Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,153)

Search Parameters:
Keywords = AR-gene mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
The Fanconi Anemia Pathway Inhibits mTOR Signaling and Prevents Accelerated Translation in Head and Neck Cancer Cells
by Bianca Ruffolo, Sara Vicente-Muñoz, Khyati Y. Mehta, Cosette M. Rivera-Cruz, Xueheng Zhao, Lindsey Romick, Kenneth D. R. Setchell, Adam Lane and Susanne I. Wells
Cancers 2025, 17(15), 2583; https://doi.org/10.3390/cancers17152583 - 6 Aug 2025
Abstract
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, [...] Read more.
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, including a heightened risk of head and neck squamous cell carcinoma (HNSCC). Non-synonymous FA gene mutations are also observed in up to 20% of sporadic HNSCCs. The mechanistic target of rapamycin (mTOR) is known to stimulate cell growth, anabolic metabolism including protein synthesis, and survival following genotoxic stress. Methods/Results: Here, we demonstrate that FA− deficient (FA−) HNSCC cells exhibit elevated intracellular amino acid levels, increased total protein content, and an increase in protein synthesis indicative of enhanced translation. These changes are accompanied by hyperactivation of the mTOR effectors translation initiation factor 4E Binding Protein 1 (4E-BP1) and ribosomal protein S6. Treatment with the mTOR inhibitor rapamycin reduced the phosphorylation of these targets and blocked translation specifically in FA− cells but not in their isogenic FA− proficient (FA+) counterparts. Rapamycin-mediated mTOR inhibition sensitized FA− but not FA+ cells to rapamycin under nutrient stress, supporting a therapeutic metabolism-based vulnerability in FA− cancer cells. Conclusions: These findings uncover a novel role for the FA pathway in suppressing mTOR signaling and identify mTOR inhibition as a potential strategy for targeting FA− HNSCCs. Full article
(This article belongs to the Special Issue Targeted Therapy in Head and Neck Cancer)
Show Figures

Figure 1

15 pages, 3830 KiB  
Article
ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
by Francesco Calì, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone and Mirella Vinci
Int. J. Mol. Sci. 2025, 26(15), 7586; https://doi.org/10.3390/ijms26157586 - 5 Aug 2025
Abstract
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome [...] Read more.
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome sequencing (WES) identified a de novo variant (c.1530dup, p.Glu511ArgfsTer16) in the ZNF496 gene of the proband. According to ACMG guidelines, this novel variant is classified as pathogenic. It creates a frameshift that introduces a premature stop codon, resulting in a truncated protein of 525 amino acids (compared to the wild-type 587 residues). Notably, NMDEscPredictor analysis predicted that the transcript escapes nonsense-mediated decay (NMD) despite the frameshift. Computational analyses suggest the potential pathogenetic effects of the identified variant. As documented, ZNF496 interacts with JARID2, a gene associated with NDDs, ID and facial dysmorphism (MIM: #620098). In silico analyses suggest that the identified mutation disrupts this interaction by deleting ZNF496’s C2H2 domain, potentially dysregulating JARID2 target genes. To our knowledge, this is the first reported association between ZNF496 and NDDs, and the variant has been submitted to the ClinVar database (SCV006100880). Functional studies are imperative to validate ZNF496’s role in NDDs and confirm the mutation’s impact on ZNF496-JARID2 interactions. Full article
Show Figures

Figure 1

13 pages, 1198 KiB  
Review
The Role of Mitochondrial DNA in Modulating Chemoresistance in Esophageal Cancer: Mechanistic Insights and Therapeutic Potential
by Koji Tanaka, Yasunori Masuike, Yuto Kubo, Takashi Harino, Yukinori Kurokawa, Hidetoshi Eguchi and Yuichiro Doki
Biomolecules 2025, 15(8), 1128; https://doi.org/10.3390/biom15081128 - 5 Aug 2025
Abstract
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress [...] Read more.
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress regulation, and apoptotic pathways. This review provides a comprehensive overview of the mechanisms by which mtDNA alterations, including mutations and copy number variations, drive chemoresistance in EC. Specific focus is given to the role of mtDNA in metabolic reprogramming, including its contribution to the Warburg effect and lipid metabolism, as well as its impact on epithelial–mesenchymal transition (EMT) and mitochondrial bioenergetics. Recent advances in targeting mitochondrial pathways through novel therapeutic agents, such as metformin and mitoquinone, and innovative approaches like CRISPR/Cas9 gene editing, are also discussed. These interventions highlight the potential for overcoming chemoresistance and improving patient outcomes. By integrating mitochondrial diagnostics with personalized treatment strategies, we propose a roadmap for future research that bridges basic mitochondrial biology with translational applications in oncology. The insights offered in this review emphasize the critical need for continued exploration of mtDNA-targeted therapies to address the unmet needs in EC management and other diseases associated with mitochondria. Full article
(This article belongs to the Special Issue Esophageal Diseases: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

24 pages, 5695 KiB  
Article
Impact of miR-181a on SIRT1 Expression and Senescence in Hutchinson–Gilford Progeria Syndrome
by Eva-Maria Lederer, Felix Quirin Fenzl, Peter Krüger, Moritz Schroll, Ramona Hartinger and Karima Djabali
Diseases 2025, 13(8), 245; https://doi.org/10.3390/diseases13080245 - 4 Aug 2025
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic cellular dysfunction. While autophagy and inflammation are key dysregulated pathways in HGPS, the role of microRNAs (miRNAs) in these processes remains poorly understood. Methods: We performed an extensive literature review to identify miRNAs involved in autophagy and inflammation. Through stem-loop RT-qPCR in aging HGPS and control fibroblast strains, we identified significant miRNAs and focused on the most prominent one, miR-181a-5p, for in-depth analysis. We validated our in vitro findings with miRNA expression studies in skin biopsies from an HGPS mouse model and conducted functional assays in human fibroblasts, including immunofluorescence staining, β-Galactosidase assay, qPCR, and Western blot analysis. Transfection studies were performed using an miR-181a-5p mimic and its inhibitor. Results: We identified miR-181a-5p as a critical regulator of premature senescence in HGPS. miR-181a-5p was significantly upregulated in HGPS fibroblasts and an HGPS mouse model, correlating with Sirtuin 1 (SIRT1) suppression and induction of senescence. Additionally, we demonstrated that TGFβ1 induced miR-181a-5p expression, linking inflammation to miRNA-mediated senescence. Inhibiting miR-181a-5p restored SIRT1 levels, increased proliferation, and alleviated senescence in HGPS fibroblasts, supporting its functional relevance in disease progression. Conclusions: These findings highlight the important role of miR-181a-5p in premature aging and suggest its potential as a therapeutic target for modulating senescence in progeroid syndromes. Full article
(This article belongs to the Section Rare Syndrome)
Show Figures

Figure 1

9 pages, 753 KiB  
Article
Combined Genetic and Transcriptional Study Unveils the Role of DGAT1 Gene Mutations in Congenital Diarrhea
by Jingqing Zeng, Jing Ma, Lan Wang, Zhaohui Deng and Ruen Yao
Biomedicines 2025, 13(8), 1897; https://doi.org/10.3390/biomedicines13081897 - 4 Aug 2025
Abstract
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine [...] Read more.
Background: Congenital diarrhea is persistent diarrhea that manifests during the neonatal period. Mutations in DGAT1, which is crucial for triglyceride synthesis and lipid absorption in the small intestine, are causal factors for congenital diarrhea. In this study, we aimed to determine the value of tissue RNA sequencing (RNA-seq) for assisting with the clinical diagnosis of some genetic variants of uncertain significance. Methods: We clinically evaluated a patient with watery diarrhea, vomiting, severe malnutrition, and total parenteral nutrition dependence. Possible pathogenic variants were detected using whole-exome sequencing (WES). RNA-seq was utilized to explore the transcriptional alterations in DGAT1 variants identified by WES with unknown clinical significance, according to the American College of Medical Genetics guidelines. Systemic examinations, including endoscopic and histopathological examinations of the intestinal mucosa, were conducted to rule out other potential diagnoses. Results: We successfully diagnosed a patient with congenital diarrhea and protein-losing enteropathy caused by a DGAT1 mutation and reviewed the literature of 19 cases of children with DGAT defects. The missense mutation c.620A>G, p.Lys207Arg located in exon 15, and the intronic mutation c.1249-6T>G in DGAT1 were identified by WES. RNA-seq revealed two aberrant splicing events in the DGAT1 gene of the patient’s small intestinal tissue. Both variants lead to loss-of-function consequences and are classified as pathogenic variants of congenital diarrhea. Conclusions: Rare DGAT1 variants were identified as pathogenic evidence of congenital diarrhea, and the detection of tissue-specific mRNA splicing and transcriptional effects can provide auxiliary evidence. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

27 pages, 1595 KiB  
Review
Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives
by Pierre Bougnères, Catherine Le Stunff and Romina Aron Badin
Biomedicines 2025, 13(8), 1892; https://doi.org/10.3390/biomedicines13081892 - 4 Aug 2025
Viewed by 62
Abstract
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological [...] Read more.
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological phenotype. X-ALD is one of these orphan diseases. It is caused by ABCD1 gene mutations and its main clinical form is adreno-myelo-neuropathy (AMN), a disabling spinal cord axonopathy starting in middle-aged adults. Unfortunately, the main cell types involved are yet poorly identified, complicating the choice of cells to be targeted by AAV vectors. Pioneering gene therapy studies were performed in the Abcd1-/y mouse model of AMN with AAV9 capsids carrying the ABCD1 gene. These studies tested ubiquitous or cell-specific promoters, various routes of vector injection, and different ages at intervention to either prevent or reverse the disease. The expression of one of these vectors was studied in the spinal cord of a healthy primate. In summary, gene therapy has made promising progress in the Abcd1-/y mouse model, inaugurating gene replacement strategies in AMN patients. Because X-ALD is screened neonatally in a growing number of countries, gene therapy might be applied in the future to patients before they become overtly symptomatic. Full article
Show Figures

Figure 1

21 pages, 2932 KiB  
Article
Stable Dopamine-Signaling mRNA Co-Expression in the Substantia Nigra Is Deregulated in Pathological Conditions, but Not in Dopamine Transporter Knockout Rats
by Anastasia N. Vaganova, Zoia S. Fesenko, Anna B. Volnova and Raul R. Gainetdinov
Biomolecules 2025, 15(8), 1117; https://doi.org/10.3390/biom15081117 - 3 Aug 2025
Viewed by 203
Abstract
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and [...] Read more.
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and striatum in public transcriptomic data represented in the GEO repository and then estimated the identified DAT co-expression pattern in DAT-KO rats by RT-PCR. In silico analysis confirmed DAT expression in the substantia nigra and absence of DAT mRNA in the striatum. Also, DAT is co-expressed with genes involved in dopamine signaling, but these associations are disrupted in dopamine neuron-damaging conditions. To estimate this co-expression pattern when DAT expression is lost, we evaluate it in the substantia nigra of DAT-KO rats. However, in DAT-KO rats the associations between genes involved in dopamine signaling were not disturbed compared to wild-type littermates, and tyrosine hydroxylase expression upregulation in the substantia nigra of these animals may be considered as compensation for the loss of dopamine reuptake. Further studies of expression regulation in dopamine neurons of DAT-KO rats may provide valuable information for compensatory mechanisms in substantia nigra dopaminergic neurons. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 1542 KiB  
Review
Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions
by Leonid A. Shaposhnikov, Aleksei S. Rozanov and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(15), 7483; https://doi.org/10.3390/ijms26157483 - 2 Aug 2025
Viewed by 148
Abstract
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous [...] Read more.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications. Full article
(This article belongs to the Special Issue Probiotics in Health and Disease)
Show Figures

Figure 1

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 - 2 Aug 2025
Viewed by 186
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 - 2 Aug 2025
Viewed by 168
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 649 KiB  
Review
Desmosomal Versus Non-Desmosomal Arrhythmogenic Cardiomyopathies: A State-of-the-Art Review
by Kristian Galanti, Lorena Iezzi, Maria Luana Rizzuto, Daniele Falco, Giada Negri, Hoang Nhat Pham, Davide Mansour, Roberta Giansante, Liborio Stuppia, Lorenzo Mazzocchetti, Sabina Gallina, Cesare Mantini, Mohammed Y. Khanji, C. Anwar A. Chahal and Fabrizio Ricci
Cardiogenetics 2025, 15(3), 22; https://doi.org/10.3390/cardiogenetics15030022 - 1 Aug 2025
Viewed by 86
Abstract
Arrhythmogenic cardiomyopathies (ACMs) are a phenotypically and etiologically heterogeneous group of myocardial disorders characterized by fibrotic or fibro-fatty replacement of ventricular myocardium, electrical instability, and an elevated risk of sudden cardiac death. Initially identified as a right ventricular disease, ACMs are now recognized [...] Read more.
Arrhythmogenic cardiomyopathies (ACMs) are a phenotypically and etiologically heterogeneous group of myocardial disorders characterized by fibrotic or fibro-fatty replacement of ventricular myocardium, electrical instability, and an elevated risk of sudden cardiac death. Initially identified as a right ventricular disease, ACMs are now recognized to include biventricular and left-dominant forms. Genetic causes account for a substantial proportion of cases and include desmosomal variants, non-desmosomal variants, and familial gene-elusive forms with no identifiable pathogenic mutation. Nongenetic etiologies, including post-inflammatory, autoimmune, and infiltrative mechanisms, may mimic the phenotype. In many patients, the disease remains idiopathic despite comprehensive evaluation. Cardiac magnetic resonance imaging has emerged as a key tool for identifying non-ischemic scar patterns and for distinguishing arrhythmogenic phenotypes from other cardiomyopathies. Emerging classifications propose the unifying concept of scarring cardiomyopathies based on shared structural substrates, although global consensus is evolving. Risk stratification remains challenging, particularly in patients without overt systolic dysfunction or identifiable genetic markers. Advances in tissue phenotyping, multi-omics, and artificial intelligence hold promise for improved prognostic assessment and individualized therapy. Full article
(This article belongs to the Section Cardiovascular Genetics in Clinical Practice)
Show Figures

Figure 1

23 pages, 2284 KiB  
Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
by Ericka Tudhope, Camilla M. Donnelly, Ashish Sethi, Cassandra David, Nicholas Williamson, Murray Stewart, Jade K. Forwood, Paul R. Gooley and Gregory W. Moseley
Viruses 2025, 17(8), 1075; https://doi.org/10.3390/v17081075 - 1 Aug 2025
Viewed by 282
Abstract
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for [...] Read more.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 - 1 Aug 2025
Viewed by 133
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

18 pages, 300 KiB  
Review
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
by John Jay Gargus
Genes 2025, 16(8), 923; https://doi.org/10.3390/genes16080923 (registering DOI) - 31 Jul 2025
Viewed by 345
Abstract
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in [...] Read more.
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as Homo sapiens evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. Methods: Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. Results: This impaired signaling affects the ER–mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique Itpr3 gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. Conclusions: Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the Itpr3 mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Graphical abstract

Back to TopTop