Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods
Abstract
:1. Introduction
- Conduct a comparative evaluation of fuzzy logic-based models (MFIS and ANFIS) and supervised machine learning algorithms (MLP, SVR, RF, XGB, KNN, and MLR) for predicting soil temperature at different depths (5, 10, 20, 50 and 100 cm).
- Develop models with minimal and easily accessible input variables, such as average air temperature and soil depth, to enhance usability in regions with limited observational data.
2. Materials and Methods
2.1. Site Description and Data
2.2. Machine Learning and Fuzzy Logic Models for Soil Temperature Estimation
2.2.1. Mamdani Fuzzy Inference System (MFIS)
2.2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.2.3. Multilayer Perceptron (MLP)
2.2.4. Random Forest (RF)
2.2.5. K-Nearest Neighbors (KNN)
2.2.6. Extreme Gradient Boosting (XGB)
2.2.7. Support Vector Regression (SVR)
2.2.8. Multiple Linear Regression (MLR)
2.3. Model Performance Criteria
3. Results
3.1. Statistical Outcomes Derived from MLR Analysis
3.2. Performance Evaluation of the MFIS Model
3.3. Performance Evaluation of the ANFIS Model
3.4. Performance Evaluation of the Machine Learning Models
3.5. Comparative Evaluation of Prediction Models for Soil Temperature
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFIS | Mamdani Fuzzy Inference System |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
MLP | Multilayer Perceptron |
SVR | Support Vector Regression |
RF | Random Forest |
XGB | Extreme Gradient Boosting |
KNN | K-Nearest Neighbors |
MLR | Multiple Linear Regression |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
R2 | Coefficient of Determination |
ANNs | Artificial Neural Networks |
GBDTs | Gradient-Boosted Decision Trees |
MOM | Mean of Maximum |
LOM | Largest of Maximum |
SOM | Smallest of Maximum |
References
- Hu, G.; Zhao, L.; Wu, X.; Li, R.; Wu, T.; Xie, C.; Qiao, Y.; Shi, J.; Cheng, G. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. J. Arid Land 2016, 8, 232–240. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, R.; Chen, J.; Xin, X.; Eldridge, D.J.; Shao, C.; Wang, X.; Lv, S.; Jin, D.; Chen, J. Grazing modulates soil temperature and moisture in a Eurasian steppe. Agric. For. Meteorol. 2018, 262, 157–165. [Google Scholar] [CrossRef]
- Taheri, M.; Schreiner, H.K.; Mohammadian, A.; Shirkhani, H.; Payeur, P.; Imanian, H.; Cobo, J.H. A review of machine learning approaches to soil temperature estimation. Sustainability 2023, 15, 7677. [Google Scholar] [CrossRef]
- Gupta, S.C.; Radke, J.; Swan, J.; Moncrief, J. Predicting soil temperatures under a ridge-furrow system in the US Corn Belt. Soil Tillage Res. 1990, 18, 145–165. [Google Scholar] [CrossRef]
- Flerchinger, G.; Pierson, F. Modeling plant canopy effects on variability of soil temperature and water. Agric. For. Meteorol. 1991, 56, 227–246. [Google Scholar] [CrossRef]
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Liu, X.; Luo, T. Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet. Arct. Antarct. Alp. Res. 2011, 43, 229–238. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, Q. A new embedded estimation model for soil temperature prediction. Sci. Program. 2021, 2021, 5881018. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Fathian, F.; Safari, M.J.S.; Khosravi, A. Developing novel hybrid models for estimation of daily soil temperature at various depths. Soil Tillage Res. 2020, 197, 104513. [Google Scholar] [CrossRef]
- Tunca, E.; Köksal, E.; Akay, H.; Öztürk, E.; Taner, S.Ç. Novel machine learning framework for high-resolution sorghum biomass estimation using multi-temporal UAV imagery. Int. J. Environ. Sci. Technol. 2025, 1–16. [Google Scholar] [CrossRef]
- Demirsoy, H.; Küçüktopçu, E.; Dogan, D.E. Novel Machine Learning Approaches for Accurate Leaf Area Estimation in Apples. Appl. Fruit Sci. 2025, 67, 68. [Google Scholar] [CrossRef]
- Cemek, B.; Arslan, H.; Küçüktopcu, E.; Simsek, H. Comparative analysis of machine learning techniques for estimating groundwater deuterium and oxygen-18 isotopes. Stoch. Environ. Res. Risk Assess. 2022, 36, 4271–4285. [Google Scholar] [CrossRef]
- Tunca, E.; Köksal, E.S.; Öztürk, E.; Akay, H.; Taner, S.Ç. Accurate leaf area index estimation in sorghum using high-resolution UAV data and machine learning models. Phys. Chem. Earth Parts A/B/C 2024, 133, 103537. [Google Scholar] [CrossRef]
- Kim, S.; Singh, V.P. Modeling daily soil temperature using data-driven models and spatial distribution. Theor. Appl. Climatol. 2014, 118, 465–479. [Google Scholar] [CrossRef]
- Sabziparvar, A.; Zreabyaneh, H.; Bayat, M. A model comparison between predicted soil temperatures using ANFIS model and regression methods in three different climates. Water Soil 2010, 24, 274–285. [Google Scholar]
- Yang, C.-C.; Prasher, S.O.; Mehuys, G.R. An artificial neural network to estimate soil temperature. Can. J. Soil Sci. 1997, 77, 421–429. [Google Scholar] [CrossRef]
- Napagoda, N.; Tilakaratne, C. Artificial neural network approach for modeling of soil temperature: A case study for Bathalagoda area. Sri Lankan J. Appl. Stat. 2013, 13, 39–59. [Google Scholar] [CrossRef]
- Tabari, H.; Sabziparvar, A.-A.; Ahmadi, M. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2011, 110, 135–142. [Google Scholar] [CrossRef]
- Bilgili, M. Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 2010, 110, 59–70. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Theor. Appl. Climatol. 2017, 130, 545–556. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H.; Cobaner, M. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques. Theor. Appl. Climatol. 2017, 129, 833–848. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Ahmadi, F.; Kozekalani Sales, A. Modelling daily soil temperature at different depths via the classical and hybrid models. Meteorol. Appl. 2020, 27, e1941. [Google Scholar] [CrossRef]
- Penghui, L.; Ewees, A.A.; Beyaztas, B.H.; Qi, C.; Salih, S.Q.; Al-Ansari, N.; Bhagat, S.K.; Yaseen, Z.M.; Singh, V.P. Metaheuristic optimization algorithms hybridized with artificial intelligence model for soil temperature prediction: Novel model. IEEE Access 2020, 8, 51884–51904. [Google Scholar] [CrossRef]
- Behnia, M.; Valani, H.A.; Bameri, M.; Jabalbarezi, B.; Eskandari, H. Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths. Int. J. Adv. Biol. Biomed. Res. 2017, 5, 52–59. [Google Scholar]
- Malik, A.; Tikhamarine, Y.; Sihag, P.; Shahid, S.; Jamei, M.; Karbasi, M. Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India. Environ. Sci. Pollut. Res. 2022, 29, 71270–71289. [Google Scholar] [CrossRef] [PubMed]
- Parsafar, N.; Marofi, S. Estimation of soil temperature from air temperature using regression models, artificial neural network and adaptive neuro-fuzzy inference system (Case Study: Kermanshah Region). Water Soil Sci. 2011, 21, 139–152. [Google Scholar]
- Samadianfard, S.; Ghorbani, M.A.; Mohammadi, B. Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Inf. Process. Agric. 2018, 5, 465–476. [Google Scholar] [CrossRef]
- Kisi, O.; Tombul, M.; Kermani, M.Z. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol. 2015, 121, 377–387. [Google Scholar] [CrossRef]
- Bayatvarkeshi, M.; Bhagat, S.K.; Mohammadi, K.; Kisi, O.; Farahani, M.; Hasani, A.; Deo, R.; Yaseen, Z.M. Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models. Comput. Electron. Agric. 2021, 185, 106158. [Google Scholar] [CrossRef]
- Hosseinzadeh Talaee, P. Daily soil temperature modeling using neuro-fuzzy approach. Theor. Appl. Climatol. 2014, 118, 481–489. [Google Scholar] [CrossRef]
- Zare Abyaneh, H.; Bayat Varkeshi, M.; Golmohammadi, G.; Mohammadi, K. Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates. Arab. J. Geosci. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 2019, 338, 67–77. [Google Scholar] [CrossRef]
- Delbari, M.; Sharifazari, S.; Mohammadi, E. Modeling daily soil temperature over diverse climate conditions in Iran—A comparison of multiple linear regression and support vector regression techniques. Theor. Appl. Climatol. 2019, 135, 991–1001. [Google Scholar] [CrossRef]
- Guleryuz, D. Estimation of soil temperatures with machine learning algorithms—Giresun and Bayburt stations in Turkey. Theor. Appl. Climatol. 2022, 147, 109–125. [Google Scholar] [CrossRef]
- Dong, J.; Huang, G.; Wu, L.; Liu, F.; Li, S.; Cui, Y.; Wang, Y.; Leng, M.; Wu, J.; Wu, S. Modelling Soil Temperature by Tree-Based Machine Learning Methods in Different Climatic Regions of China. Appl. Sci. 2022, 12, 5088. [Google Scholar] [CrossRef]
- Küçük, C.; Birant, D.; Taşer, P.Y. A novel machine learning approach: Soil temperature ordinal classification (STOC). J. Agric. Sci. 2022, 28, 635–649. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, L.; Li, Q. Soil temperature prediction based on explainable artificial intelligence and LSTM. Front. Environ. Sci. 2024, 12, 1426942. [Google Scholar] [CrossRef]
- Farhangmehr, V.; Imanian, H.; Mohammadian, A.; Cobo, J.H.; Shirkhani, H.; Payeur, P. A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates. Sci. Total Environ. 2025, 968, 178901. [Google Scholar] [CrossRef]
- Imanian, H.; Mohammadian, A.; Farhangmehr, V.; Payeur, P.; Goodarzi, D.; Hiedra Cobo, J.; Shirkhani, H. A comparative analysis of deep learning models for soil temperature prediction in cold climates. Theor. Appl. Climatol. 2024, 155, 2571–2587. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Ren, X. Modeling hourly soil temperature using deep BiLSTM neural network. Algorithms 2020, 13, 173. [Google Scholar] [CrossRef]
- Alizamir, M.; Kim, S.; Zounemat-Kermani, M.; Heddam, S.; Shahrabadi, A.H.; Gharabaghi, B. Modelling daily soil temperature by hydro-meteorological data at different depths using a novel data-intelligence model: Deep echo state network model. Artif. Intell. Rev. 2021, 54, 2863–2890. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Russell, S.O.; Campbell, P.F. Reservoir operating rules with fuzzy programming. J. Water Resour. Plan. Manag. 1996, 122, 165–170. [Google Scholar] [CrossRef]
- Küçüktopçu, E.; Cemek, B.; Simsek, H. Application of Mamdani fuzzy inference system in poultry weight estimation. Animals 2023, 13, 2471. [Google Scholar] [CrossRef]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Daneshmand, H.; Tavousi, T.; Khosravi, M.; Tavakoli, S. Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in Iran. J. Saudi Soc. Agric. Sci. 2015, 14, 33–40. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Tunca, E. Evaluating the performance of the TSEB model for sorghum evapotranspiration estimation using time series UAV imagery. Irrig. Sci. 2024, 42, 977–994. [Google Scholar]
- Banda, P.; Cemek, B.; Küçüktopcu, E. Estimation of daily reference evapotranspiration by neuro computing techniques using limited data in a semi-arid environment. Arch. Agron. Soil Sci. 2018, 64, 916–929. [Google Scholar]
- Imanian, H.; Hiedra Cobo, J.; Payeur, P.; Shirkhani, H.; Mohammadian, A. A comprehensive study of artificial intelligence applications for soil temperature prediction in ordinary climate conditions and extremely hot events. Sustainability 2022, 14, 8065. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar]
- Khan, A.A.; Chaudhari, O.; Chandra, R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst. Appl. 2024, 244, 122778. [Google Scholar] [CrossRef]
- Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random forests for global sensitivity analysis: A selective review. Reliab. Eng. Syst. Saf. 2021, 206, 107312. [Google Scholar] [CrossRef]
Soil Depth (cm) | 2016–2021 (Training) | 2022–2024 (Testing) | |||
---|---|---|---|---|---|
Temperature (°C) | |||||
Air | Soil | Air | Soil | ||
5 | Avg | 13.74 | 14.54 | 13.78 | 15.85 |
Min | 1.15 | −1.80 | 1.73 | 2.36 | |
Max | 25.08 | 31.74 | 25.59 | 33.48 | |
SE | 0.92 | 1.14 | 1.27 | 1.63 | |
SD | 7.50 | 9.27 | 7.64 | 9.80 | |
Sk | −1.42 | −1.38 | −1.33 | −1.25 | |
Kr | −0.03 | 0.15 | −0.05 | 0.28 | |
10 | Avg | 13.74 | 14.99 | 13.78 | 15.93 |
Min | 1.15 | 0.97 | 1.73 | 2.89 | |
Max | 25.08 | 30.99 | 25.59 | 31.92 | |
SE | 0.87 | 1.03 | 1.27 | 1.58 | |
SD | 7.40 | 8.77 | 7.64 | 9.47 | |
Sk | −1.39 | −1.46 | −1.33 | −1.32 | |
Kr | −0.05 | 0.11 | −0.05 | 0.24 | |
20 | Avg | 13.74 | 14.97 | 13.78 | 15.81 |
Min | 1.15 | 2.40 | 1.73 | 3.73 | |
Max | 25.08 | 29.29 | 25.59 | 30.10 | |
SE | 0.87 | 0.96 | 1.27 | 1.47 | |
SD | 7.40 | 8.11 | 7.64 | 8.80 | |
Sk | −1.39 | −1.50 | −1.33 | −1.37 | |
Kr | −0.05 | 0.09 | −0.05 | 0.21 | |
50 | Avg | 13.74 | 14.98 | 13.78 | 15.73 |
Min | 1.15 | 4.78 | 1.73 | 5.32 | |
Max | 25.08 | 26.43 | 25.59 | 27.73 | |
SE | 0.87 | 0.78 | 1.27 | 1.23 | |
SD | 7.40 | 6.60 | 7.64 | 7.37 | |
Sk | −1.39 | −1.48 | −1.33 | −1.38 | |
Kr | −0.05 | 0.09 | −0.05 | 0.17 | |
100 | Avg | 13.74 | 15.13 | 13.78 | 15.79 |
Min | 1.15 | 7.41 | 1.73 | 7.62 | |
Max | 25.08 | 22.86 | 25.59 | 24.66 | |
SE | 0.87 | 0.57 | 1.27 | 0.92 | |
SD | 7.40 | 4.87 | 7.64 | 5.52 | |
Sk | −1.39 | −1.48 | −1.33 | −1.40 | |
Kr | −0.05 | 0.09 | −0.05 | 0.17 |
Variable | Magnitude of Coefficient | SE | t Value of Coefficient | Possibility |
---|---|---|---|---|
Constant | −1.981 | 0.331 | −5.990 | <0.01 |
Soil depth | 0.097 | 0.006 | 15.097 | <0.01 |
Average temperature | 1.224 | 0.021 | 57.597 | <0.01 |
Soil depth × Average temperature | −0.007 | 0.000 | −16.558 | <0.01 |
Analysis of variance F = 1563.45 | <0.01 | |||
R2 = 0.931, R2adj = 0.930 |
Training | Testing | ||||
---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 |
1.54 | 2.00 | 0.93 | 1.89 | 2.33 | 0.94 |
Depth (cm) | Average Air Temperature (°C) | |||
---|---|---|---|---|
Very Low | Low | Moderate | High | |
Shallow | Very Low | Low | Moderate | High |
Moderate | Very Low | Low | Moderate | High |
Deep | Very Low | Low | Moderate | High |
Very Deep | Very Low | Low | Moderate | High |
Defuzzification Method | Training | Testing | ||||
---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | |
Centroid | 2.58 | 3.29 | 0.83 | 2.83 | 3.45 | 0.85 |
Bisector | 2.72 | 3.46 | 0.82 | 3.06 | 3.77 | 0.83 |
MOM | 3.63 | 4.45 | 0.76 | 3.88 | 4.80 | 0.75 |
LOM | 4.61 | 6.01 | 0.73 | 4.85 | 6.06 | 0.70 |
SOM | 4.42 | 5.46 | 0.76 | 4.96 | 6.07 | 0.77 |
Rules | Input | Output | |||
---|---|---|---|---|---|
Soil Depth (cm) | Average Temperature (°C) | Soil Temperature (°C) Parameters | |||
Trimf (3 × 3) | |||||
1 | Shallow | Low | −0.1008 | −22.5 | 328.32 |
2 | Shallow | Moderate | −2.312 | −22.28 | 322.5 |
3 | Shallow | High | −4.467 | −22.34 | 624.7 |
4 | Moderately Deep | Low | −0.1158 | 12.42 | −2.7 |
5 | Moderately Deep | Moderate | −2.342 | 12.56 | −30.8 |
6 | Moderately Deep | High | −4.457 | 12.48 | −59.66 |
7 | Deep | Low | −0.0186 | 9.165 | −0.00019 |
8 | Deep | Moderate | −1.084 | 9.203 | −0.01084 |
9 | Deep | High | −2.14 | 9.26 | −0.0214 |
Trimf (4 × 4) | |||||
1 | Shallow | Very Low | 19.05 | −100.02 | 21.44 |
2 | Shallow | Low | 153.08 | −99.94 | 171.80 |
3 | Shallow | Moderate | 287.36 | −99.74 | 322.84 |
4 | Shallow | High | 420.62 | −99.34 | 469.90 |
5 | Moderate | Very Low | 19.00 | −601.48 | −1.85 |
6 | Moderate | Low | 152.97 | −600.85 | −14.76 |
7 | Moderate | Moderate | 287.25 | −601.14 | −27.74 |
8 | Moderate | High | 420.43 | −599.86 | −40.25 |
9 | Deep | Very Low | −3.95 | −125.74 | −0.08 |
10 | Deep | Low | −32.34 | −126.25 | −0.65 |
11 | Deep | Moderate | −60.75 | −126.59 | −1.21 |
12 | Deep | High | −88.71 | −126.66 | −1.77 |
13 | Very Deep | Very Low | 5.47 | −469.70 | 0.05 |
14 | Very Deep | Low | 43.78 | −469.77 | 0.44 |
15 | Very Deep | Moderate | 82.21 | −470.35 | 0.82 |
16 | Very Deep | High | 120.39 | −469.59 | 1.20 |
Input Combinations | Membership Function | Training | Testing | |||||
---|---|---|---|---|---|---|---|---|
Input | Output | MAE | RMSE | R2 | MAE | RMSE | R2 | |
Soil depth (cm) Average temperature (°C) | Trimf (3 × 3) | Linear | 1.46 | 1.97 | 0.94 | 1.49 | 1.97 | 0.95 |
Trapmf (3 × 3) | Linear | 1.46 | 1.97 | 0.94 | 1.55 | 1.97 | 0.95 | |
Gaussmf (3 × 3) | Linear | 1.45 | 1.96 | 0.94 | 1.52 | 1.97 | 0.95 | |
Trimf (4 × 4) | Linear | 1.35 | 1.88 | 0.94 | 1.46 | 1.89 | 0.95 | |
Trapmf (4 × 4) | Linear | 1.42 | 1.94 | 0.94 | 1.46 | 1.96 | 0.95 | |
Gaussmf (4 × 4) | Linear | 1.41 | 1.93 | 0.94 | 1.49 | 1.98 | 0.95 |
Hyperparameters Tuned | |
---|---|
MLP | |
Number of hidden layers | 1 |
Number of neurons in hidden | 3 |
Layer | |
Algorithm | Levenberg–Marquardt |
Transfer function in hidden Layer | Tansig |
Transfer function in output Layer | Purelin |
Number of epochs | 200 |
Network structure | 2-3-1 |
KNN | |
Optimal neighbor | 9 |
Weights | Uniform |
Distance function | Euclidean distance function |
SVR | |
Error term of penalty parameter (C) | 14.05 |
Radius (ε) | 0.763 |
Kernel coefficient (γ) | 0.001 |
RF | |
Number of estimators | 78 |
Maximum depth | 5 |
Maximum features | Sqrt |
Minimum samples leaf | 2 |
Minimum samples split | 5 |
XGB | |
Number of estimators | 91 |
Number of learning rates | 0.06 |
Models | Training | Testing | ||||
---|---|---|---|---|---|---|
MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLP | 1.47 | 1.99 | 0.93 | 1.75 | 2.23 | 0.93 |
KNN | 1.46 | 1.93 | 0.94 | 1.83 | 2.37 | 0.92 |
SVR | 1.43 | 1.95 | 0.93 | 1.70 | 2.17 | 0.93 |
RF | 1.09 | 1.49 | 0.96 | 1.60 | 2.09 | 0.94 |
XGB | 1.06 | 1.43 | 0.97 | 1.82 | 2.30 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cemek, B.; Kültürel, Y.; Cemek, E.; Küçüktopçu, E.; Simsek, H. Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods. Appl. Sci. 2025, 15, 6319. https://doi.org/10.3390/app15116319
Cemek B, Kültürel Y, Cemek E, Küçüktopçu E, Simsek H. Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods. Applied Sciences. 2025; 15(11):6319. https://doi.org/10.3390/app15116319
Chicago/Turabian StyleCemek, Bilal, Yunus Kültürel, Emirhan Cemek, Erdem Küçüktopçu, and Halis Simsek. 2025. "Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods" Applied Sciences 15, no. 11: 6319. https://doi.org/10.3390/app15116319
APA StyleCemek, B., Kültürel, Y., Cemek, E., Küçüktopçu, E., & Simsek, H. (2025). Modeling Soil Temperature with Fuzzy Logic and Supervised Learning Methods. Applied Sciences, 15(11), 6319. https://doi.org/10.3390/app15116319