezda, J.; Jezierski, J. Non-Standard T6 Heat Treatment of the Casting of the Combustion Engine Cylinder Head. Materials 2020, 13, 4114. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Z.; Hellawell, A. The mechanism of silicon modification in aluminumsilicon alloys: Impurity induced twinning. Metall. Mater. Trans. A 1987, 18, 1721–1733. [Google Scholar] [CrossRef]
- Makhlouf, M.; Guthy, H. The aluminum-silicon eutectic reaction: Mechanisms and crystallography. J. Light Met. 2001, 1, 199–218. [Google Scholar] [CrossRef]
- Timpel, M.; Wanderka, N.; Schlesiger, R.; Yamamoto, T.; Lazarev, N.; Isheim, D.; Schmitz, G.; Matsumura, S.; Banhart, J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012, 60, 3920–3928. [Google Scholar] [CrossRef]
- Guzowski, M.M.; Sigworth, G.K.; Senter, D.A. The role of boron in the grain refinement of aluminum with titanium. Metall. Trans. A 1987, 18, 603–619. [Google Scholar] [CrossRef]
- Gagnon, D.; Samuel, A.M.; Samuel, F.H.; Abdelaziz, M.H.; Doty, H.W. Melt Treatment-Porosity Formation Relationship in Al-Si Cast Alloys. In Casting Processes and Modelling of Metallic Materials; IntechOpen: London, UK, 2021. [Google Scholar]
- Abdelaziz, M.H.; Paradis, M.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Effect of Aluminum Addition on the Microstructure, Tensile Properties, and Fractography of Cast Mg-Based Alloys. Adv. Mater. Sci. Eng. 2017, 2017, 10. [Google Scholar] [CrossRef]
- Gil-Santos, A.; Moelans, N.; Hort, N.; Van der Biest, O. Identification and description of intermetallic compounds in Mg–Si–Sr cast and heat-treated alloys. J. Alloys Compd. 2016, 669, 123–133. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Elgallad, E.M.; Valtierra, S.; Doty, H.W.; Samuel, F.H. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys. Materials 2016, 9, 78. [Google Scholar] [CrossRef]
- Van der Biest, O.; Gil-Santos, A.; Hort, N.; Schmid-Fetzer, R.; Moelans, N. Study on Mg–Si–Sr Ternary Alloys for Biomedical Applications. In Magnesium Technology 2018; Orlov, D., Joshi, V., Solanki, K., Neelameggham, N., Eds.; TMS 2018; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.; Ma, Z.; Tao, T.; Gui, J.; Song, W.; Yang, B.; Zhang, H. Interactions between Fe-rich intermetallics and Mg-Si phase in Al-7Si-xMg alloys. J. Alloys Compd. 2019, 786, 205–214. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, H.R.; Chen, H.L.; Jia, L.N.; Zhang, H.R. Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process. China Foundry 2017, 14, 138–144. [Google Scholar] [CrossRef]
- Chen, R.; Shi, Y.; Xu, Q.; Liu, B.C. Effect of cooling rate on solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 1645–1652. [Google Scholar] [CrossRef]
- Birol, Y. Effect of silicon content in grain refining hypoeutectic Al–Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 2012, 28, 385–389. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, Y.; Lu, T.; Tao, S.; Wu, J. Effects of combinative addition of lanthanum and boron on grain refinement of Al–Si casting alloys. Mater. Des. 2014, 64, 423–426. [Google Scholar] [CrossRef]
- Sunitha, K.; Gurusami, K. Study of Al-Si alloys grain refinement by inoculation. Mater. Today Proc. 2021, 43, 1825–1829. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, B.; Chen, T.; Wu, J. Achieving superior grain refinement efficiency for Al–Si casting alloys through a novel Al–La–B grain refiner. J. Mater. Res. Technol. 2024, 30, 52–60. [Google Scholar] [CrossRef]
- Park, S.B. Heterogeneous nucleation models to predict grain size in solidification. Prog. Mater. Sci. 2022, 123, 100822. [Google Scholar] [CrossRef]
- Ammar, H.R.; Samuel, A.M.; Samuel, F.H.; Simielli, E.; Sigworth, G.K.; Lin, J.C. Influence of aging parameters on the tensile properties and quality index of Al-9 pct Si-1.8 pct Cu-0.5 pct Mg 354-type casting alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2012, 43, 61–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, D.; Wang, H.; Li, X.; Chen, L.; Sun, Z.; Wang, Z.; Zhai, T.; Fu, Y.; Wang, Y.; et al. Revealing the nucleation and growth mechanisms of Fe-rich phases in Al-Cu-Fe(-Si) alloys under the influence of Al-Ti-B. Intermetallics 2022, 146, 107584. [Google Scholar] [CrossRef]
- Nowak, M.; Bolzoni, L.; Babu, N.H. Grain refinement of A-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys. Mater. Des. 2015, 66, 366–375. [Google Scholar] [CrossRef]
- Bolzoni, L.; Nowak, M.; Babu, N.H. Grain refinement of Al-Si alloys by Nb-B inoculation. Part II: Application to commercial alloys. Mater. Des. 2015, 66, 376–383. [Google Scholar] [CrossRef]
- Samuel, E.; Samuel, A.M.; Songmene, V.; Samuel, F.H. A review on the analysis of thermal and thermodynamic aspects of grain refinement of aluminum-silicon-based alloys. Materials 2023, 16, 5639. [Google Scholar] [CrossRef] [PubMed]
- Srirangam, P.; Chattopadhyay, S.; Bhattacharya, A.; Nag, S.; Kaduk, J.; Shankar, S.; Banerjee, R.; Shibata, T. Probing the local atomic structure of Sr-modified Al–Si alloys. Acta Mater. 2014, 65, 185–193. [Google Scholar] [CrossRef]
- Ganesh, M.R.S.; Reghunath, N.; Levin, M.J.; Prasad, A.; Doondi, S.; Shankar, K.V. Strontium in Al–Si–Mg Alloy: A Review. Met. Mater. Int. 2022, 28, 1–40. [Google Scholar] [CrossRef]
- Fracchia, E.; Gobber, F.S.; Rosso, M. Effect of Alloying Elements on the Sr Modification of Al-Si Cast Alloys. Metals 2021, 11, 342. [Google Scholar] [CrossRef]
- Li, P.; Kandalova, E.G.; Nikitin, V.I. Grain refining performance of Al-Ti master alloys with different microstructures. Mater. Lett. 2005, 59, 723–727. [Google Scholar] [CrossRef]
- Sumalatha, C.; Rao, P.C.S.; Rao, V.S.; Deepak, M.S.K. Effect of grain refiner, modifier and graphene on the mechanical properties of hyper eutectic Al-Si alloys by experimental and numerical investigation. Mater. Today Proc. 2022, 62, 3891–3900. [Google Scholar] [CrossRef]
- Okayasu, M.; Yoshida, S. Influence of solidification rate on material properties of cast aluminium alloys based on Al–Si–Cu and Al–Si–Mg. Int. J. Cast Met. Res. 2014, 28, 105–116. [Google Scholar] [CrossRef]
- Zhu, B.; Leisner, P.; Seifeddine, S.; Jarfors, A.E. Influence of Si and cooling rate on microstructure and mechanical properties of Al-Si-Mg cast alloys. Surf. Interface Anal. 2016, 48, 861–869. [Google Scholar] [CrossRef]
Product | Average Beads Size (μm) | Potential Density (Kg/m3) | Weight of Blowing Agent (%) | n-Pentane (%) | Iso-Pentane (%) |
---|---|---|---|---|---|
T170B | 350 | 24.0 | 5.7–6.4 | 100 | 0 |
T180D | 350 | 17.6 | 6.2–7.0 | 70 | 15 |
X180 | 250 | 20.8 | 6.2–7.0 | 70 | 15 |
D180B | 450 | 16.0 | 6.2–7.0 | 70 | 15 |
Alloy | Si | Cu | Mg | Fe | Mn | Zn | Ti | Sr | Al |
---|---|---|---|---|---|---|---|---|---|
220 | 1.32 | 2.09 | 0.42 | 0.58 | 0.60 | 0.00 | 0.00 | 0.00 | bal. |
356 | 6.78 | 0.02 | 0.35 | 0.11 | 0.04 | 0.04 | 0.08 | 0.00 | bal. |
357 | 6.78 | 0.02 | 0.60 | 0.11 | 0.04 | 0.04 | 0.08 | 0.00 | bal. |
Variable | Level 1 | Level 2 | level 3 |
---|---|---|---|
A: Alloy composition * | 220 Al-2%Cu-0.4%Mg | 356 Al-7%Si-0.35%Mg | 357 Al-7%Si-0.6%Mg |
B: Al-Sr master alloys; Sr (ppm) | 0 | 200 (Al-3%Sr) | 200 ppm (Al-10%Sr) |
C: Boron (ppm) | 0 | 150 | - |
D: Hydrogen (mL H2/100 g Al) | 0.12 | 0.20 | - |
Code | Alloy | Condition | ||
---|---|---|---|---|
Al-Sr (%) Master Alloy (200 ppm) * | Boron (ppm) | H2 (mL/100 g) | ||
A01 | 356 | 3 * | 0 | 0.12 |
A02 | 356 | 10 * | 0 | 0.12 |
A03 | 356 | 3 * | 150 | 0.12 |
A04 | 356 | 10 * | 150 | 0.12 |
A05 | 356 | 3 * | 0 | 0.20 |
A06 | 356 | 10 * | 0 | 0.20 |
A07 | 356 | 3 * | 150 | 0.20 |
A08 | 356 | 10 * | 150 | 0.20 |
A09 | 356 | 0 | 0 | 0.12 |
A10 | 356 | 0 | 150 | 0.12 |
A11 | 356 | 0 | 0 | 0.20 |
A12 | 356 | 0 | 150 | 0.20 |
B01 | 357 | 3 * | 0 | 0.12 |
B02 | 357 | 10 * | 0 | 0.12 |
B03 | 357 | 3 * | 150 | 0.12 |
B04 | 357 | 10 * | 150 | 0.12 |
B05 | 357 | 3 * | 0 | 0.20 |
B06 | 357 | 10 * | 0 | 0.20 |
B07 | 357 | 3 * | 150 | 0.20 |
B08 | 357 | 10 * | 150 | 0.20 |
B09 | 357 | 0 | 0 | 0.12 |
B10 | 357 | 0 | 150 | 0.12 |
B11 | 357 | 0 | 0 | 0.20 |
B12 | 357 | 0 | 150 | 0.20 |
C01 | 220 | 3 * | 0 | 0.12 |
C02 | 220 | 10 * | 0 | 0.12 |
C03 | 220 | 3 * | 150 | 0.12 |
C04 | 220 | 10 * | 150 | 0.12 |
C05 | 220 | 3 * | 0 | 0.20 |
C06 | 220 | 10 * | 0 | 0.20 |
C07 | 220 | 3 * | 150 | 0.20 |
C08 | 220 | 10 * | 150 | 0.20 |
C09 | 220 | 0 | 0 | 0.12 |
C10 | 220 | 0 | 150 | 0.12 |
C11 | 220 | 0 | 0 | 0.20 |
C12 | 220 | 0 | 150 | 0.20 |
Step | 220 | 356 | 357 |
---|---|---|---|
Solutionizing treatment | 5 h @490 °C | 5 h @540 °C | 5 h @540 °C |
Quenching | Water @60 °C | Water @60 °C | Water @60 °C |
Stabilization | - | 24 h @20 °C | 24 h @20 °C |
Aging | 4 h @190 °C | 4 h @160 °C | 3 h @190 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doty, H.W.; Samuel, E.; Samuel, A.M.; Songmene, V.; Samuel, F.H. Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads. Materials 2025, 18, 1024. https://doi.org/10.3390/ma18051024
Doty HW, Samuel E, Samuel AM, Songmene V, Samuel FH. Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads. Materials. 2025; 18(5):1024. https://doi.org/10.3390/ma18051024
Chicago/Turabian StyleDoty, Herbert W., Ehab Samuel, Agnes M. Samuel, Victor Songmene, and Fawzy H. Samuel. 2025. "Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads" Materials 18, no. 5: 1024. https://doi.org/10.3390/ma18051024
APA StyleDoty, H. W., Samuel, E., Samuel, A. M., Songmene, V., & Samuel, F. H. (2025). Effect of Melt Treatment and Heat Treatment on the Performance of Aluminum Cylinder Heads. Materials, 18(5), 1024. https://doi.org/10.3390/ma18051024