Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Microbial Strains
2.3. Pistachio Beverage Preparation
2.4. Inoculum of Pistachio-Based Beverages
2.4.1. Microbiological Analysis of the Beverage
2.4.2. Beverage Acidity
2.4.3. Proximate Composition
2.4.4. Enzymatic Assays
2.4.5. Phenolic Acid Analysis
2.4.6. Color Determination
2.4.7. Determination of Bioactive Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Pistachio Nuts
3.2. Microbiological Characterization of Fermented Pistachio Beverages
3.3. Nutritional Composition of Fermented Pistachio Beverages
3.4. Polyphenolic Profile of Fermented Pistachio Beverages
3.5. Color
3.6. Bioactive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
A | Argentinean pistachio nuts |
I | Italian pistachio nuts |
D | Domestic processor |
C | Colloidal mill |
S1 | Leuconostoc pseudomesenteroides PD4 |
S2 | Companilactobacillus alimentarius PG3 |
BI | Browing index |
AOA | Antioxidant activity |
ADA | Antidiabetogenic activity |
AHA | Antihypertensive activity |
ACE-I | Angiotensin converting enzyme -I |
DPP-IV | Dipeptidyl peptidase -IV |
TDF | Total dietary fiber |
References
- Noguera-Artiaga, L.; Salvador, M.D.; Fregapane, G.; Collado-González, J.; Wojdyło, A.; López-Lluch, D.; Carbonell-Barrachina, Á.A. Functional and sensory properties of pistachio nuts as affected by cultivar. J. Sci. Food Agric. 2019, 99, 6696–6705. [Google Scholar] [CrossRef]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, nutrients, bioactives and novel health effects. Plants 2022, 11, 18. [Google Scholar] [CrossRef]
- Costa, J.; Silva, I.; Villa, C.; Mafra, I. A novel single-tube nested real-time PCR method to quantify pistachio nut as an allergenic food: Influence of food matrix. J. Food Comp. Anal. 2023, 115, 105042. [Google Scholar] [CrossRef]
- Pakzadeh, R.; Goli, S.A.H.; Abdollahi, M.; Varshosaz, J. Formulation optimization and impact of environmental and storage conditions on physicochemical stability of pistachio milk. Food Meas. 2021, 15, 4037–4050. [Google Scholar] [CrossRef]
- Mertdinç, Z.; Aydar, E.F.; Kadı, I.H.; Demircan, E.; Çetinkaya, S.K.; Özçelik, B. A new plant-based milk alternative of Pistacia vera geographically indicated in Türkiye: Antioxidant activity, in vitro bio-accessibility, and sensory characteristics. Food Biosci. 2023, 53, 102731. [Google Scholar] [CrossRef]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. Food Funct. 2016, 7, 4285–4298. [Google Scholar] [CrossRef]
- Fernández-Varela, R.; Hansen, A.H.; Svendsen, B.A.; Moghadam, E.G.; Bas, A.; Kračun, S.K.; Harlé, O.; Poulsen, V.K. Harnessing fermentation by Bacillus and lactic acid bacteria for enhanced texture, flavor, and nutritional value in plant-based matrices. Fermentation 2024, 10, 411. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziębicka, A.; Ziarno, M. Properties of rice-based beverages fermented with lactic acid bacteria and Propionibacterium. Molecules 2022, 27, 2558. [Google Scholar] [CrossRef]
- Di Renzo, T.; Osimani, A.; Marulo, S.; Cardinali, F.; Mamone, G.; Puppo, M.C.; Garzón, A.G.; Drago, S.R.; Laurino, C.; Reale, A. Insight into the role of lactic acid bacteria in the development of a novel fermented pistachio (Pistacia vera L.) beverage. Food Biosci. 2023, 53, 102802. [Google Scholar] [CrossRef]
- Di Renzo, T.; Reale, A. Process optimization and quality improvement of fermented foods and beverages. Foods 2025, 14, 1238. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—AOAC. Official Methods of Analysis, 18th ed.; Horwitz, W., Ed.; AOAC INTERNATIONAL: Washington, DC, USA, 2005. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Cian, R.E.; Garzón, A.G.; Betancur Ancona, D.; Chel Guerrero, L.; Drago, S.R. Hydrolyzates from Pyropia columbina seaweed have antiplatelet aggregation, antioxidant and ACE I inhibitory peptides which maintain bioactivity after simulated gastrointestinal digestion. LWT-Food Sci. Technol. 2015, 64, 881–888. [Google Scholar] [CrossRef]
- Wang, T.Y.; Hsieh, C.H.; Hung, C.C.; Jao, C.L.; Lin, P.Y.; Hsieh, Y.L.; Hsu, K.C. A study to evaluate the potential of an in silico approach for predicting dipeptidyl peptidase-IV inhibitory activity in vitro of protein hydrolysates. Food Chem. 2017, 234, 431–438. [Google Scholar] [CrossRef]
- Hayakari, M.; Kondo, Y.; Izumi, H. A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal. Biochem. 1978, 84, 361–369. [Google Scholar] [CrossRef]
- Boukid, F.; Abbattangelo, S.; Carini, E.; Marseglia, A.; Caligiani, A.; Vittadini, E. Geographical origin discrimination of Pistachio (Pistacia vera L.) through combined analysis of physical and chemical features. Eur. Food Res. Technol. 2019, 245, 143–150. [Google Scholar] [CrossRef]
- Tsantili, E.; Takidelli, C.; Christopoulos, M.V.; Lambrinea, E.; Rouskas, D.; Roussos, P.A. Physical, compositional and sensory difference in nut among pistachio (Pistachia vera L.) varieties. Sci. Hortic. 2010, 125, 562–568. [Google Scholar] [CrossRef]
- Ak, B.E.; Kaska, N. Effects of climatic conditions on pistachio nut development and quality. Acta Hortic. 1999, 488, 229–234. [Google Scholar]
- Ozdemir, M.; Topuz, A. Influence of different drying techniques on the retention of nutrients and oils in pistachios. J. Food Eng. 2004, 62, 89–93. [Google Scholar]
- Tavakolipour, H. Postharvest operations of pistachio nuts. J. Food Sci. Technol. 2015, 52, 1124–1130. [Google Scholar] [CrossRef]
- Mesquita, M.C.; dos Santos Leandro, E.; de Alencar, F.R.; Assunção Botelho, R.B. Fermentation of chickpea (Cicer arietinum L.) and coconut (Coccus nucifera L.) beverages by Lactobacillus paracasei subsp paracasei LBC 81: The influence of sugar content on growth and stability during storage. LWT-Food Sci. Technol. 2020, 132, 109834. [Google Scholar] [CrossRef]
- Erem, E.; Kilic-Akyilmaz, M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13402. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. GRAS Notice No. GRN 000679—Dealcoholized Fermented Orange Juice; 2010; GRAS Notice (GRN) No. 679. Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm (accessed on 25 June 2025).
- Okaru, A.O.; Lachenmeier, D.W. Defining No and Low (NoLo) Alcohol Products. Nutrients 2022, 14, 3873. [Google Scholar] [CrossRef]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef]
- Fabani, M.P.; Luna, L.; Baroni, M.V.; Monferran, M.V.; Ighani, M.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Pistachio (Pistacia vera var Kerman) from Argentinean cultivars. A natural product with potential to improve human health. J. Funct. Foods 2013, 5, 1347–1356. [Google Scholar] [CrossRef]
- Liu, Y.; Blumberg, J.B.; Chen, C.-Y.O. Quantification and bioaccessibility of California pistachio bioactives. J. Agric. Food Chem. 2014, 62, 1550–1556. [Google Scholar] [CrossRef]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113 (Suppl. S2), S79–S93. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS. Food Chem. 2018, 240, 24–31. [Google Scholar] [CrossRef]
- Glei, M.; Ludwig, D.; Lamberty, J.; Fischer, S.; Lorkowski, S.; Schlörmann, W. Chemopreventive potential of raw and roasted pistachios regarding colon carcinogenesis. Nutrients 2017, 9, 1368. [Google Scholar] [CrossRef]
- Marulo, S.; De Caro, S.; Nitride, C.; Di Renzo, T.; Di Stasio, L.; Ferranti, P.; Reale, A.; Mamone, G. Bioactive peptides released by lactic acid bacteria fermented pistachio beverages. Food Biosci. 2024, 59, 103988. [Google Scholar] [CrossRef]
- Asbaghi, O.; Hadi, A.; Campbell, M.S.; Venkatakrishnan, K.; Ghaedi, E. Effects of pistachios on anthropometric indices, inflammatory markers, endothelial function and blood pressure in adults: A systematic review and meta-analysis of randomized controlled trials. Br. J. Nutr. 2021, 126, 718–729. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Josse, A.R.; Esfahani, A.; Jenkins, D.J.A. The impact of pistachio intake alone or in combination with high carbohydrate foods on post-prandial glycemia. Eur. J. Clin. Nutr. 2011, 65, 696–702. [Google Scholar] [CrossRef]
Italian Pistachio (g/100 g d.b) | Argentinean Pistachio (g/100 g d.b) | |
---|---|---|
Proteins | 25.7 ± 0.1 a | 27.1 ± 0.2 b |
Lipids | 48.5 ± 1.7 b | 45.4 ± 1.8 a |
Total Dietary Fiber | 15.3± 1.0 b | 10.7 ± 0.8 a |
Ash | 3.1 ± 0.1 a | 2.9 ± 0.1 a |
Sample | Lactic Acid Bacteria (log cfu/g) | pH Values | ||
---|---|---|---|---|
T = 0 | T = 24 h | T = 0 | T = 24 h | |
ID | <1 | <1 | 6.67 ± 0.06 | 6.75 ± 0.06 |
ID-S1 | 6.46 ± 0.32 | 9.21 ± 0.23 | 6.67 ± 0.06 | 4.48 ± 0.05 |
ID-S2 | 6.36 ± 0.46 | 8.9 ± 0.53 | 6.67 ± 0.06 | 4.49 ±0.05 |
IC | <1 | <1 | 6.46 ± 0.09 | 6.33 ± 0.09 |
IC-S1 | 6.91 ± 0.38 | 8.79 ± 0.37 | 6.46 ± 0.09 | 4.48 ± 0.05 |
IC-S2 | 6.93 ± 0.37 | 8.69 ± 0.51 | 6.46 ± 0.09 | 4.43 ± 0.10 |
AD | <1 | <1 | 6.74 ± 0.04 | 6.80 ± 0.04 |
AD-S1 | 6.3 ± 0.29 | 9.0 ± 0.18 | 6.74 ± 0.04 | 4.20 ± 0.18 |
AD-S2 | 6.16 ± 0.62 | 8.43 ± 0.42 | 6.74 ± 0.04 | 4.59 ± 0.05 |
AC | <1 | <1 | 6.45 ± 0.07 | 6.55 ± 0.07 |
AC-S1 | 6.82 ± 0.18 | 8.88 ± 0.44 | 6.45 ± 0.07 | 4.19 ± 0.10 |
AC-S2 | 6.64 ± 0.21 | 8.36 ± 0.6 | 6.45 ± 0.07 | 4.39 ± 0.10 |
Ash (g/100 g d.b) | Lipids (g/100 g d.b) | Protein (g/100 g d.b) | TDF (g/100 g d.b) | ||
---|---|---|---|---|---|
Domestic | ID | 0.26± 0.02 a | 4.23±0.02 b | 2.45±0.02 e | 1.09±0.05 b |
ID-S1 | 0.26± 0.02 a | 4.38±0.14 b | 2.20±0.05 b | 0.92±0.01 b | |
ID-S2 | 0.26± 0.01 a | 4.25±0.03 b | 2.03±0.03 a | 0.51±0.03 a | |
Colloidal | IC | 0.48 ± 0.04 b | 8.20 ± 0.07 d | 5.42 ± 0.06 i | 2.43 ± 0.04 d |
IC-S1 | 0.53 ± 0.01 b | 7.40 ± 0.41 c | 4.46 ± 0.04 g | 2.63 ± 0.23 de | |
IC-S2 | 0.49 ± 0.04 b | 8.88 ± 0.07 e | 4.19 ± 0.06 f | 2.83 ± 0.09 e | |
Domestic | AD | 0.29 ± 0.00 a | 4.31 ± 0.01 b | 2.42 ± 0.01 de | 0.58 ± 0.12 a |
AD-S1 | 0.26 ± 0.01a | 3.77 ± 0.01 a | 2.32 ± 0.06 c | 0.63 ± 0.07 a | |
AD-S2 | 0.25 ± 0.01 a | 3.80 ± 0.08 a | 2.34 ± 0.02 cd | 0.41 ± 0.06 a | |
Colloidal | AC | 0.49 ± 0.04 b | 8.18 ± 0.05 d | 5.29 ± 0.03 i | 2.11 ± 0.25 c |
AC-S1 | 0.53 ± 0.06b | 8.81 ± 0.03 e | 5.24 ± 0.02 i | 2.01 ± 0.04 c | |
AC-S2 | 0.48 ± 0.04 b | 8.82 ± 0.05 e | 4.98 ± 0.04 h | 1.93 ± 0.14 c |
Samples | Acetic Acid | Lactic Acid | Sucrose | Fructose | Glucose | Ethanol (g/L) |
---|---|---|---|---|---|---|
ID | 0.07 | n.d | 4.11 | 0.01 | n.d | 0.19 |
ID-S1 | 0.50 | 2.92 | 0.01 | n.d | n.d | 1.03 |
ID-S2 | 0.20 | 2.69 | 1.29 | n.d | n.d | 0.08 |
IC | 0.14 | n.d | 4.76 | 0.95 | 2.83 | 0.03 |
IC-S1 | 1.58 | 6.07 | n.d | n.d | n.d | 1.88 |
IC-S2 | 1.67 | 5.75 | 0.01 | n.d | n.d | 0.62 |
AD | 0.10 | 0.02 | 6.82 | 0.11 | 0.02 | 0.17 |
AD-S1 | 1.03 | 3.26 | n.d | n.d | n.d | 0.86 |
AD-S2 | 0.32 | 2.72 | 3.70 | n.d | n.d | 0.27 |
AC | 0.16 | n.d | 12.64 | 0.67 | 1.44 | 0.03 |
AC-S1 | 1.88 | 6.07 | n.d | n.d | n.d | 1.81 |
AC-S2 | 1.84 | 5.54 | 0.07 | n.d | n.d | 0.60 |
Sample | Gallic Acid | Syringic Acid | Ferulic Acid | Catequin | Epicatequin | Rutin | Myricetin |
---|---|---|---|---|---|---|---|
ID | 36.5 ± 0.2 f | 5.7 ± 0.3 b | 0.7 ± 0.0 f | 16.5 ± 0.3 d | 10.9 ± 0.3 d | ND | ND |
ID-S1 | 50.4 ± 0.2 h | 4.8 ± 0.2 a | 0.3 ± 0.0 b | 12.2 ± 0.8 c | 6.8 ± 0.0 a | 1.4 ± 0.0 d | ND |
ID-S2 | 44.5 ± 0.2 g | 6.2 ± 0.1 c | 0.3 ± 0.0 bc | 18.1 ± 0.1 de | 16.0 ± 0.2 f | 2.5 ± 0.0 i | ND |
IC | 95.3 ± 0.1 j | 6.9 ± 0.5 e | 1.2 ± 0.0 h | 26.2 ± 0.1 g | 44.3 ± 0.3 h | 1.5 ± 0.0 e | ND |
IC-S1 | 51.8 ± 0.6 h | 6.6 ± 0.2 d | 0.3 ± 0.0 cd | 42.9 ± 0.3 i | 20.1 ± 0.4 g | 2.3 ± 0.0 h | ND |
IC-S2 | 55.5 ± 0.3 i | 6.4 ± 0.1 cd | 0.2 ± 0.0 a | 33.0 ± 2.6 h | 10.8 ± 0.1 cd | 2.0 ± 0.0 f | ND |
AD | 6.5 ± 0.3 a | 8.0 ± 0.1 fg | 0.4 ± 0.0 e | 2.8 ± 0.1 a | 10.4 ± 0.2 c | 1.0 ± 0.1 b | 0.4 ± 0.0 |
AD-S1 | 17.5 ± 1.7 c | 8.1 ± 0.1 g | 0.2 ± 0.0 a | 8.5 ± 0.1 b | 11.6 ± 0.1 e | 1.3 ± 0.0 c | ND |
AD-S2 | 15.6 ± 0.2 b | 6.1 ± 0.1 c | 0.3 ± 0.0 d | 10.5 ± 0.4 c | ND | 0.9 ± 0.0 a | ND |
AC | 30.3 ± 1.6 d | 8.6 ± 0.4 h | 1.0 ± 0.0 g | 22.7 ± 0.7 f | 20.1 ± 0.2 g | 2.1 ± 0.1 g | 0.4 ± 0.1 |
AC-S1 | 17.3 ± 0.0 c | 7.7 ± 0.1 f | 0.2 ± 0.0 a | 19.0 ± 0.1 e | 15.9 ± 0.0 f | 1.5 ± 0.0 e | ND |
AC-S2 | 33.5 ± 0.5 e | 8.1 ± 0.1 g | 0.3 ± 0.0 b | 19.6 ± 0.7 e | 8.4 ± 0.2 b | 2.0 ± 0.0 f | ND |
Samples | L* | a* | b* | ΔE | BI |
---|---|---|---|---|---|
ID | 51.6 ± 0.2 e | 3.7 ± 0.1 c | 25.1 ± 0.6 b | 47.0 ± 0.1 a | 10.0 ± 0.2 b |
ID-S1 | 36.8 ± 0.4 a | 6.0 ± 0.1 e | 23.3 ± 0.5 a | 60.2 ± 0.3 e | 17.8 ± 0.3 e |
ID-S2 | 43.0 ± 0.7 b | 5.8 ± 0.1 d | 24.6 ± 0.8 ab | 54.8 ± 0.5 c | 15.2 ± 0.2 d |
IC | 45.8 ± 0.5 c | 3.6 ± 0.1 c | 25.5 ± 0.7 b | 52.4 ± 0.2 c | 11.1 ± 0.1 c |
IC-S1 | 47.6 ± 2.1 d | 3.4 ± 0.1 b | 27.5 ± 1.3 c | 51.6 ± 1.3 c | 10.8 ± 0.1 c |
IC-S2 | 51.3 ± 0.1 e | 3.0 ± 0.1 a | 27.1 ± 0.2 c | 48.0 ± 0.1 b | 9.3 ± 0.1 a |
AD | 61.3 ± 0.8 d | 3.0 ± 0.1 bc | 32.2 ± 0.3 ab | 42.7 ± 0.6 a | 8.7 ± 0.1 b |
AD-S1 | 44.6 ± 1.4 a | 7.6 ± 0.2 e | 31.6 ± 1.6 a | 56.6 ± 0.4 d | 19.0 ± 0.5 e |
AD-S2 | 56.6 ± 1.2 c | 4.2 ± 0.2 d | 32.2 ± 0.4 ab | 46.5 ± 1.2 b | 10.9 ± 0.5 d |
AC | 54.2 ± 0.3 b | 3.2 ± 0.1 c | 30.7 ± 0.9 a | 47.5 ± 0.3 b | 9.8 ± 0.3 c |
AC-S1 | 65.1 ± 0.1 f | 2.8 ± 0.2 ab | 33.3 ± 0.5 b | 40.7 ± 0.4 e | 8.2 ± 0.3 ab |
AC-S2 | 62.9 ±0.3 e | 2.6 ± 0.0 a | 31.9 ± 0.3 ab | 41.3 ± 0.1 c | 8.0 ± 0.1 a |
Color | Method | Fermentation | Method | Fermentation |
---|---|---|---|---|
Values | Italian Beverages | Argentinean Beverages | ||
L* | C > D | S1 < S2 < W | C > D | S1 < W < S2 |
a* | C < D | W < S2 < S1 | C < D | W < S2 < S1 |
b* | C > D | ns | ns | ns |
ΔE | C < D | W < S2 < S1 | C < D | S2 < W < S1 |
BI | C < D | W < S2 < S1 | C < D | WF = S2 < S1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Renzo, T.; Garzón, A.G.; Sciammaro, L.P.; Puppo, M.C.; Drago, S.R.; Reale, A. Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages. Fermentation 2025, 11, 429. https://doi.org/10.3390/fermentation11080429
Di Renzo T, Garzón AG, Sciammaro LP, Puppo MC, Drago SR, Reale A. Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages. Fermentation. 2025; 11(8):429. https://doi.org/10.3390/fermentation11080429
Chicago/Turabian StyleDi Renzo, Tiziana, Antonela Guadalupe Garzón, Leonardo Pablo Sciammaro, Maria Cecilia Puppo, Silvina Rosa Drago, and Anna Reale. 2025. "Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages" Fermentation 11, no. 8: 429. https://doi.org/10.3390/fermentation11080429
APA StyleDi Renzo, T., Garzón, A. G., Sciammaro, L. P., Puppo, M. C., Drago, S. R., & Reale, A. (2025). Influence of Fermentation and Milling Processes on the Nutritional and Bioactive Properties of Pistachio-Based Beverages. Fermentation, 11(8), 429. https://doi.org/10.3390/fermentation11080429