Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = ANFIS models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 (registering DOI) - 1 Aug 2025
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
32 pages, 7263 KiB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 (registering DOI) - 31 Jul 2025
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

17 pages, 3987 KiB  
Article
Predicting Winter Ammonia and Methane Emissions from a Naturally Ventilated Dairy Barn in a Cold Region Using an Adaptive Neural Fuzzy Inference System
by Hualong Liu, Xin Wang, Tana, Tiezhu Xie, Hurichabilige, Qi Zhen and Wensheng Li
Agriculture 2025, 15(14), 1560; https://doi.org/10.3390/agriculture15141560 - 21 Jul 2025
Viewed by 224
Abstract
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target [...] Read more.
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target barn was selected at a commercial dairy farm in Ulanchab, Inner Mongolia, China. Environmental factors, including temperature, humidity, wind speed, and concentrations of NH3, CH4, and CO2, were monitored both inside and outside the barn. The ventilation rate and emission rate were calculated using the CO2 mass balance method. Additionally, NH3 and CH4 emission prediction models were developed using the adaptive neural fuzzy inference system (ANFIS). Correlation analyses were conducted to clarify the intrinsic links between environmental factors and NH3 and CH4 emissions, as well as the degree of influence of each factor on gas emissions. The ANFIS model with a Gaussian membership function (gaussmf) achieved the highest performance in predicting NH3 emissions (R2 = 0.9270), while the model with a trapezoidal membership function (trapmf) was most accurate for CH4 emissions (R2 = 0.8977). The improved ANFIS model outperformed common models, such as multilayer perceptron (MLP) and radial basis function (RBF). This study revealed the significant effects of environmental factors on NH3 and CH4 emissions from dairy barns in cold regions and provided reliable data support and intelligent prediction methods for realizing the precise control of gas emissions. Full article
Show Figures

Figure 1

22 pages, 1066 KiB  
Article
GA-Synthesized Training Framework for Adaptive Neuro-Fuzzy PID Control in High-Precision SPAD Thermal Management
by Mingjun Kuang, Qingwen Hou, Jindong Wang, Jianping Guo and Zhengjun Wei
Machines 2025, 13(7), 624; https://doi.org/10.3390/machines13070624 - 21 Jul 2025
Viewed by 188
Abstract
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset [...] Read more.
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset is constructed through multi-scenario simulations using settling time, overshoot, and steady-state error as fitness metrics. The genetic algorithm (GA) facilitates broad exploration of the proportional–integral–derivative (PID) controller parameter space while ensuring control stability by discarding low-performing gain combinations. The resulting high-quality dataset is used to train the ANFIS model, enabling real-time, adaptive tuning of PID gains. Simulation results demonstrate that the proposed GA-ANFIS-PID controller significantly enhances dynamic response, robustness, and adaptability over both the conventional Ziegler–Nichols PID and GA-only PID schemes. The controller maintains stability under structural perturbations and abrupt thermal disturbances without the need for offline retuning, owing to the real-time inference capabilities of the ANFIS model. By combining global evolutionary optimization with intelligent online adaptation, this approach improves both accuracy and generalization, offering a practical and scalable solution for SPAD thermal management in demanding environments such as quantum communication, sensing, and single-photon detection platforms. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

23 pages, 3811 KiB  
Article
Impact of Acidic Pretreatment on Biomethane Yield from Xyris capensis: Experimental and In-Depth Data-Driven Insight
by Kehinde O. Olatunji, Oluwatobi Adeleke, Tien-Chien Jen and Daniel M. Madyira
Processes 2025, 13(7), 1997; https://doi.org/10.3390/pr13071997 - 24 Jun 2025
Viewed by 324
Abstract
This study presents an experimental and comprehensive data-driven framework to gain deeper insights into the effect of acidic pretreatment in enhancing the biomethane yield of Xyris capensis. The experimental workflow involves subjecting the Xyris capensis to different concentrations of HCl, exposure times, [...] Read more.
This study presents an experimental and comprehensive data-driven framework to gain deeper insights into the effect of acidic pretreatment in enhancing the biomethane yield of Xyris capensis. The experimental workflow involves subjecting the Xyris capensis to different concentrations of HCl, exposure times, and digestion retention time in mesophilic anaerobic conditions. Key insights were gained from the experimental dataset through correlation mapping, feature importance assessment (FIA) using the Gini importance (GI) metric of the decision tree regressor, dimensionality reduction using Principal Component Analysis (PCA), and operational cluster analysis using k-means clustering. Furthermore, different clustering techniques were tested with an Adaptive Neuro-Fuzzy Inference System (ANFIS) tuned with particle swarm optimization (ANFIS-PSO) for biomethane yield prediction. The experimental results showed that HCl pretreatment increased the biomethane yield by 62–150% compared to the untreated substrate. The correlation analysis and FIA further revealed exposure time and acid concentration as the dominant variables driving biomethane production, with GI values of 0.5788 and 0.3771, respectively. The PCA reduced the complexity of the digestion parameters by capturing over 80% of the variance in the principal components. Three distinct operational clusters, which are influenced by the pretreatment condition and digestion set-up, were identified by the k-means cluster analysis. In testing, a Gaussian-based Grid-Partitioning (GP)-clustered ANFIS-PSO model outperformed others with RMSE, MAE, and MAPE values of 5.3783, 3.1584, and 10.126, respectively. This study provides a robust framework of experimental and computational data-driven methods for optimizing the biomethane production, thus contributing significantly to sustainable and eco-friendly energy alternatives. Full article
(This article belongs to the Special Issue Biogas Technologies: Converting Waste to Energy)
Show Figures

Figure 1

25 pages, 4538 KiB  
Article
Machine Learning-Based Multi-Objective Optimization for Enhancing the Performance of Block Support Structures for Electron Beam Additive Manufacturing
by Mustafa M. Nasr, Wadea Ameen, Abdulmajeed Dabwan and Abdulrahman Al-Ahmari
Metals 2025, 15(6), 671; https://doi.org/10.3390/met15060671 - 17 Jun 2025
Viewed by 376
Abstract
Electron beam melting (EBM) technology has gained prominence owing to its ability to enhance production efficiency and meet green manufacturing standards. However, overhang structures are a significant issue for additive manufacturing due to their need for supporting structures during printing. This increases manufacturing [...] Read more.
Electron beam melting (EBM) technology has gained prominence owing to its ability to enhance production efficiency and meet green manufacturing standards. However, overhang structures are a significant issue for additive manufacturing due to their need for supporting structures during printing. This increases manufacturing time, requiring more material, extra effort, and a more complex engineering procedure. Therefore, this research aims to develop an intelligent optimization method based on AI-ANFIS/Al-ANN and improved NSGA-III, integrating the AM design, 3D printing, and post-processing phases to enhance the performance of block support structures and the quality of the EBM parts produced. To achieve this, statistical analysis was performed to detail the simultaneous influence of block support type, block support structure design, and EBM parameters on fabricating performance, warping deformation, support removal time, and support volume. After that, intelligent models based on ANFIS/ANN and the advanced NSGA-III method were developed for monitoring and optimizing the performance of specified block support structures. The results reveal that the block support type, block support structure design, and EBM parameters simultaneously significantly affect block support structures’ performance. This study illustrated that the AI models based on ANFIS might provide more accurate and reliable estimation models for monitoring and predicting support volume, support removal time, and warping deformation, exhibiting reduced errors of 0.992%, 1.2%, 1.28%, and 1.06%, respectively, in comparison to empirical measurements, ANN models, and regression models. Finally, the developed intelligent method obtains the optimal block support type, block support design, and EBM parameters to enhance the quality of produced parts, reduce material wastage, and reduce the post-processing time of fabricated EBM Ti6Al4V. Henceforth, smart systems may be employed to create innovative solutions that integrate the AM design, 3D printing, and post-processing stages. This will allow for the monitoring and improvement of AM process performance, as well as the fulfillment of Industry 4.0 requirements. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

19 pages, 3584 KiB  
Article
Adaptive Neuro-Fuzzy Optimization of Reservoir Operations Under Climate Variability in the Chao Phraya River Basin
by Luksanaree Maneechot, Jackson Hian-Wui Chang, Kai He, Maochuan Hu, Wan Abd Al Qadr Imad Wan-Mohtar, Zul Ilham, Carlos García Castro and Yong Jie Wong
Water 2025, 17(12), 1740; https://doi.org/10.3390/w17121740 - 9 Jun 2025
Viewed by 470
Abstract
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to [...] Read more.
Reservoir operations play a pivotal role in shaping the flow regime of the Chao Phraya River Basin (CPRB), where two major reservoirs exert substantial hydrological influence. Despite ongoing efforts to manage water resources effectively, current operational strategies often lack the adaptability required to address the compounded uncertainties of climate change and increasing water demands. This research addresses this critical gap by developing an optimization model for reservoir operation that explicitly incorporates climate variability. An Adaptive Neuro-Fuzzy Inference System (ANFIS) was employed using four fundamental inputs: reservoir inflow, storage, rainfall, and water demands. Daily resolution data from 2000 to 2012 were used, with 2005–2012 selected for training due to the inclusion of multiple extreme hydrological events, including the 2011 flood, which enriched the model’s learning capability. The period 2000–2004 was reserved for testing to independently assess model generalizability. Eight types of membership functions (MFs) were tested to determine the most suitable configuration, with the trapezoidal MF selected for its favorable performance. The optimized models achieved Nash-Sutcliffe efficiency (NSE) values of 0.43 and 0.47, R2 values of 0.59 and 0.50, and RMSE values of 77.64 and 89.32 for Bhumibol and Sirikit Dams, respectively. The model enables the evaluation of both dam operations and climate change impacts on downstream discharges. Key findings highlight the importance of adaptive reservoir management by identifying optimal water release timings and corresponding daily release-storage ratios. The proposed approach contributes a novel, data-driven framework that enhances decision-making for integrated water resources management under changing climatic conditions. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

28 pages, 2541 KiB  
Article
Photovoltaic Farm Power Generation Forecast Using Photovoltaic Battery Model with Machine Learning Capabilities
by Agboola Benjamin Alao, Olatunji Matthew Adeyanju, Manohar Chamana, Stephen Bayne and Argenis Bilbao
Solar 2025, 5(2), 26; https://doi.org/10.3390/solar5020026 - 6 Jun 2025
Viewed by 503
Abstract
This study presents a machine learning-based photovoltaic (PV) model for energy management and planning in a microgrid with a battery system. Microgrids integrating PV face challenges such as solar irradiance variability, temperature fluctuations, and intermittent generation, which impact grid stability and battery storage [...] Read more.
This study presents a machine learning-based photovoltaic (PV) model for energy management and planning in a microgrid with a battery system. Microgrids integrating PV face challenges such as solar irradiance variability, temperature fluctuations, and intermittent generation, which impact grid stability and battery storage efficiency. Existing models often lack predictive accuracy, computational efficiency, and adaptability to changing environmental conditions. To address these limitations, the proposed model integrates an Adaptive Neuro-Fuzzy Inference System (ANFIS) with a multi-input multi-output (MIMO) prediction algorithm, utilizing historical temperature and irradiance data for accurate and efficient forecasting. Simulation results demonstrate high prediction accuracies of 95.10% for temperature and 98.06% for irradiance on dataset-1, significantly reducing computational demands and outperforming conventional prediction techniques. The model further uses ANFIS outputs to estimate PV generation and optimize battery state of charge (SoC), achieving a consistent minimal SoC reduction of about 0.88% (from 80% to 79.12%) over four different battery types over a seven-day charge–discharge cycle, providing up to 11 h of battery autonomy under specified load conditions. Further validation with four other distinct datasets confirms the ANFIS network’s robustness and superior ability to handle complex data variations with consistent accuracy, making it a valuable tool for improving microgrid stability, energy storage utilization, and overall system reliability. Overall, ANFIS outperforms other models (like curve fittings, ANN, Stacked-LSTM, RF, XGBoost, GBoostM, Ensemble, LGBoost, CatBoost, CNN-LSTM, and MOSMA-SVM) with an average accuracy of 98.65%, and a 0.45 RMSE value on temperature predictions, while maintaining 98.18% accuracy, and a 31.98 RMSE value on irradiance predictions across all five datasets. The lowest average computational time of 17.99s was achieved with the ANFIS model across all the datasets compared to other models. Full article
Show Figures

Figure 1

19 pages, 1865 KiB  
Article
Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods
by Bilal Cemek, Yunus Kültürel, Emirhan Cemek, Erdem Küçüktopçu and Halis Simsek
Appl. Sci. 2025, 15(11), 6319; https://doi.org/10.3390/app15116319 - 4 Jun 2025
Viewed by 524
Abstract
Soil temperature is a critical environmental factor that affects plant development, physiological processes, and overall productivity. This study compares two modeling approaches for predicting soil temperature at various depths: (i) fuzzy logic-based systems, including the Mamdani fuzzy inference system (MFIS) and the adaptive [...] Read more.
Soil temperature is a critical environmental factor that affects plant development, physiological processes, and overall productivity. This study compares two modeling approaches for predicting soil temperature at various depths: (i) fuzzy logic-based systems, including the Mamdani fuzzy inference system (MFIS) and the adaptive neuro-fuzzy inference system (ANFIS); (ii) supervised machine learning algorithms, such as multilayer perceptron (MLP), support vector regression (SVR), random forest (RF), extreme gradient boosting (XGB), and k-nearest neighbors (KNN), along with multiple Linear regression (MLR) as a statistical benchmark. Soil temperature data were collected from Tokat, Türkiye, between 2016 and 2024 at depths of 5, 10, 20, 50, and 100 cm. The dataset was split into training (2016–2021) and testing (2022–2024) periods. Performance was evaluated using the root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2). The ANFIS achieved the best prediction accuracy (MAE = 1.46 °C, RMSE = 1.89 °C, R2 = 0.95), followed by RF, XGB, MLP, KNN, SVR, MLR, and MFIS. This study underscores the potential of integrating machine learning and fuzzy logic techniques for more accurate soil temperature modeling, contributing to precision agriculture and better resource management. Full article
Show Figures

Figure 1

30 pages, 6996 KiB  
Article
Time-Series Prediction of Failures in an Industrial Assembly Line Using Artificial Learning
by Mert Can Sen and Mahmut Alkan
Appl. Sci. 2025, 15(11), 5984; https://doi.org/10.3390/app15115984 - 26 May 2025
Viewed by 445
Abstract
This study evaluates the efficacy of six artificial learning (AL) models—nonlinear autoregressive (NAR), long short-term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), gated recurrent unit (GRU), multilayer perceptron (MLP), and CNN-RNN hybrid networks—for time-series data for failure prediction in aerospace assembly lines. The [...] Read more.
This study evaluates the efficacy of six artificial learning (AL) models—nonlinear autoregressive (NAR), long short-term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), gated recurrent unit (GRU), multilayer perceptron (MLP), and CNN-RNN hybrid networks—for time-series data for failure prediction in aerospace assembly lines. The data consist of 45,654 records of configurations of failure. The models are trained to predict failures and assessed via error metrics (RMSE, MAE, MAPE), residual analysis, variance analysis, and computational efficiency. The results indicate that NAR and MLP models, respectively, achieve the lowest residuals (clustered near zero) and minimal variance, demonstrating robust calibration and stability. MLP exhibits strong accuracy (MAE = 2.122, MAPE = 0.876%, RMSE = 1.418, and ME = 1.145) but higher residual variability, while LSTM and CNN-RNN show sensitivity to data noise and computational inefficiency. ANFIS balances interpretability and performance but requires extensive training iterations. The study underscores NAR as optimal for precision-critical aerospace applications, where error minimisation and generalisability are paramount. However, the reliance on a single failure-related variable “configuration” and exclusion of exogenous factors may constrain holistic failure prediction. These findings advance predictive maintenance strategies in high-stakes manufacturing environments with future work integrating multivariable datasets and domain-specific constraints. Full article
Show Figures

Graphical abstract

24 pages, 3894 KiB  
Article
Fault Detection in Gearboxes Using Fisher Criterion and Adaptive Neuro-Fuzzy Inference
by Houssem Habbouche, Tarak Benkedjouh, Yassine Amirat and Mohamed Benbouzid
Machines 2025, 13(6), 447; https://doi.org/10.3390/machines13060447 - 23 May 2025
Viewed by 335
Abstract
Gearboxes are autonomous devices essential for power transmission in various mechanical systems. When a failure occurs, it can lead to an inability to perform the required functions, potentially resulting in a complete shutdown of the mechanism and causing significant operational disruptions. Consequently, deploying [...] Read more.
Gearboxes are autonomous devices essential for power transmission in various mechanical systems. When a failure occurs, it can lead to an inability to perform the required functions, potentially resulting in a complete shutdown of the mechanism and causing significant operational disruptions. Consequently, deploying expert methods for fault detection and diagnosis is crucial to ensuring the reliability and efficiency of these systems. Artificial intelligence (AI) techniques show promise for fault diagnosis, but their accuracy can be hindered by noise and manufacturing imperfections that distort mechanical signatures. Thorough data analysis and preprocessing are vital to preserving these critical features. Validating approaches through numerical simulations before experimentation is essential to identify model limitations and minimize risks. A hybrid approach, combining AI and physics-based models, could provide a robust solution by leveraging the strengths of both domains: AI for its ability to process large volumes of data and physics-based models for their reliability in modeling complex mechanical behaviors. This paper proposes a comprehensive diagnostic methodology. It starts with feature extraction from time-domain analysis, which helps identify critical indicators of gearbox performance. Following this, a feature selection process is applied using the Fisher criterion, which ensures that only the most relevant features are retained for further analysis. These selected features are then employed to train an Adaptive Neuro-Fuzzy Inference System (ANFIS), a sophisticated approach that combines the learning capabilities of neural networks with the reasoning abilities of fuzzy logic. The proposed methodology is evaluated using a dataset of gear faults generated through energy simulations based on a six-degree-of-freedom (6-DOF) model, followed by a secondary validation on an experimental dataset. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

28 pages, 2804 KiB  
Article
Adaptive Network-Based Fuzzy Inference System Training Using Nine Different Metaheuristic Optimization Algorithms for Time-Series Analysis of Brent Oil Price and Detailed Performance Analysis
by Ebubekir Kaya, Ahmet Kaya and Ceren Baştemur Kaya
Symmetry 2025, 17(5), 786; https://doi.org/10.3390/sym17050786 - 19 May 2025
Viewed by 504
Abstract
Brent oil holds a significant position in the global energy market, as oil prices in many regions are indexed to it. Therefore, forecasting the future price of Brent oil is of great importance. In recent years, artificial intelligence techniques have been widely applied [...] Read more.
Brent oil holds a significant position in the global energy market, as oil prices in many regions are indexed to it. Therefore, forecasting the future price of Brent oil is of great importance. In recent years, artificial intelligence techniques have been widely applied in modeling and prediction tasks. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS), a well-established AI approach, was employed for the time-series forecasting of Brent oil prices. To ensure effective learning and improve prediction accuracy, ANFIS was trained using nine different metaheuristic algorithms: Artificial Bee Colony (ABC), Selfish Herd Optimizer (SHO), Biogeography-Based Optimization (BBO), Multi-Verse Optimizer (MVO), Teaching–Learning-Based Optimization (TLBO), Cuckoo Search (CS), Moth Flame Optimization (MFO), Marine Predator Algorithm (MPA), and Flower Pollination Algorithm (FPA). Symmetric training procedures were applied across all algorithms to ensure fair and consistent evaluation. The analyses were conducted on the lowest and highest daily, weekly, and monthly Brent oil prices. Mean squared error (MSE) was used as the primary performance metric. The results showed that all algorithms achieved effective prediction performance. Among them, BBO and TLBO demonstrated superior accuracy and stability, particularly in handling the complexities of Brent oil forecasting. This study contributes to the literature by combining ANFIS and metaheuristics within a symmetric framework of experimentation and evaluation. Full article
Show Figures

Figure 1

24 pages, 6216 KiB  
Article
Hybrid Vehicle Battery Health State Estimation Based on Intelligent Regenerative Braking Control
by Chellappan Kavitha, Gupta Gautam, Ravi Sudeep, Chidambaram Kannan and Bragadeshwaran Ashok
World Electr. Veh. J. 2025, 16(5), 280; https://doi.org/10.3390/wevj16050280 - 19 May 2025
Viewed by 466
Abstract
In response to the evolving transportation landscape, the safety and durability of hybrid electric vehicles (HEVs) necessitate the development of high-performance, reliable health management systems for batteries. The state of health (SOH) provides vital insights about the performance and longevity of batteries, thus [...] Read more.
In response to the evolving transportation landscape, the safety and durability of hybrid electric vehicles (HEVs) necessitate the development of high-performance, reliable health management systems for batteries. The state of health (SOH) provides vital insights about the performance and longevity of batteries, thus enhancing opportunities for efficient energy management in hybrid systems. Despite various research efforts for battery SOH estimation, many of them fall short of the demands for real-time automotive applications. Real-time SOH estimation is crucial for accurate battery fault diagnosis and maintaining precise estimation of the state of charge (SOC) and state of power (SOP), which are essential for the optimal functioning of hybrid systems. In this study, a fuzzy logic estimation method is deployed to determine the tire road friction coefficient (TRFC) and various control strategies are adopted to establish regenerative cut-off points. A MATLAB-based SOH estimation model was developed using a Kalman SOH estimator, which helps to observe the effects of different control strategies on the battery’s SOH. This approach enhances the accuracy and reliability of SOH estimation in real-time applications and improves the effectiveness of battery fault diagnosis. From the results, ANFIS outperformed standard methods, showing approximately 4–6% higher SOH retention across various driving cycles. Full article
Show Figures

Figure 1

20 pages, 9415 KiB  
Article
Research on Adaptive Variable Impedance Control Method Based on Adaptive Neuro-Fuzzy Inference System
by Xianlun Wang, Chuanhuan Li, Dexin Cai and Yuxia Cui
Sensors 2025, 25(10), 3055; https://doi.org/10.3390/s25103055 - 12 May 2025
Viewed by 514
Abstract
Precise force tracking and overshoot suppression are critical for manipulator dynamic contact tasks, especially in unstructured environments such as complex surface cleaning that rely on dynamic feedback from force sensors. Traditional impedance control methods exhibit limitations through excessive force overshoot and steady-state error, [...] Read more.
Precise force tracking and overshoot suppression are critical for manipulator dynamic contact tasks, especially in unstructured environments such as complex surface cleaning that rely on dynamic feedback from force sensors. Traditional impedance control methods exhibit limitations through excessive force overshoot and steady-state error, severely impacting cleaning performance. To address this problem, this paper introduces proportional–integral–derivative (PID) control based on the traditional impedance model and verifies the stability and convergence of the controller through theoretical analysis. Meanwhile, to improve the applicability of the controller and avoid using expert experience to formulate fuzzy rules, this paper designs an adaptive neuro-fuzzy inference system (ANFIS) to dynamically adjust the update rate. To validate the effectiveness of the proposed method, simulation experiments mirroring real-world scenarios of contact cleaning tasks are constructed in Simulink. The results demonstrate that, compared to adaptive impedance control (AIC) and adaptive variable impedance control (AVIC), the proposed controller achieves a faster steady-state response and exhibits negligible overshoot and minimal force steady-state error during both constant and sinusoidal force tracking. Furthermore, the controller demonstrates superior stability under abrupt changes in stiffness and desired force. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 7263 KiB  
Article
Investigating the Machining Behavior of the Additively Manufactured Polymer-Based Composite Using Adaptive Neuro-Fuzzy Learning
by Anastasios Tzotzis, Dumitru Nedelcu, Simona-Nicoleta Mazurchevici and Panagiotis Kyratsis
Appl. Sci. 2025, 15(10), 5373; https://doi.org/10.3390/app15105373 - 12 May 2025
Viewed by 529
Abstract
This study presents an experimental and computational investigation into the machinability of additively manufactured (AM) fiber-reinforced PETG during external CNC turning. A series of machining trials were conducted under dry conditions, with cutting speed (Vc), feed (f), and depth-of-cut [...] Read more.
This study presents an experimental and computational investigation into the machinability of additively manufactured (AM) fiber-reinforced PETG during external CNC turning. A series of machining trials were conducted under dry conditions, with cutting speed (Vc), feed (f), and depth-of-cut (ap) as the primary input parameters. The corresponding surface roughness (Ra) and tool-tip temperature (T) were recorded as key output responses. An Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed to model the process behavior, utilizing a 3–3–3 architecture with triangular membership functions. The resulting models demonstrated high predictive accuracy across training, testing, and validation datasets. Experimental results revealed that elevated feed rates and depth-of-cut significantly increase surface roughness, while combinations of high cutting speed and feed contribute to elevated tool temperatures. Multi-objective optimization using the Non-Dominated Sorting Genetic Algorithm 2 (NSGA-II) algorithm was employed to minimize both Ra and T simultaneously. The Pareto-optimal front indicated that optimal performance could be achieved within the range of 100–200 m/min for Vc, 0.054–0.059 mm/rev for f, and 0.512–0.516 mm for ap. The outcomes of this research provide valuable insights into the machinability of reinforced polymer-based AM components and establish a robust framework for predictive modeling and process optimization. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

Back to TopTop