Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,458)

Search Parameters:
Keywords = ACE-I inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 40218 KiB  
Article
ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis
by Tingting Ren, Jia Shi, Lili Zhuang, Ruiting Su, Yimei Lai and Niansheng Yang
Biomolecules 2025, 15(8), 1106; https://doi.org/10.3390/biom15081106 - 31 Jul 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid metabolic enzyme, as a critical mediator linking complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling to FMT via calcium signaling. In bleomycin (BLM)-induced pulmonary fibrosis of C57BL/6JGpt mice, and in C5a-stimulated primary lung fibroblasts, the expression of ACSL4 was markedly upregulated. Pharmacological inhibition of ACSL4 (PRGL493) or C5aR1 (PMX53) attenuated the deposition of ECM and suppressed the expression of fibrotic markers in vivo and in vitro. Mechanistically, the activation of C5a/C5aR1 signaling increased intracellular calcium levels and promoted the expression of ACSL4, while inhibition of calcium signaling (FK506) reversed the upregulation of ACSL4 and FMT-related changes, including the expression of α-smooth muscle actin (αSMA) and the migration of fibroblasts. Notably, inhibition of ACSL4 did not affect the proliferation of fibroblasts, suggesting its specific role in phenotypic transition. These findings demonstrate that ACSL4 functions downstream of C5a/C5aR1-induced calcium signaling to promote FMT and the progression of pulmonary fibrosis. Targeting ACSL4 may therefore offer a novel therapeutic strategy for IPF. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

22 pages, 1071 KiB  
Article
Proximate Composition, Phytochemicals, Phenolic Compounds, and Bioactive Characterization of Mauritia flexuosa L.f. Seeds
by Claudia Cristina Pérez Jaramillo, Liceth N. Cuéllar Álvarez and Walter Murillo Arango
Plants 2025, 14(15), 2323; https://doi.org/10.3390/plants14152323 - 27 Jul 2025
Viewed by 284
Abstract
Mauritia flexuosa, commonly known as “canangucha,” holds significant nutritional and economic value in the Amazon region. While its pulp is widely utilized in local food products, the seed or kernel is largely underutilized. This study investigated the proximal and phytochemical composition of [...] Read more.
Mauritia flexuosa, commonly known as “canangucha,” holds significant nutritional and economic value in the Amazon region. While its pulp is widely utilized in local food products, the seed or kernel is largely underutilized. This study investigated the proximal and phytochemical composition of M. flexuosa, alongside its biological properties, specifically focusing on the hypoglycemic activity of an ethanolic extract from M. flexuosa seeds (MFSs). Proximal analysis revealed that MFSs are a notable source of crude fiber (28.4%) and a moderate source of protein (9.1%). Phytochemical screening indicated a high total polyphenol content (123.4 mg gallic acid equivalents/100 mg dry weight) and substantial antiradical capacity against the ABTS radical (IC50 = 171.86 µg/mL). Notably, MFS ethanolic extracts exhibited significant in vitro antihyperglycemic activity via inhibiting α-amylase and α-glucosidase enzymes, demonstrating comparable inhibition to acarbose at higher concentrations. This hypoglycemic effect was further corroborated in an in vivo rat model with induced diabetes, where the administration of 100 mg/kg of MFS ethanolic extract significantly reduced blood glucose levels compared to the diabetic control group (p < 0.05). A moderate antihypertensive effect was observed at a concentration of 150 mg/kg, correlating with ACE inhibition. High-performance liquid chromatography–mass spectrometry (UHPLC-ESI-HRMS) analysis of the seed extract identified phenolic compounds including ellagic, p-coumaric, and chlorogenic acids, as well as flavonoids such as quercetin, myricetin, and epicatechin. This study provides the first evidence of the hypoglycemic activity of MFSs, offering valuable insights into their phytochemistry and potential therapeutic applications. Full article
Show Figures

Graphical abstract

15 pages, 574 KiB  
Article
Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages
by Tiziana Di Renzo, Antonela Guadalupe Garzón, Leonardo Pablo Sciammaro, Maria Cecilia Puppo, Silvina Rosa Drago and Anna Reale
Fermentation 2025, 11(8), 429; https://doi.org/10.3390/fermentation11080429 - 26 Jul 2025
Viewed by 371
Abstract
The study aimed to evaluate how different production methods and fermentation processes using two different lactic acid bacteria (LAB) affect the chemical composition and bioactive properties of pistachio beverages. The beverages were prepared with two varieties of pistachios, one from Argentina and the [...] Read more.
The study aimed to evaluate how different production methods and fermentation processes using two different lactic acid bacteria (LAB) affect the chemical composition and bioactive properties of pistachio beverages. The beverages were prepared with two varieties of pistachios, one from Argentina and the other from Italy. The pistachios were processed with two technologies: a domestic processor and a colloidal mill. For the fermentation, pistachio beverages were inoculated with two different LAB strains and incubated at 28 °C for 24 h. The beverages were analyzed for proximal composition (including protein, fat, fiber, and minerals) and bioactive properties such as antioxidant activity, angiotensin-converting enzyme inhibition (ACE-I), and dipeptidyl peptidase-4 inhibition (DPP-4). The colloidal milling allowed the inclusion of the whole pistachio nut, resulting in beverages with higher solid content and no waste. Beverages treated with colloidal milling exhibited higher acidity, improved microbial fermentation performance, and generally showed higher bioactivity compared to those obtained by the domestic processor. Bioactivity varied according to the pistachio variety, the processing method and LAB strains used. Lactic acid bacteria fermentation decreased antioxidant properties of the beverages by ~40% but improved anti-hypertensive and hypoglycaemic activities. Fermented pistachio-based beverages showed promising health-promoting properties, indicating their potential as functional foods. Full article
(This article belongs to the Special Issue Lactic Acid Bacteria: Fermentation)
Show Figures

Figure 1

20 pages, 3985 KiB  
Article
Activity Analysis and Inhibition Mechanism of Four Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Prepared from Flammulina velutipes by Enzymatic Hydrolysis
by Yajie Zhang, Xueqi Zhao, Xia Ma, Jiaqi Li, Xiaoyu Ye, Xuerui Wang, Wenwei Zhang and Jianmin Yun
Foods 2025, 14(15), 2619; https://doi.org/10.3390/foods14152619 - 26 Jul 2025
Viewed by 196
Abstract
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude [...] Read more.
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude peptide fraction was obtained; its ACE inhibition rate was 85.73 ± 0.95% (IC50 = 0.83 ± 0.09 mg/mL). Based on LC-MS/MS sequencing, the four novel peptides, namely, FAGGP, FDGY, FHPGY, and WADP, were screened by computer analysis and molecular docking technology. The four peptides exhibited a binding energy between −9.4 and −10.3 kcal/mol, and formed hydrogen bonds with Tyr523, Ala354, and Glu384 in the S1 pocket, Tyr520 and His353 in the S2 pocket, and His383 in the HEXXH zinc-coordinating motif of ACE, indicating their good affinity with the ACE active site. The IC50 values of the four ACE inhibitory peptides were 29.17, 91.55, 14.79, and 41.27 μM, respectively, suggesting that these peptides could potentially contribute to the development of new antihypertensive products. Full article
(This article belongs to the Special Issue Bioactive Peptides and Probiotic Bacteria: Modulators of Human Health)
Show Figures

Graphical abstract

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 272
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure
by Raluca Ecaterina Haliga, Elena Cojocaru, Oana Sîrbu, Ilinca Hrițcu, Raluca Elena Alexa, Ioana Bianca Haliga, Victorița Șorodoc and Adorata Elena Coman
Biomedicines 2025, 13(7), 1779; https://doi.org/10.3390/biomedicines13071779 - 21 Jul 2025
Viewed by 391
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use [...] Read more.
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use in hypertension and heart failure, extending to autoimmune, infectious, oncologic, and neurodegenerative conditions. ACEIs and ARBs modulate both innate and adaptive immune responses through Ang II-dependent and -independent mechanisms, influencing macrophage polarization, T-cell differentiation, cytokine expression, and antigen presentation. Notably, ACEIs exhibit Ang II-independent effects by enhancing antigen processing and regulating amyloid-β metabolism, offering potential neuroprotective benefits in Alzheimer’s disease. ARBs, particularly telmisartan and candesartan, provide additional anti-inflammatory effects via PPARγ activation. In cancer, RAAS inhibition affects tumor growth, angiogenesis, and immune surveillance, with ACEIs and ARBs showing distinct yet complementary impacts on tumor microenvironment modulation and chemotherapy cardioprotection. Moreover, ACEIs have shown promise in autoimmune myocarditis, colitis, and diabetic nephropathy by attenuating inflammatory cytokines. While clinical evidence supports the use of centrally acting ACEIs to treat early cognitive decline, further investigation is warranted to determine the long-term outcomes across disease contexts. These findings highlight the evolving role of RAAS inhibitors as immunomodulatory agents with promising implications across multiple systemic pathologies. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

17 pages, 3958 KiB  
Article
ZmNLR-7-Mediated Synergistic Regulation of ROS, Hormonal Signaling, and Defense Gene Networks Drives Maize Immunity to Southern Corn Leaf Blight
by Bo Su, Xiaolan Yang, Rui Zhang, Shijie Dong, Ying Liu, Hubiao Jiang, Guichun Wu and Ting Ding
Curr. Issues Mol. Biol. 2025, 47(7), 573; https://doi.org/10.3390/cimb47070573 - 21 Jul 2025
Viewed by 199
Abstract
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor [...] Read more.
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor threatening the global food supplies and security. Based on previous cross-species homologous gene screening assays conducted in the laboratory, this study identified the maize disease-resistance candidate gene ZmNLR-7 to investigate the maize immune regulation mechanism against Bipolaris maydis. Subcellular localization assays confirmed that the ZmNLR-7 protein is localized in the plasma membrane and nucleus, and phylogenetic analysis revealed that it contains a conserved NB-ARC domain. Analysis of tissue expression patterns revealed that ZmNLR-7 was expressed in all maize tissues, with the highest expression level (5.11 times) exhibited in the leaves, and that its transcription level peaked at 11.92 times 48 h post Bipolaris maydis infection. Upon inoculating the ZmNLR-7 EMS mutants with Bipolaris maydis, the disease index was increased to 33.89 and 43.33, respectively, and the lesion expansion rate was higher than that in the wild type, indicating enhanced susceptibility to southern corn leaf blight. Physiological index measurements revealed a disturbance of ROS metabolism in ZmNLR-7 EMS mutants, with SOD activity decreased by approximately 30% and 55%, and POD activity decreased by 18% and 22%. Moreover, H2O2 content decreased, while lipid peroxide MDA accumulation increased. Transcriptomic analysis revealed a significant inhibition of the expression of the key genes NPR1 and ACS6 in the SA/ET signaling pathway and a decrease in the expression of disease-related genes ERF1 and PR1. This study established a new paradigm for the study of NLR protein-mediated plant immune mechanisms and provided target genes for molecular breeding of disease resistance in maize. Overall, these findings provide the first evidence that ZmNLR-7 confers resistance to southern corn leaf blight in maize by synergistically regulating ROS homeostasis, SA/ET signal transduction, and downstream defense gene expression networks. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Graphical abstract

14 pages, 1342 KiB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 524
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
The Renin–Angiotensin System Modulates SARS-CoV-2 Entry via ACE2 Receptor
by Sophia Gagliardi, Tristan Hotchkin, Hasset Tibebe, Grace Hillmer, Dacia Marquez, Coco Izumi, Jason Chang, Alexander Diggs, Jiro Ezaki, Yuichiro J. Suzuki and Taisuke Izumi
Viruses 2025, 17(7), 1014; https://doi.org/10.3390/v17071014 - 19 Jul 2025
Viewed by 491
Abstract
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus [...] Read more.
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin IV, but not angiotensin II, has recently been reported to enhance the binding between the viral spike protein and ACE2. To investigate the virological significance of this effect, we developed a single-round infection assay using SARS-CoV-2 viral-like particles expressing the spike protein. Our results demonstrate that while angiotensin II does not affect viral infectivity across concentrations ranging from 40 nM to 400 nM, angiotensin IV enhances viral entry at a low concentration but exhibits dose-dependent inhibition at higher concentrations. These findings highlight the unique dual role of angiotensin IV in modulating SARS-CoV-2 entry. In silico molecular docking simulations indicate that angiotensin IV was predicted to associate with the S1 domain near the receptor-binding domain in the open spike conformation. Given that reported plasma concentrations of angiotensin IV range widely from 17 pM to 81 nM, these levels may be sufficient to promote, rather than inhibit, SARS-CoV-2 infection. This study identifies a novel link between RAS-derived peptides and SARS-CoV-2 infectivity, offering new insights into COVID-19 pathophysiology and informing potential therapeutic strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

10 pages, 598 KiB  
Review
Translational Impact of Genetics and Epigenetics of CGRP System on Chronic Migraine Treatment with Onabotulinumtoxin A and Other Biotech Drugs
by Damiana Scuteri and Paolo Martelletti
Toxins 2025, 17(7), 355; https://doi.org/10.3390/toxins17070355 - 17 Jul 2025
Viewed by 521
Abstract
Migraine is a neurovascular paroxysmal disorder characterized by neurogenic inflammation and has a remarkable impact on the quality of life. The Food and Drug Administration (FDA) approved onabotulinumtoxin A in 2010 for the prophylactic treatment of chronic migraine. Today, in its 4th decade, [...] Read more.
Migraine is a neurovascular paroxysmal disorder characterized by neurogenic inflammation and has a remarkable impact on the quality of life. The Food and Drug Administration (FDA) approved onabotulinumtoxin A in 2010 for the prophylactic treatment of chronic migraine. Today, in its 4th decade, it is approved in 100 countries for 15 main indications. Its mechanism of action, based on the inhibition of neurotransmitter release from primary sensory neurons, is very complex: it affords antinociception, but it also has an analgesic effect on neuropathic pain conditions and reduces the need for rescue medications. Genetic variants have been investigated for their potential role in the pathogenesis and clinical expression of migraine and of the response to treatments. These studies primarily involved genes associated with vascular regulation and cardiovascular pathology, including those encoding angiotensin-converting enzyme (ACE) and methylenetetrahydrofolate reductase (MTHFR). However, epigenetics and, particularly, genetic and epigenetic modifications are still poorly studied in terms of understanding the mechanisms implicated in susceptibility to migraine, aura, chronification and response to symptomatic and preventive treatments. In particular, the aim of the present study is to gather evidence on the genetic variants and epigenetic modifications affecting the pathway of the calcitonin gene-related peptide (CGRP), the target of onabotulinumtoxin A and of all the novel monoclonal antibodies. Full article
Show Figures

Figure 1

18 pages, 1321 KiB  
Article
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 - 12 Jul 2025
Viewed by 352
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis [...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities. Full article
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Soybean Trypsin Inhibitor Possesses Potency Against SARS-CoV-2 Infection by Blocking the Host Cell Surface Receptors ACE2, TMPRSS2, and CD147
by Wen-Liang Wu, Jaung-Geng Lin, Wen-Ping Jiang, Hsi-Pin Hung, Atsushi Inose and Guan-Jhong Huang
Int. J. Mol. Sci. 2025, 26(14), 6583; https://doi.org/10.3390/ijms26146583 - 9 Jul 2025
Viewed by 356
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that helps the body regulate blood pressure and endocrine secretions. Transmembrane serine protease 2 (TMPRSS2) is a cell surface protein expressed mainly by endothelial cells of the respiratory and digestive tract, which participates in the [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that helps the body regulate blood pressure and endocrine secretions. Transmembrane serine protease 2 (TMPRSS2) is a cell surface protein expressed mainly by endothelial cells of the respiratory and digestive tract, which participates in the cleavage of protein peptide bonds with serine as the active site. These two proteins have been studied to be highly associated with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soybean trypsin inhibitor (SBTI) has special bioactivities such as anticarcinogenic and anti-inflammatory functions, which can be widely used in functional foods or drugs. Our study involved in vitro and in vivo experiments to elucidate the effect of SBTI on SARS-CoV-2 host invasion. First, it was confirmed that being under 250 μg/mL of SBTI was not toxic to HepG2, HEK293T, and Calu-3 cells. The animal study administered SBTI to mice once daily for 14 days. In the lungs, liver, and kidneys, the histopathologic findings of the SBTI group were not different from those of the control group, but the expression of ACE2, TMPRSS2, and CD147 was reduced. Thus, our findings suggest that the inhibition of ACE2, TMPRSS,2 and CD147 proteins by SBTI shows promise in potentially inhibiting SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue New Advances in Bioactive Compounds in Health and Disease)
Show Figures

Graphical abstract

8 pages, 2004 KiB  
Article
Updating the Mechanism of Bicarbonate (HCO3) Activation of Soluble Adenylyl Cyclase (sAC)
by Jacob Ferreira, Hayden Belliveau, Clemens Steegborn, Jochen Buck and Lonny R. Levin
Int. J. Mol. Sci. 2025, 26(13), 6401; https://doi.org/10.3390/ijms26136401 - 3 Jul 2025
Viewed by 249
Abstract
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine [...] Read more.
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine triphosphate (ATP). Our initial in vitro biochemical studies suggested two mechanisms for HCO3-dependent elevation of sAC activity: increasing catalytic rate and relieving inhibition observed in the presence of supraphysiological levels of substrate, ATP. Structural and mutational studies revealed that HCO3 increases catalytic rate via the disruption of a salt bridge that facilitates productive interactions with the substrate. Here, we demonstrate that the HCO3 stimulation observed under supraphysiological ATP concentrations is due to the mitigation of ATP-dependent acidification. Therefore, we conclude that the sole physiologically relevant mechanism of HCO3 regulation of sAC is through its pH-independent effect facilitating productive substrate binding to the catalytic site. Full article
Show Figures

Figure 1

15 pages, 1611 KiB  
Article
Angiotensin-Converting Enzyme Inhibitory Activity of Selected Phenolic Acids, Flavonoids, Their O-Glucosides, and Low-Molecular-Weight Phenolic Metabolites in Relation to Their Oxidation Potentials
by Danuta Zielińska, Małgorzata Starowicz, Małgorzata Wronkowska and Henryk Zieliński
Metabolites 2025, 15(7), 443; https://doi.org/10.3390/metabo15070443 - 1 Jul 2025
Viewed by 279
Abstract
Background/Objectives: In this study, the angiotensin-converting enzyme (ACE) inhibitory activity of selected phenolic acids, flavonoids, their O-glucosides, and low-molecular-weight phenolic metabolites was addressed to show their importance against blood hypertension. Methods: A fluorescence assay was used for the determination of [...] Read more.
Background/Objectives: In this study, the angiotensin-converting enzyme (ACE) inhibitory activity of selected phenolic acids, flavonoids, their O-glucosides, and low-molecular-weight phenolic metabolites was addressed to show their importance against blood hypertension. Methods: A fluorescence assay was used for the determination of the ACE inhibitory activity, whereas the first anodic peak oxidation potential (Epa) was provided by the differential pulse voltammetry (DPV) method. The relationship between the ACE inhibitory activity and Epa was evaluated. Results: Phenolic acids showed a very low ACE inhibitory activity, and their rank was chlorogenic acid > p-coumaric acid > sinapic acid > gentisic acid > ferulic acid > syringic acid > vanillic acid > protocatechuic acid > caffeic acid. The low-molecular-weight phenolic metabolites of flavonoids showed a moderate ACE inhibitory activity. In contrast, flavonoid aglicones had the highest ACE inhibitory activity, and the order was luteolin > quercetin > kaempferol > cyanidin > delphinidin > pelargonin > naringenin. A lower inhibition activity was noted for quercetin-3-O-glucoside, luteolin-4′-O-glucosides, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucosides, whereas a higher ACE inhibition activity was observed for 7-O-glucosides of luteolin, apigenin, and kaempferol. A lack of correlation was found between the IC50 of phenolic acids, low-molecular-weight phenolic metabolites, and their Epa values. In contrast, weak positive correlations were found between the IC50 of aglicons, 3-O-glucosides, 7-O-glucosides, and their Epa values provided by the DPV (r = 0.61, r = 0.66 and r = 0.88, respectively). Conclusions: This study expands our knowledge of the ACE inhibitory activity of phenolic compounds. Full article
(This article belongs to the Special Issue Flavonoids: Novel Therapeutic Potential for Chronic Diseases)
Show Figures

Figure 1

Back to TopTop