Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives
Abstract
1. Introduction
2. Clinical Manifestations of AMN
3. The Neuropathology of AMN
4. The ABCD1 Gene
5. Cell Types Involved in AMN Pathology
5.1. Oligodendrocytes
5.2. Neurons
5.3. Microglia and Astrocytes
5.4. Other CNS Cells
5.5. Schwann Cells
5.6. Cells of the Adrenal Cortex
6. Abcd1 Knockout Mouse Model of AMN
6.1. Motor Phenotype
6.2. Neuropathology in Abcd1-/y Mouse
6.3. VLCFA Accumulation in the CNS of Abcd1-/y Mice
6.4. Limitations of the Abcd1-/y Mouse Model
7. How to Evaluate Gene Therapy Effects in Abcd1-/y Mice
7.1. Analyzing Gene Therapy Attempts to Rescue the Pathology of Abcd1-/y Mice
Sex
7.2. Prevention or Improvement of Motor Deficits
7.3. Cell Transduction
7.4. VLCFA Accumulation in the CNS
8. Gene Therapy Attempts in Abcd1-/y Mice
8.1. Early Cell and Gene Therapy Targeting HSC or Microglia
8.2. Neuron-Targeting Gene Therapy
8.2.1. Preventive Approaches
8.2.2. Clinical Phenotypes
8.2.3. Late Studies in a Separate Group of Vector-Treated Abcd1-/y Mice
8.3. Gene Therapy Targeting OL
8.3.1. For Prevention
8.3.2. Another Series of Experiments Attempted to Treat the Disease at the Time of Symptoms in Adult Abcd1-/y Mice
8.4. Gene Therapy Targeting Schwann Cells
8.5. Adrenal Targeting Gene Therapy
9. Effects of AAV9-ABCD1 Vectors in Non-Human Primates (NHP)
9.1. Efficacy in Spinal Cord
9.2. Vector Transduction in Adrenals
9.3. Safety
10. Considerations for Future Gene Therapy in AMN Patients
10.1. A Brief View of AMN Natural History
10.2. Before the First Clinical Manifestations
10.3. Gene Therapy for Symptomatic AMN
11. Temporary Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAVs | adeno-associated vectors |
ABC | ATP synthase (ATP)-binding cassette |
ABCD1 | ATP-binding cassette subfamily B member-1 gene |
ALDP | ALD protein |
AMN | adrenomyeloneuropathy |
cALD | cerebral ALD |
cAMN | cerebral AMN |
BBB | blood–brain barrier |
CBA | chicken beta-actin |
CNS | central nervous system |
CSF | cerebral spinal fluid |
DRG | dorsal root ganglia |
ELOVL1 | very-long-chain-fatty acid elongase-1 |
FLAIR | fluid-attenuated inversion recovery MRI sequences |
GFAP | glial fibrillary acidic protein |
HSC | hematopoietic stem cells |
ICM | intra-cisterna magna |
ICV | intracerebroventricular |
IT | intrathecal |
IV | intravenous |
KO | knockout |
MRI | magnetic resonance imaging |
NHP | Non-human primate |
OL | oligodendrocytes |
PMP70 | 70-kDa peroxisomal membrane protein |
PNS | peripheral nerve system |
S1P | sphingosine-1-P |
X-ALD | X-linked adrenoleukodystrophy |
References
- Moser, H.W.; Mahmood, A.; Raymond, G. X-linked adrenoleukodystrophy. Nat. Clin. Pract. Neurol. 2007, 3, 140–151. [Google Scholar] [CrossRef] [PubMed]
- van Geel, B.r.M.; Assies, J.; Weverling, G.J.; Barth, P.G. Predominance of the adrenomyeloneuropathy phenotype of X-linked adrenoleukodystrophy in the Netherlands: A survey of 30 kindreds. Neurology 1994, 44, 2343. [Google Scholar] [CrossRef]
- Sereni, C.; Paturneau-Jouas, M.; Aubourg, P.; Baumann, N.; Feingold, J. Adrenoleukodystrophy in France: An epidemiological study. Neuroepidemiology 1993, 12, 229–233. [Google Scholar] [CrossRef]
- Bezman, L.; Moser, A.B.; Raymond, G.V.; Rinaldo, P.; Watkins, P.A.; Smith, K.D.; Kass, N.E.; Moser, H.W. Adrenoleukodystrophy: Incidence, new mutation rate, and results of extended family screening. Ann. Neurol. 2001, 49, 512–517. [Google Scholar] [CrossRef]
- Priestley, J.R.C.; Adang, L.A.; Drewes Williams, S.; Lichter-Konecki, U.; Menello, C.; Engelhardt, N.M.; DiPerna, J.C.; DiBoscio, B.; Ahrens-Nicklas, R.C.; Edmondson, A.C.; et al. Newborn Screening for X-Linked Adrenoleukodystrophy: Review of Data and Outcomes in Pennsylvania. Int. J. Neonatal Screen. 2022, 8, 24. [Google Scholar] [CrossRef]
- Burton, B.K.; Hickey, R.; Hitchins, L.; Shively, V.; Ehrhardt, J.; Ashbaugh, L.; Peng, Y.; Basheeruddin, K. Newborn screening for X-linked adrenoleukodystrophy: The initial Illinois experience. Int. J. Neonatal Screen. 2022, 8, 6. [Google Scholar] [CrossRef]
- Chen, H.-A.; Hsu, R.-H.; Chen, P.-W.; Lee, N.-C.; Chiu, P.-C.; Hwu, W.-L.; Chien, Y.-H. High incidence of null variants identified from newborn screening of X-linked adrenoleukodystrophy in Taiwan. Mol. Genet. Metab. Rep. 2022, 32, 100902. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.R.; Brosco, J.; Comeau, A.M.; Green, N.S.; Grosse, S.D.; Jones, E.; Kwon, J.M.; Lam, W.K.; Ojodu, J.; Prosser, L.A. Newborn screening for X-linked adrenoleukodystrophy: Evidence summary and advisory committee recommendation. Genet. Med. 2017, 19, 121–126. [Google Scholar] [CrossRef]
- Mares Beltran, C.F.; Tise, C.G.; Barrick, R.; Niehaus, A.D.; Sponberg, R.; Chang, R.; Enns, G.M.; Abdenur, J.E. Newborn Screening for X-Linked Adrenoleukodystrophy (X-ALD): Biochemical, Molecular, and Clinical Characteristics of Other Genetic Conditions. Genes 2024, 15, 838. [Google Scholar] [CrossRef]
- Moser, A.B.; Jones, R.O.; Hubbard, W.C.; Tortorelli, S.; Orsini, J.J.; Caggana, M.; Vogel, B.H.; Raymond, G.V. Newborn screening for X-linked adrenoleukodystrophy. Int. J. Neonatal Screen. 2016, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Prinzi, J.; Pasquali, M.; Hobert, J.A.; Palmquist, R.; Wong, K.N.; Francis, S.; De Biase, I. Diagnosing X-linked adrenoleukodystrophy after implementation of newborn screening: A reference laboratory perspective. Int. J. Neonatal Screen. 2023, 9, 64. [Google Scholar] [CrossRef]
- Shimozawa, N.; Takashima, S.; Kawai, H.; Kubota, K.; Sasai, H.; Orii, K.; Ogawa, M.; Ohnishi, H. Advanced diagnostic system and introduction of newborn screening of adrenoleukodystrophy and peroxisomal disorders in Japan. Int. J. Neonatal Screen. 2021, 7, 58. [Google Scholar] [CrossRef]
- Turk, B.R.; Theda, C.; Fatemi, A.; Moser, A.B. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int. J. Dev. Neurosci. 2020, 80, 52–72. [Google Scholar] [CrossRef]
- Vogel, B.; Bradley, S.; Adams, D.; D’Aco, K.; Erbe, R.; Fong, C.; Iglesias, A.; Kronn, D.; Levy, P.; Morrissey, M. Newborn screening for X-linked adrenoleukodystrophy in New York State: Diagnostic protocol, surveillance protocol and treatment guidelines. Mol. Genet. Metab. 2015, 114, 599–603. [Google Scholar] [CrossRef]
- Wiens, K.; Berry, S.A.; Choi, H.; Gaviglio, A.; Gupta, A.; Hietala, A.; Kenney-Jung, D.; Lund, T.; Miller, W.; Pierpont, E.I. A report on state-wide implementation of newborn screening for X-linked adrenoleukodystrophy. Am. J. Med. Genet. Part A 2019, 179, 1205–1213. [Google Scholar] [CrossRef]
- Lee, S.; Clinard, K.; Young, S.P.; Rehder, C.W.; Fan, Z.; Calikoglu, A.S.; Bali, D.S.; Bailey, D.B.; Gehtland, L.M.; Millington, D.S. Evaluation of X-linked adrenoleukodystrophy newborn screening in North Carolina. JAMA Netw. Open 2020, 3, e1920356. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.L.; Li, H.; Hagar, A.F.; Jerris, S.C.; Wittenauer, A.; Wilcox, W. Newborn screening for X-linked Adrenoleukodystrophy in Georgia: Experiences from a pilot study screening of 51,081 newborns. Int. J. Neonatal Screen. 2020, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Videbæk, C.; Melgaard, L.; Lund, A.M.; Grønborg, S.W. Newborn screening for adrenoleukodystrophy: International experiences and challenges. Mol. Genet. Metab. 2023, 140, 107734. [Google Scholar] [CrossRef] [PubMed]
- Oates, E.C.; Reddel, S.; Rodriguez, M.L.; Gandolfo, L.C.; Bahlo, M.; Hawke, S.H.; Lamandé, S.R.; Clarke, N.F.; North, K.N. Autosomal dominant congenital spinal muscular atrophy: A true form of spinal muscular atrophy caused by early loss of anterior horn cells. Brain 2012, 135, 1714–1723. [Google Scholar] [CrossRef]
- Bougnères, P.; Le Stunff, C. Revisiting the physiopathology of X-Adrenomyeloneuropathy. Genes 2025, 16, 590. [Google Scholar] [CrossRef]
- Budka, H.; Sluga, E.; Heiss, W.D. Spastic paraplegia associated with Addison’s disease: Adult variant of adreno-leukodystrophy. J. Neurol. 1976, 213, 237–250. [Google Scholar] [CrossRef]
- Schaumburg, H.H.; Powers, J.M.; Raine, C.S.; Spencer, P.S.; Griffin, J.W.; Prineas, J.W.; Boehme, D.M. Adrenomyeloneuropathy: A probable variant of adrenoleukodystrophy. II. General pathologic, neuropathologic, and biochemical aspects. Neurology 1977, 27, 1114–1119. [Google Scholar] [CrossRef]
- Griffin, J.W.; Goren, E.; Schaumburg, H.; Engel, W.K.; Loriaux, L. Adrenomyeloneuropathy: A probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology 1977, 27, 1107–1113. [Google Scholar] [CrossRef]
- Powers, J.M.; DeCiero, D.P.; Ito, M.; Moser, A.B.; Moser, H.W. Adrenomyeloneuropathy: A neuropathologic review featuring its noninflammatory myelopathy. J. Neuropathol. Exp. Neurol. 2000, 59, 89–102. [Google Scholar] [CrossRef]
- Corre, C.S.; Grant, N.; Sadjadi, R.; Hayden, D.; Becker, C.; Gomery, P.; Eichler, F.S. Beyond gait and balance: Urinary and bowel dysfunction in X-linked adrenoleukodystrophy. Orphanet J. Rare Dis. 2021, 16, 14. [Google Scholar] [CrossRef]
- Hofereiter, J.; Smith, M.D.; Seth, J.; Tudor, K.I.; Fox, Z.; Emmanuel, A.; Murphy, E.; Lachmann, R.H.; Panicker, J. Bladder and bowel dysfunction is common in both men and women with mutation of the ABCD1 gene for X-linked adrenoleukodystrophy. JIMD Rep. 2015, 22, 77–83. [Google Scholar] [PubMed]
- Silveri, M.; De Gennaro, M.; Gatti, C.; Bizzarri, C.; Mosiello, G.; Cappa, M. Voiding dysfunction in X-linked adrenoleukodystrophy: Symptom score and urodynamic findings. J. Urol. 2004, 171, 2651–2653. [Google Scholar] [CrossRef] [PubMed]
- Kararizou, E.; Karandreas, N.; Davaki, P.; Davou, R.; Vassilopoulos, D. Polyneuropathies in teenagers: A clinicopathological study of 45 cases. Neuromuscul. Disord. 2006, 16, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; van der Kooi, A.J.; Kemp, S.; Wanders, R.J.; Sistermans, E.A.; Waterham, H.R.; Koelman, J.T.; van Geel, B.M.; de Visser, M. X-linked adrenomyeloneuropathy due to a novel missense mutation in the ABCD1 start codon presenting as demyelinating neuropathy. J. Peripher. Nerv. Syst. 2011, 16, 353–355. [Google Scholar] [CrossRef]
- Cartier, N.; Hacein-Bey-Abina, S.; Bartholomae, C.C.; Veres, G.; Schmidt, M.; Kutschera, I.; Vidaud, M.; Abel, U.; Dal-Cortivo, L.; Caccavelli, L.; et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009, 326, 818–823. [Google Scholar] [CrossRef]
- Van Geel, B.M.; Bezman, L.; Loes, D.J.; Moser, H.W.; Raymond, G.V. Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2001, 49, 186–194. [Google Scholar] [CrossRef]
- Edwin, D.; Speedie, L.; Naidu, S.; Moser, H. Cognitive impairment in adult-onset adrenoleukodystrophy. Mol. Chem. Neuropathol. 1990, 12, 167–176. [Google Scholar] [CrossRef]
- Engelen, M.; Kemp, S.; De Visser, M.; van Geel, B.M.; Wanders, R.J.; Aubourg, P.; Poll-The, B.T. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 2012, 7, 51. [Google Scholar] [CrossRef]
- Powers, J.M. Adreno-leukodystrophy (adreno-testiculo-leukomyelo-neuropathic-complex). Clin. Neuropathol. 1985, 4, 181–199. [Google Scholar]
- Aubourg, P.; MandelL, J.-L. X-linked adrenoleukodystrophy. Ann. N. Y. Acad. Sci. 1996, 804, 461–476. [Google Scholar] [CrossRef]
- O’Neill, B.P.; Moser, H.W.; Saxena, K.M.; Marmion, L.C. Adrenoleukodystrophy: Clinical and biochemical manifestations in carriers. Neurology 1984, 34, 798–801. [Google Scholar] [CrossRef]
- Moser, H.; Smith, K.; Watkins, P.; Powers, J.; Moser, A. X-linked adrenoleukodystrophy. In The Online Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Huffnagel, I.C.; Dijkgraaf, M.G.; Janssens, G.E.; van Weeghel, M.; van Geel, B.M.; Poll-The, B.T.; Kemp, S.; Engelen, M. Disease progression in women with X-linked adrenoleukodystrophy is slow. Orphanet J. Rare Dis. 2019, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- El-Deiry, S.S.; Naidu, S.; Blevins, L.S.; Ladenson, P.W. Assessment of adrenal function in women heterozygous for adrenoleukodystrophy. J. Clin. Endocrinol. Metab. 1997, 82, 856–860. [Google Scholar] [CrossRef] [PubMed]
- van Geel, B.M.; Koelman, J.H.; Barth, P.G.; Ongerboer de Visser, B.W. Peripheral nerve abnormalities in adrenomyeloneuropathy: A clinical and electrodiagnostic study. Neurology 1996, 46, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.; Huffnagel, I.C.; Linthorst, G.E.; Wanders, R.J.; Engelen, M. Adrenoleukodystrophy–neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 2016, 12, 606–615. [Google Scholar] [CrossRef]
- Laureti, S.; Casucci, G.; Santeusanio, F.; Angeletti, G.; Aubourg, P.; Brunetti, P. X-linked adrenoleukodystrophy is a frequent cause of idiopathic Addison’s disease in young adult male patients. J. Clin. Endocrinol. Metab. 1996, 81, 470–474. [Google Scholar]
- Hsieh, S.; White, P.C. Presentation of primary adrenal insufficiency in childhood. J. Clin. Endocrinol. Metab. 2011, 96, E925–E928. [Google Scholar] [CrossRef]
- Gumbinas, M.; Liu, H.M.; Dawson, G.; Larsen, M.; Green, O. Progressive spastic paraparesis and adrenal insufficiency. Arch. Neurol. 1976, 33, 678–680. [Google Scholar] [CrossRef]
- Schaumburg, H.H.; Powers, J.M.; Spencer, P.S.; Raine, C.S.; Prineas, J.W.; Boehme, D.M. The myeloneuropathy variant of adrenoleukodystrophy. J. Neuropathol. Exp. Neurol. 1976, 35, 312. [Google Scholar] [CrossRef]
- Probst, A.; Ulrich, J.; Heitz, P.U.; Herschkowitz, N. Adrenomyeloneuropathy. A protracted, pseudosystematic variant of adrenoleukodystrophy. Acta Neuropathol. 1980, 49, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Satoh, S.; Monma, N.; Satoh, T.; Satodate, R.; Saiki, K. Adrenoleukodystrophy: Report of an Autopsy Case with Adrenoleukomyeloneuropathy. Acta Patholigica Jpn. 1986, 36, 1055–1066. [Google Scholar] [CrossRef]
- Powers, J.M.; DeCiero, D.P.; Cox, C.; Richfield, E.K.; Ito, M.; Moser, A.B.; Moser, H.W. The dorsal root ganglia in adrenomyeloneuropathy: Neuronal atrophy and abnormal mitochondria. J. Neuropathol. Exp. Neurol. 2001, 60, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Berenson, A.; Laheji, F.; Gao, G.; Wang, D.; Ng, C.; Volak, A.; Kok, R.; Kreouzis, V.; Dijkstra, I.M.; et al. Intrathecal Adeno-Associated Viral Vector-Mediated Gene Delivery for Adrenomyeloneuropathy. Hum. Gene Ther. 2019, 30, 544–555. [Google Scholar] [CrossRef]
- Hirai, T.; Enomoto, M.; Machida, A.; Yamamoto, M.; Kuwahara, H.; Tajiri, M.; Hirai, Y.; Sotome, S.; Mizusawa, H.; Shinomiya, K. Intrathecal shRNA-AAV9 inhibits target protein expression in the spinal cord and dorsal root ganglia of adult mice. Hum. Gene Ther. Part B Methods 2012, 23, 119–127. [Google Scholar] [CrossRef]
- Bailey, R.M.; Armao, D.; Nagabhushan Kalburgi, S.; Gray, S.J. Development of Intrathecal AAV9 Gene Therapy for Giant Axonal Neuropathy. Mol. Ther. Methods Clin. Dev. 2018, 9, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dong, T.; Hu, Y.; De Pace, R.; Mattera, R.; Eberhardt, K.; Ziegler, M.; Pirovolakis, T.; Sahin, M.; Bonifacino, J.S. Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies. J. Clin. Investig. 2023, 133, e164575. [Google Scholar] [CrossRef] [PubMed]
- Federici, T.; Taub, J.S.; Baum, G.R.; Gray, S.J.; Grieger, J.C.; Matthews, K.A.; Handy, C.R.; Passini, M.A.; Samulski, R.J.; Boulis, N.M. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 2012, 19, 852–859. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Qiu, L.; Yang, C.; Kramer, J.; Su, Q.; Guo, Y.; Brown, R.H., Jr.; Gao, G.; Xu, Z. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum. Mol. Genet. 2014, 23, 668–681. [Google Scholar] [CrossRef]
- Foust, K.D.; Nurre, E.; Montgomery, C.L.; Hernandez, A.; Chan, C.M.; Kaspar, B.K. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009, 27, 59–65. [Google Scholar] [CrossRef]
- Martin, J.J.; Dompas, B.; Ceuterick, C.; Jacobs, K. Adrenomyeloneuropathy and adrenoleukodystrophy in two brothers. Eur. Neurol. 1980, 19, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.J.; Lowenthal, A.; Ceuterick, C.; Gacoms, H. Adrenomyeloneuropathy. A report on two families. J. Neurol. 1982, 226, 221–232. [Google Scholar] [CrossRef]
- Julien, J.J.; Vallat, J.M.; Vital, C.; Lagueny, A.; Ferrer, X.; Darriet, D. Adrenomyeloneuropathy: Demonstration of inclusions at the level of the peripheral nerve. Eur. Neurol. 1981, 20, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Koyama, A.; Koike, R.; Ohno, T.; Atsumi, T.; Miyatake, T. Adrenomyeloneuropathy: Report of a family and electron microscopical findings in peripheral nerve. J. Neurol. 1985, 232, 73–78. [Google Scholar] [CrossRef]
- Mosser, J.; Lutz, Y.; Stoeckel, M.E.; Sarde, C.O.; Kretz, C.; Douar, A.M.; Lopez, J.; Aubourg, P.; Mandel, J.L. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. Genet. 1994, 3, 265–271. [Google Scholar] [CrossRef]
- van Roermund, C.W.; Visser, W.F.; IJlst, L.; van Cruchten, A.; Boek, M.; Kulik, W.; Waterham, H.R.; Wanders, R.J. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl–CoA esters. FASEB J. 2008, 22, 4201–4208. [Google Scholar] [CrossRef]
- van Roermund, C.W.; Visser, W.F.; IJlst, L.; Waterham, H.R.; Wanders, R.J. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2011, 1811, 148–152. [Google Scholar] [CrossRef]
- Hama, K.; Fujiwara, Y.; Takashima, S.; Hayashi, Y.; Yamashita, A.; Shimozawa, N.; Yokoyama, K. Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells. J. Lipid Res. 2020, 61, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Wiesinger, C.; Kunze, M.; Forss-Petter, S.; Berger, J. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J. Biol. Chem. 2013, 288, 19269–19279. [Google Scholar] [CrossRef]
- Wanders, R.J.A.; Baes, M.; Ribeiro, D.; Ferdinandusse, S.; Waterham, H.R. The physiological functions of human peroxisomes. Physiol. Rev. 2023, 103, 957–1024. [Google Scholar] [CrossRef]
- Kemp, S.; Wei, H.-M.; Lu, J.-F.; Braiterman, L.T.; McGuinness, M.C.; Moser, A.B.; Watkins, P.A.; Smith, K.D. Gene redundancy and pharmacological gene therapy: Implications for X-linked adrenoleukodystrophy. Nat. Med. 1998, 4, 1261–1268. [Google Scholar] [CrossRef]
- Netik, A.; Forss-Petter, S.; Holzinger, A.; Molzer, B.; Unterrainer, G.; Berger, J. Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): Implications for therapy. Hum. Mol. Genet. 1999, 8, 907–913. [Google Scholar] [CrossRef]
- Fouquet, F.; Zhou, J.M.; Ralston, E.; Murray, K.; Troalen, F.; Magal, E.; Robain, O.; Dubois-Dalcq, M.; Aubourg, P. Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol. Dis. 1997, 3, 271–285. [Google Scholar] [CrossRef]
- Höftberger, R.; Kunze, M.; Weinhofer, I.; Aboul-Enein, F.; Voigtländer, T.; Oezen, I.; Amann, G.; Bernheimer, H.; Budka, H.; Berger, J. Distribution and cellular localization of adrenoleukodystrophy protein in human tissues: Implications for X-linked adrenoleukodystrophy. Neurobiol. Dis. 2007, 28, 165–174. [Google Scholar] [CrossRef]
- Muhuri, M.; Levy, D.I.; Schulz, M.; McCarty, D.; Gao, G. Durability of transgene expression after rAAV gene therapy. Mol. Ther. 2022, 30, 1364–1380. [Google Scholar] [CrossRef]
- Simons, M.; Nave, K.A. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2015, 8, a020479. [Google Scholar] [CrossRef]
- Simons, M.; Gibson, E.M.; Nave, K.A. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb. Perspect. Biol. 2024, 16, a041359. [Google Scholar] [CrossRef]
- Kassmann, C.M.; Lappe-Siefke, C.; Baes, M.; Brügger, B.; Mildner, A.; Werner, H.B.; Natt, O.; Michaelis, T.; Prinz, M.; Frahm, J.; et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet. 2007, 39, 969–976. [Google Scholar] [CrossRef] [PubMed]
- van de Beek, M.C.; Dijkstra, I.M.; van Lenthe, H.; Ofman, R.; Goldhaber-Pasillas, D.; Schauer, N.; Schackmann, M.; Engelen-Lee, J.Y.; Vaz, F.M.; Kulik, W.; et al. C26:0-Carnitine Is a New Biomarker for X-Linked Adrenoleukodystrophy in Mice and Man. PLoS ONE 2016, 11, e0154597. [Google Scholar] [CrossRef] [PubMed]
- Kassmann, C.M. Myelin peroxisomes–Essential organelles for the maintenance of white matter in the nervous system. Biochimie 2014, 98, 111–118. [Google Scholar] [CrossRef]
- Kassmann, C.M.; Quintes, S.; Rietdorf, J.; Möbius, W.; Sereda, M.W.; Nientiedt, T.; Saher, G.; Baes, M.; Nave, K.-A. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Lett. 2011, 585, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, E.; Teichberg, S.; Abrahams, S.J.; Citkowitz, E.; Crain, S.M.; Kawai, N.; Peterson, E.R. Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. J. Histochem. Cytochem. 1973, 21, 349–385. [Google Scholar] [CrossRef]
- Ahlemeyer, B.; Neubert, I.; Kovacs, W.J.; Baumgart-Vogt, E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J. Comp. Neurol. 2007, 505, 1–17. [Google Scholar] [CrossRef]
- Kleinecke, S.; Richert, S.; de Hoz, L.; Brügger, B.; Kungl, T.; Asadollahi, E.; Quintes, S.; Blanz, J.; McGonigal, R.; Naseri, K. Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. Elife 2017, 6, e23332. [Google Scholar] [CrossRef]
- Chung, H.-l.; Ye, Q.; Park, Y.-J.; Zuo, Z.; Mok, J.-W.; Kanca, O.; Tattikota, S.G.; Lu, S.; Perrimon, N.; Lee, H.K. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab. 2023, 35, 855–874.e5. [Google Scholar] [CrossRef]
- Maharaj, A.; Williams, J.; Bradshaw, T.; Güran, T.; Braslavsky, D.; Casas, J.; Chan, L.; Metherell, L.; Prasad, R. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J. Steroid Biochem. Mol. Biol. 2020, 202, 105730. [Google Scholar] [CrossRef]
- Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.W.; et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487, 443–448. [Google Scholar] [CrossRef]
- Chakravarthy, M.V.; Booth, F.W. Eating, exercise, and “thrifty” genotypes: Connecting the dots toward an evolutionary understanding of modern chronic diseases. J. Appl. Physiol. 2004, 96, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Freese, J.; Klement, R.J.; Ruiz-Núñez, B.; Schwarz, S.; Lötzerich, H. The sedentary (r) evolution: Have we lost our metabolic flexibility? F1000Research 2018, 6, 1787. [Google Scholar] [CrossRef]
- Asadollahi, E.; Nave, K.-A. Myelin lipid metabolism can provide energy for starved axons. Nat. Neurosci. 2024, 27, 1862–1863. [Google Scholar] [CrossRef]
- Späte, E.; Zhou, B.; Sun, T.; Kusch, K.; Asadollahi, E.; Siems, S.B.; Depp, C.; Werner, H.B.; Saher, G.; Hirrlinger, J. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 2024, 72, 1374–1391. [Google Scholar] [CrossRef]
- Ferrari Bardile, C.; Garcia-Miralles, M.; Caron, N.S.; Rayan, N.A.; Langley, S.R.; Harmston, N.; Rondelli, A.M.; Teo, R.T.Y.; Waltl, S.; Anderson, L.M.; et al. Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc. Natl. Acad. Sci. USA 2019, 116, 9622–9627. [Google Scholar] [CrossRef]
- Yeung, M.S.; Zdunek, S.; Bergmann, O.; Bernard, S.; Salehpour, M.; Alkass, K.; Perl, S.; Tisdale, J.; Possnert, G.; Brundin, L. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 2014, 159, 766–774. [Google Scholar] [CrossRef]
- Jäkel, S.; Agirre, E.; Mendanha Falcão, A.; van Bruggen, D.; Lee, K.W.; Knuesel, I.; Malhotra, D.; Ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2019, 566, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Bergles, D.E.; Richardson, W.D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 2016, 8, a020453. [Google Scholar] [CrossRef]
- Harris, J.J.; Attwell, D. The energetics of CNS white matter. J. Neurosci. 2012, 32, 356–371. [Google Scholar] [CrossRef] [PubMed]
- Yaron, A.; Schuldiner, O. Common and divergent mechanisms in developmental neuronal remodeling and dying back neurodegeneration. Curr. Biol. 2016, 26, R628–R639. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Medress, Z.A.; Barres, B.A. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell Biol. 2012, 196, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Schon, E.A.; Przedborski, S. Mitochondria: The next (neurode) generation. Neuron 2011, 70, 1033–1053. [Google Scholar] [CrossRef]
- McGuinness, M.; Lu, J.-F.; Zhang, H.-P.; Dong, G.-X.; Heinzer, A.; Watkins, P.; Powers, J.; Smith, K. Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy. Mol. Cell. Biol. 2003, 23, 744. [Google Scholar] [CrossRef]
- Covill-Cooke, C.; Toncheva, V.S.; Kittler, J.T. Regulation of peroxisomal trafficking and distribution. Cell. Mol. Life Sci. 2021, 78, 1929–1941. [Google Scholar] [CrossRef]
- Wang, Y.; Metz, J.; Costello, J.L.; Passmore, J.; Schrader, M.; Schultz, C.; Islinger, M. Intracellular redistribution of neuronal peroxisomes in response to ACBD5 expression. PLoS ONE 2018, 13, e0209507. [Google Scholar] [CrossRef]
- Bottelbergs, A.; Verheijden, S.; Hulshagen, L.; Gutmann, D.H.; Goebbels, S.; Nave, K.A.; Kassmann, C.; Baes, M. Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 2010, 58, 1532–1543. [Google Scholar] [CrossRef]
- Füger, P.; Hefendehl, J.K.; Veeraraghavalu, K.; Wendeln, A.-C.; Schlosser, C.; Obermüller, U.; Wegenast-Braun, B.M.; Neher, J.J.; Martus, P.; Kohsaka, S. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 2017, 20, 1371–1376. [Google Scholar] [CrossRef]
- Réu, P.; Khosravi, A.; Bernard, S.; Mold, J.E.; Salehpour, M.; Alkass, K.; Perl, S.; Tisdale, J.; Possnert, G.; Druid, H. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017, 20, 779–784. [Google Scholar] [CrossRef]
- Askew, K.; Li, K.; Olmos-Alonso, A.; Garcia-Moreno, F.; Liang, Y.; Richardson, P.; Tipton, T.; Chapman, M.A.; Riecken, K.; Beccari, S. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017, 18, 391–405. [Google Scholar] [CrossRef]
- Boda, E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress-related disorders. Eur. J. Neurosci. 2021, 53, 281–297. [Google Scholar] [CrossRef]
- Sierra, A.; Miron, V.E.; Paolicelli, R.C.; Ransohoff, R.M. Microglia in Health and Diseases: Integrative Hubs of the Central Nervous System (CNS). Cold Spring Harb. Perspect. Biol. 2024, 16, a041366. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, S.; Wu, J.; Chen, C.; Li, X.; Liu, K.; Qu, J.Y. Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window. Nat. Commun. 2022, 13, 1959. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, C.; Remahl, S.; Persson, H.; Bjartmar, C. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 1993, 40, 319–384. [Google Scholar] [CrossRef]
- Santos, E.N.; Fields, R.D. Regulation of myelination by microglia. Sci. Adv. 2021, 7, eabk1131. [Google Scholar] [CrossRef]
- Antignano, I.; Liu, Y.; Offermann, N.; Capasso, M. Aging microglia. Cell. Mol. Life Sci. 2023, 80, 126. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Olsen, M.L.; Sofroniew, M.V. Reactive astrocytes and emerging roles in central nervous system (CNS) disorders. Cold Spring Harb. Perspect. Biol. 2024, 16, a041356. [Google Scholar] [CrossRef]
- Weber, B.; Barros, L.F. The astrocyte: Powerhouse and recycling center. Cold Spring Harb. Perspect. Biol. 2015, 7, a020396. [Google Scholar] [CrossRef]
- Lee, H.-G.; Rone, J.M.; Li, Z.; Akl, C.F.; Shin, S.W.; Lee, J.-H.; Flausino, L.E.; Pernin, F.; Chao, C.-C.; Kleemann, K.L. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 2024, 627, 865–872. [Google Scholar] [CrossRef]
- Lee, H.G.; Wheeler, M.A.; Quintana, F.J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug. Discov. 2022, 21, 339–358. [Google Scholar] [CrossRef]
- Patani, R.; Hardingham, G.E.; Liddelow, S.A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat. Rev. Neurol. 2023, 19, 395–409. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 2015, 16, 249–263. [Google Scholar] [CrossRef]
- Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol. 2015, 37, 625–638. [Google Scholar] [CrossRef]
- Stöberl, N.; Maguire, E.; Salis, E.; Shaw, B.; Hall-Roberts, H. Human iPSC-derived glia models for the study of neuroinflammation. J. Neuroinflammation 2023, 20, 231. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- McKenna, O.; Arnold, G.; Holtzman, E. Microperoxisome distribution in the central nervous system of the rat. Brain Res. 1976, 117, 181–194. [Google Scholar] [CrossRef]
- Wanner, I.B.; Anderson, M.A.; Song, B.; Levine, J.; Fernandez, A.; Gray-Thompson, Z.; Ao, Y.; Sofroniew, M.V. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 2013, 33, 12870–12886. [Google Scholar] [CrossRef]
- Troffer-Charlier, N.; Doerflinger, N.; Metzger, E.; Fouquet, F.; Mandel, J.L.; Aubourg, P. Mirror expression of adrenoleukodystrophy and adrenoleukodystrophy related genes in mouse tissues and human cell lines. Eur. J. Cell Biol. 1998, 75, 254–264. [Google Scholar] [CrossRef]
- Musolino, P.L.; Gong, Y.; Snyder, J.M.; Jimenez, S.; Lok, J.; Lo, E.H.; Moser, A.B.; Grabowski, E.F.; Frosch, M.P.; Eichler, F.S. Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain 2015, 138, 3206–3220. [Google Scholar] [CrossRef]
- Weinhofer, I.; Kunze, M.; Forss-Petter, S.; Berger, J. Involvement of human peroxisomes in biosynthesis and signaling of steroid and peptide hormones. Peroxisomes Their Key Role Cell. Signal. Metab. 2013, 69, 101–110. [Google Scholar]
- Braverman, N.E.; Raymond, G.V.; Rizzo, W.B.; Moser, A.B.; Wilkinson, M.E.; Stone, E.M.; Steinberg, S.J.; Wangler, M.F.; Rush, E.T.; Hacia, J.G. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol. Genet. Metab. 2016, 117, 313–321. [Google Scholar] [CrossRef]
- Powers, J.; Schaumburg, H.; Johnson, A.; Raine, C. A correlative study of the adrenal cortex in adreno-leukodystrophy--evidence for a fatal intoxication with very long chain saturated fatty acids. Investig. Cell Pathol. 1980, 3, 353–376. [Google Scholar]
- Pujol, A.; Ferrer, I.; Camps, C.; Metzger, E.; Hindelang, C.; Callizot, N.; Ruiz, M.; Pàmpols, T.; Giròs, M.; Mandel, J.L. Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: A therapeutic target for X-adrenoleukodystrophy. Hum. Mol. Genet. 2004, 13, 2997–3006. [Google Scholar] [CrossRef]
- Lu, J.-F.; Lawler, A.M.; Watkins, P.A.; Powers, J.M.; Moser, A.B.; Moser, H.W.; Smith, K.D. A mouse model for X-linked adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 1997, 94, 9366–9371. [Google Scholar] [CrossRef]
- Forss-Petter, S.; Werner, H.; Berger, J.; Lassmann, H.; Molzer, B.; Schwab, M.H.; Bernheimer, H.; Zimmermann, F.; Nave, K.A. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J. Neurosci. Res. 1997, 50, 829–843. [Google Scholar] [CrossRef]
- Özgür Günes, Y.; Le Stunff, C.; Bougnères, P. Intracisternal AAV9-MAG-hABCD1 Vector Reverses Motor Deficits in Adult Adrenomyeloneuropathy Mice. Hum. Gene Ther. 2025, 36, 88–100. [Google Scholar] [CrossRef]
- Özgür-Günes, Y.; Chedik, M.; Le Stunff, C.; Fovet, C.M.; Bougnères, P. Long-Term Disease Prevention with a Gene Therapy Targeting Oligodendrocytes in a Mouse Model of Adrenomyeloneuropathy. Hum. Gene Ther. 2022, 33, 936–949. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shinnoh, N.; Kondo, A.; Yamada, T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem. Biophys. Res. Commun. 1997, 232, 631–636. [Google Scholar] [CrossRef]
- Pujol, A.; Hindelang, C.; Callizot, N.; Bartsch, U.; Schachner, M.; Mandel, J.L. Late onset neurological phenotype of the X-ALD gene inactivation in mice: A mouse model for adrenomyeloneuropathy. Hum. Mol. Genet. 2002, 11, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Laheji, F.; Berenson, A.; Li, Y.; Moser, A.; Qian, A.; Frosch, M.; Sadjadi, R.; Hahn, R.; Maguire, C.A.; et al. Role of Basal Forebrain Neurons in Adrenomyeloneuropathy in Mice and Humans. Ann. Neurol. 2024, 95, 442–458. [Google Scholar] [CrossRef]
- Gong, Y.; Laheji, F.; Berenson, A.; Qian, A.; Park, S.O.; Kok, R.; Selig, M.; Hahn, R.; Sadjadi, R.; Kemp, S.; et al. Peroxisome Metabolism Contributes to PIEZO2-Mediated Mechanical Allodynia. Cells 2022, 11, 1842. [Google Scholar] [CrossRef]
- Gong, Y.; Mu, D.; Prabhakar, S.; Moser, A.; Musolino, P.; Ren, J.; Breakefield, X.O.; Maguire, C.A.; Eichler, F.S. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy. Mol. Ther. 2015, 23, 824–834. [Google Scholar] [CrossRef]
- Gong, Y.; Sasidharan, N.; Laheji, F.; Frosch, M.; Musolino, P.; Tanzi, R.; Kim, D.Y.; Biffi, A.; El Khoury, J.; Eichler, F. Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann. Neurol. 2017, 82, 813–827. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Berger, J.; Forss-Petter, S.; Eichler, F. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 2014, 98, 135–142. [Google Scholar] [CrossRef]
- Galea, E.; Launay, N.; Portero-Otin, M.; Ruiz, M.; Pamplona, R.; Aubourg, P.; Ferrer, I.; Pujol, A. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases? Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1475–1488. [Google Scholar] [CrossRef]
- Duval, T.; Saliani, A.; Nami, H.; Nanci, A.; Stikov, N.; Leblond, H.; Cohen-Adad, J. Axons morphometry in the human spinal cord. Neuroimage 2019, 185, 119–128. [Google Scholar] [CrossRef]
- Saliani, A.; Perraud, B.; Duval, T.; Stikov, N.; Rossignol, S.; Cohen-Adad, J. Axon and Myelin Morphology in Animal and Human Spinal Cord. Front. Neuroanat. 2017, 11, 129. [Google Scholar] [CrossRef]
- Özgür Günes, Y.; Le Stunff, C.; Vallat, J.; Bougnères, P. Peripheral Neuropathy in the Adreno-myelo-neuropathy Mouse Model. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Li, X.; Ouyang, P.; Cai, Y.; He, Y.; Zhang, M.; Luan, X.; Jin, Y.; Wang, J.; et al. Microglia replacement halts the progression of microgliopathy in mice and humans. Science 2025, 389, eadr1015. [Google Scholar] [CrossRef]
- Strachan, L.R.; Stevenson, T.J.; Freshner, B.; Keefe, M.D.; Miranda Bowles, D.; Bonkowsky, J.L. A zebrafish model of X-linked adrenoleukodystrophy recapitulates key disease features and demonstrates a developmental requirement for abcd1 in oligodendrocyte patterning and myelination. Hum. Mol. Genet. 2017, 26, 3600–3614. [Google Scholar] [CrossRef] [PubMed]
- Bülow, M.H.; Parsons, B.D.; Di Cara, F. The Drosophila melanogaster as Genetic Model System to Dissect the Mechanisms of Disease that Lead to Neurodegeneration in Adrenoleukodystrophy. Peroxisome Biol. Exp. Models Peroxisomal Disord. Neurol. Dis. 2020, 1299, 145–159. [Google Scholar]
- Vasireddy, V.; Maguire, C.A.; Anderson, D.W.; Ng, C.; Gong, Y.; Eichler, F.; Fourcade, S.; Guilera, C.; Onieva, A.; Sanchez, A. An in vitro and in vivo efficacy evaluation of gene therapy candidate SBT101 in mouse models of adrenomyeloneuropathy and in NHPs. Mol. Ther. Methods Clin. Dev. 2024, 32, 101354. [Google Scholar] [CrossRef]
- Gegenhuber, B.; Tollkuhn, J. Epigenetic Mechanisms of Brain Sexual Differentiation. Cold Spring Harb. Perspect. Biol. 2022, 14, a039099. [Google Scholar] [CrossRef]
- Lee, J.W.; Profant, M.; Wang, C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. J. Immunol. 2022, 208, 212–220. [Google Scholar] [CrossRef]
- Meeh, K.L.; Rickel, C.T.; Sansano, A.J.; Shirangi, T.R. The development of sex differences in the nervous system and behavior of flies, worms, and rodents. Dev. Biol. 2021, 472, 75–84. [Google Scholar] [CrossRef]
- Wartenberg, P.; Farkas, I.; Csillag, V.; Colledge, W.H.; Hrabovszky, E.; Boehm, U. Sexually Dimorphic Neurosteroid Synthesis Regulates Neuronal Activity in the Murine Brain. J. Neurosci. 2021, 41, 9177–9191. [Google Scholar] [CrossRef]
- Gozlan, E.; Lewit-Cohen, Y.; Frenkel, D. Sex Differences in Astrocyte Activity. Cells 2024, 13, 1724. [Google Scholar] [CrossRef]
- O’Connor, J.L.; Nissen, J.C. The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int. J. Mol. Sci. 2023, 24, 4739. [Google Scholar] [CrossRef]
- Cerghet, M.; Skoff, R.P.; Swamydas, M.; Bessert, D. Sexual dimorphism in the white matter of rodents. J. Neurol. Sci. 2009, 286, 76–80. [Google Scholar] [CrossRef]
- Swamydas, M.; Bessert, D.; Skoff, R. Sexual dimorphism of oligodendrocytes is mediated by differential regulation of signaling pathways. J. Neurosci. Res. 2009, 87, 3306–3319. [Google Scholar] [CrossRef]
- Cerghet, M.; Skoff, R.P.; Bessert, D.; Zhang, Z.; Mullins, C.; Ghandour, M.S. Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents. J. Neurosci. 2006, 26, 1439–1447. [Google Scholar] [CrossRef]
- Zahaf, A.; Kassoussi, A.; Hutteau-Hamel, T.; Mellouk, A.; Marie, C.; Zoupi, L.; Tsouki, F.; Mattern, C.; Bobé, P.; Schumacher, M.; et al. Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nat. Commun. 2023, 14, 1592. [Google Scholar] [CrossRef]
- Walkey, C.J.; Snow, K.J.; Bulcha, J.; Cox, A.R.; Martinez, A.E.; Ljungberg, M.C.; Lanza, D.G.; Giorgi, M.; Chuecos, M.A.; Alves-Bezerra, M.; et al. A Comprehensive Atlas of AAV Tropism in the Mouse. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lacava, S.A.; Isilak, N.; Uusisaari, M.Y. The role of mouse tails in response to external and self-generated balance perturbations on the roll plane. J. Exp. Biol. 2024, 227, jeb247552. [Google Scholar] [CrossRef]
- Modi, A.D.; Parekh, A.; Patel, Z.H. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav. Brain Res. 2024, 456, 114695. [Google Scholar] [CrossRef]
- Morales-Romero, B.; González de Aledo-Castillo, J.M.; Fernández Sierra, C.; Martínez Carreira, C.; Zaragoza Bonet, C.; Fernández Bonifacio, R.; Caro Miró, M.A.; Argudo-Ramírez, A.; López Galera, R.M.; García-Villoria, J. Plasma C24:0- and C26:0-lysophosphatidylcholines are reliable biomarkers for the diagnosis of peroxisomal β-oxidation disorders. J. Lipid Res. 2024, 65, 100516. [Google Scholar] [CrossRef]
- Aubourg, P.; Blanche, S.; Jambaqué, I.; Rocchiccioli, F.; Kalifa, G.; Naud-Saudreau, C.; Rolland, M.-O.; Debré, M.; Chaussain, J.-L.; Griscelli, C.; et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N. Engl. J. Med. 1990, 322, 1860–1866. [Google Scholar] [CrossRef]
- Hickey, W.F.; Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239, 290–292. [Google Scholar] [CrossRef]
- Asheuer, M.; Pflumio, F.; Benhamida, S.; Dubart-Kupperschmitt, A.; Fouquet, F.; Imai, Y.; Aubourg, P.; Cartier, N. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. USA 2004, 101, 3557–3562. [Google Scholar] [CrossRef]
- Benhamida, S.; Fouquet, F.; Moser, A.; Aubourg, P.; Cartier, N. Phenotypic correction of ALD mouse after hematopoietic cell transplantation and evaluation of hematopoietic stem cell gene therapy with a lentivirus vector. Mol. Ther. 2004, 9, S87. [Google Scholar] [CrossRef]
- Benhamida, S.; Pflumio, F.; Dubart-Kupperschmitt, A.; Zhao-Emonet, J.C.; Cavazzana-Calvo, M.; Rocchiccioli, F.; Fichelson, S.; Aubourg, P.; Charneau, P.; Cartier, N. Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice. Mol. Ther. 2003, 7, 317–324. [Google Scholar] [CrossRef]
- Bartanusz, V.; Jezova, D.; Alajajian, B.; Digicaylioglu, M. The blood-spinal cord barrier: Morphology and clinical implications. Ann. Neurol. 2011, 70, 194–206. [Google Scholar] [CrossRef]
- van Geel, B.M.; Poll-The, B.T.; Verrips, A.; Boelens, J.J.; Kemp, S.; Engelen, M. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: A retrospective study. J. Inherit. Metab. Dis. 2015, 38, 359–361. [Google Scholar] [CrossRef]
- Xuan, F.L.; Chithanathan, K.; Lilleväli, K.; Yuan, X.; Tian, L. Differences of Microglia in the Brain and the Spinal Cord. Front. Cell. Neurosci. 2019, 13, 504. [Google Scholar] [CrossRef]
- Dadwal, S.; Heneka, M.T. Microglia heterogeneity in health and disease. FEBS Open Bio 2024, 14, 217–229. [Google Scholar] [CrossRef]
- Uriarte Huarte, O.; Richart, L.; Mittelbronn, M.; Michelucci, A. Microglia in health and disease: The strength to be diverse and reactive. Front. Cell. Neurosci. 2021, 15, 660523. [Google Scholar] [CrossRef]
- Stamataki, M.; Rissiek, B.; Magnus, T.; Körbelin, J. Microglia targeting by adeno-associated viral vectors. Front. Immunol. 2024, 15, 1425892. [Google Scholar] [CrossRef]
- Brennan, F.H.; Li, Y.; Wang, C.; Ma, A.; Guo, Q.; Li, Y.; Pukos, N.; Campbell, W.A.; Witcher, K.G.; Guan, Z.; et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat. Commun. 2022, 13, 4096. [Google Scholar] [CrossRef]
- Spur Therapeutics. Available online: https://swanbiotx.com/investors-and-media/swanbio-therapeutics-initiates-first-in-human-study-of-aav-gene-therapy-for-adrenomyeloneuropathy (accessed on 1 July 2025).
- Metovic, J.; Li, Y.; Gong, Y.; Eichler, F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024, 21, e00443. [Google Scholar] [CrossRef]
- von Jonquieres, G.; Fröhlich, D.; Klugmann, C.B.; Wen, X.; Harasta, A.E.; Ramkumar, R.; Spencer, Z.H.; Housley, G.D.; Klugmann, M. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes. Front. Mol. Neurosci. 2016, 9, 13. [Google Scholar] [CrossRef]
- Marques, S.; Zeisel, A.; Codeluppi, S.; van Bruggen, D.; Mendanha Falcão, A.; Xiao, L.; Li, H.; Häring, M.; Hochgerner, H.; Romanov, R.A.; et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 2016, 352, 1326–1329. [Google Scholar] [CrossRef]
- Snaidero, N.; Simons, M. Myelination at a glance. J. Cell Sci. 2014, 127, 2999–3004. [Google Scholar] [CrossRef]
- Tripathi, R.B.; Jackiewicz, M.; McKenzie, I.A.; Kougioumtzidou, E.; Grist, M.; Richardson, W.D. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep. 2017, 21, 316–323. [Google Scholar] [CrossRef]
- Stackhouse, T.L.; Mishra, A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front. Cell Dev. Biol. 2021, 9, 702832. [Google Scholar] [CrossRef]
- Tien, A.C.; Tsai, H.H.; Molofsky, A.V.; McMahon, M.; Foo, L.C.; Kaul, A.; Dougherty, J.D.; Heintz, N.; Gutmann, D.H.; Barres, B.A.; et al. Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 2012, 139, 2477–2487. [Google Scholar] [CrossRef]
- Felix, L.; Stephan, J.; Rose, C.R. Astrocytes of the early postnatal brain. Eur. J. Neurosci. 2021, 54, 5649–5672. [Google Scholar] [CrossRef]
- Özgür Günes, Y.; Le Stunff, C.; Echaniz-Laguna, A.; Aron-Badin, R.; Bougnères, P. Efficient Intravenous transduction of Schwann Cells in Neonatal Mouse. In Proceedings of the American Society of Genes & Cell Therapy, Baltimore, MD, USA, 7–11 May 2024; p. 272. [Google Scholar]
- Stavrou, M.; Kagiava, A.; Sargiannidou, I.; Kleopa, K.A. Developing a gene therapy for Charcot-Marie-Tooth disease: Progress and challenges. Regen. Med. 2025, 20, 147–155. [Google Scholar] [CrossRef]
- Carneiro, A.D.; Schaffer, D.V. Engineering novel adeno-associated viruses (AAVs) for improved delivery in the nervous system. Curr. Opin. Chem. Biol. 2024, 83, 102532. [Google Scholar] [CrossRef]
- Perdomini, M.; Dos Santos, C.; Goumeaux, C.; Blouin, V.; Bougnères, P. An AAVrh10-CAG-CYP21-HA vector allows persistent correction of 21-hydroxylase deficiency in a Cyp21−/− mouse model. Gene Ther. 2017, 24, 275–281. [Google Scholar] [CrossRef]
- Eclov, R.; Le Fur, S.; Scott, D.; Dos Santos, C.; Belot, M.-P.; Kapadia, M.; Lewis, T.; Rouse, J.; Romero, K.; Stella, A. Intravenous AAV5 Gene Therapy with Human CYP21A1 Corrects Phenotypic Deficiencies of the 21-Hydroxylase Kockout Mouse Model and Demonstrates Durability and Safety in Non-Human Primates and Mice. In Proceedings of the BridgeBio Pharma Receives FDA Fast Track Designation for Investigational Gene Therapy for Congenital Adrenal Hyperplasia, Palo Alto, CA, USA, 11–14 May 2021. [Google Scholar]
- Igarashi, M.; Schaumburg, H.; Powers, J.; Kishimoto, Y.; Koilodny, E.; Suzuki, K. Fatty acid abnormality in adrenoleukodystrophy. J. Neurochem. 1976, 26, 851–860. [Google Scholar] [CrossRef]
- Powers, J.M.; Moser, H.W.; Moser, A.B.; Schaumburg, H.H. Fetal adrenoleukodystrophy: The significance of pathologic lesions in adrenal gland and testis. Hum. Pathol. 1982, 13, 1013–1019. [Google Scholar] [CrossRef]
- Beharry, A.; Gong, Y.; Kim, J.C.; Hanlon, K.S.; Nammour, J.; Hieber, K.; Eichler, F.; Cheng, M.; Stemmer-Rachamimov, A.; Stankovic, K.M.; et al. The AAV9 Variant Capsid AAV-F Mediates Widespread Transgene Expression in Nonhuman Primate Spinal Cord After Intrathecal Administration. Hum. Gene Ther. 2022, 33, 61–75. [Google Scholar] [CrossRef]
- Hudry, E.; Aihara, F.; Meseck, E.; Mansfield, K.; McElroy, C.; Chand, D.; Tukov, F.F.; Penraat, K. Liver injury in cynomolgus monkeys following intravenous and intrathecal scAAV9 gene therapy delivery. Mol. Ther. 2023, 31, 2999–3014. [Google Scholar] [CrossRef]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Maurya, S.; Sarangi, P.; Jayandharan, G.R. Safety of Adeno-associated virus-based vector-mediated gene therapy-impact of vector dose. Cancer Gene Ther. 2022, 29, 1305–1306. [Google Scholar] [CrossRef]
- Srivastava, A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. Mol. Ther. Nucleic Acids 2023, 32, 949–959. [Google Scholar] [CrossRef]
- Chamberlain, K.A.; Sheng, Z.H. Mechanisms for the maintenance and regulation of axonal energy supply. J. Neurosci. Res. 2019, 97, 897–913. [Google Scholar] [CrossRef]
- Jensen, T.L.; Gøtzsche, C.R.; Woldbye, D.P. Current and future prospects for gene therapy for rare genetic diseases affecting the brain and spinal cord. Front. Mol. Neurosci. 2021, 14, 695937. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Chongmelaxme, B.; Yodsurang, V.; Vichayachaipat, P.; Srimatimanon, T.; Sanmaneechai, O. Gene-based therapy for the treatment of spinal muscular atrophy types 1 and 2: A systematic review and meta-analysis. Gene Ther. 2024, 1–30. [Google Scholar] [CrossRef]
- Terstappen, G.C.; Meyer, A.H.; Bell, R.D.; Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383. [Google Scholar] [CrossRef]
- Challis, R.C.; Ravindra Kumar, S.; Chen, X.; Goertsen, D.; Coughlin, G.M.; Hori, A.M.; Chuapoco, M.R.; Otis, T.S.; Miles, T.F.; Gradinaru, V. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 2022, 45, 447–469. [Google Scholar] [CrossRef]
- Ling, Q.; Herstine, J.A.; Bradbury, A.; Gray, S.J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 2023, 22, 789–806. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, L. Progress in AAV-Mediated In Vivo Gene Therapy and Its Applications in Central Nervous System Diseases. Int. J. Mol. Sci. 2025, 26, 2213. [Google Scholar] [CrossRef]
- Nisanov, A.M.; de Jesús, J.A.R.; Schaffer, D.V. Advances in AAV Capsid Engineering: Integrating Rational Design, Directed Evolution and Machine Learning. Mol. Ther. 2025, 35, 1937–1945. [Google Scholar] [CrossRef]
- Ghauri, M.S.; Ou, L. AAV engineering for improving tropism to the central nervous system. Biology 2023, 12, 186. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, A.T.; Chan, K.Y.; Sorensen, H.; Barry, A.J.; Azari, B.; Zheng, Q.; Beddow, T.; Zhao, B.; Tobey, I.G. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier. PLoS Biol. 2023, 21, e3002112. [Google Scholar] [CrossRef]
- Gonzalez, T.J.; Mitchell-Dick, A.; Blondel, L.O.; Fanous, M.M.; Hull, J.A.; Oh, D.K.; Moller-Tank, S.; Castellanos Rivera, R.M.; Piedrahita, J.A.; Asokan, A. Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery. Nat. Protoc. 2023, 18, 3413–3459. [Google Scholar] [CrossRef]
- O’Carroll, S.J.; Cook, W.H.; Young, D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front. Mol. Neurosci. 2021, 13, 618020. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, B.; Haenzi, B.; Hilton, S.; Carnicer-Lombarte, A.; Hobo, B.; Verhaagen, J.; Fawcett, J.W. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: Comparison of four promoters. Gene Ther. 2021, 28, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Coller, J.; Ahrens-Nicklas, R.; Liu, X.S.; Ahituv, N.; Davidson, B.L.; Bishop, K.M.; Weiss, Y.; Mingorance, A. Gene therapies for neurogenetic disorders. Trends Mol. Med. 2025, 32, 101354. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bougnères, P.; Le Stunff, C.; Aron Badin, R. Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives. Biomedicines 2025, 13, 1892. https://doi.org/10.3390/biomedicines13081892
Bougnères P, Le Stunff C, Aron Badin R. Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives. Biomedicines. 2025; 13(8):1892. https://doi.org/10.3390/biomedicines13081892
Chicago/Turabian StyleBougnères, Pierre, Catherine Le Stunff, and Romina Aron Badin. 2025. "Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives" Biomedicines 13, no. 8: 1892. https://doi.org/10.3390/biomedicines13081892
APA StyleBougnères, P., Le Stunff, C., & Aron Badin, R. (2025). Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives. Biomedicines, 13(8), 1892. https://doi.org/10.3390/biomedicines13081892