ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Mouse Experiments
2.3. Extraction and Treatment of Lung Fibroblasts
2.4. Real-Time Quantitative PCR (qPCR)
2.5. Western Blot (WB)
2.6. Pathological Staining of Lung Tissue
2.6.1. H&E Staining
2.6.2. Immunohistochemical Staining
2.6.3. Masson Staining
2.6.4. Immunofluorescence Staining
2.7. Lung Coefficient
2.8. Magnetic Bead Particle Luminescence Method
2.9. Cell Immunofluorescence Staining
2.10. Scratch Assay
2.11. Transwell Assay
2.12. Cell Viability and Proliferation
2.13. Calcium Imaging
2.14. Statistical Methods
3. Results
3.1. ACSL4 Expression Was Increased in Fibrotic Lung Tissues
3.2. Pharmacological Inhibition of ACSL4 Alleviated Pulmonary Inflammation and Fibrosis in the Early Fibrotic Stage
3.3. Pharmacological Inhibition of ACSL4 Attenuated Pulmonary Inflammation and Fibrosis in the Chronic Stage
3.4. ACSL4 Promoted Activation and Migration but Not Proliferation of Lung Fibroblasts
3.5. Inhibition of C5a/C5aR1 Signaling Reduced the Expression of ACSL4 in the Early Stage of Pulmonary Fibrosis
3.6. Inhibition of C5a/C5aR1 Signaling Reduced the Expression of ACSL4 in Chronic Pulmonary Fibrosis
3.7. Blocking ACSL4 Reduced Lung Fibroblast Activation and Migration Induced by the C5a/C5aR1 Signaling
3.8. Blockade of Calcium Signaling Attenuated ACSL4 Expression Induced by the C5a/C5aR1 Signaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podolanczuk, A.J.; Raghu, G. Idiopathic pulmonary fibrosis mortality: Update on trends in the modern treatment era. Eur. Respir. J. 2024, 64, 2401305. [Google Scholar] [CrossRef] [PubMed]
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef]
- Maher, T.M. Interstitial Lung Disease: A Review. JAMA 2024, 331, 1655–1665. [Google Scholar] [CrossRef]
- Mayr, C.H.; Sengupta, A.; Asgharpour, S.; Ansari, M.; Pestoni, J.C.; Ogar, P.; Angelidis, I.; Liontos, A.; Rodriguez-Castillo, J.A.; Lang, N.J.; et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur. Respir. J. 2024, 63, 2301326. [Google Scholar] [CrossRef]
- Zhao, X.; Kwan, J.; Yip, K.; Liu, P.P.; Liu, F.F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 2020, 19, 57–75. [Google Scholar] [CrossRef]
- Rajesh, R.; Atallah, R.; Bärnthaler, T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol. Ther. 2023, 246, 108436. [Google Scholar] [CrossRef]
- Ding, K.; Liu, C.; Li, L.; Yang, M.; Jiang, N.; Luo, S.; Sun, L. Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism. Chin. Med. J. 2023, 136, 2521–2537. [Google Scholar] [CrossRef]
- Liu, S.; Fan, S.; Wang, Y.; Chen, R.; Wang, Z.; Zhang, Y.; Jiang, W.; Chen, Y.; Xu, X.; Yu, Y.; et al. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma. BMC Cancer 2023, 23, 444. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Hooi, S.C.; Jiang, Y.M.; Lu, G.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol. Lett. 2018, 16, 1390–1396. [Google Scholar] [CrossRef]
- Tuohetahuntila, M.; Spee, B.; Kruitwagen, H.S.; Wubbolts, R.; Brouwers, J.F.; van de Lest, C.H.; Molenaar, M.R.; Houweling, M.; Helms, J.B.; Vaandrager, A.B. Role of long-chain acyl-CoA synthetase 4 in formation of polyunsaturated lipid species in hepatic stellate cells. Biochim. Biophys. Acta 2015, 1851, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Jiang, C.; Wen, X.; Li, C.; Xiong, S.; Yue, T.; Long, P.; Shi, J.; Zhang, Z. ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics. Front. Pharmacol. 2022, 13, 949863. [Google Scholar] [CrossRef] [PubMed]
- Toshida, K.; Itoh, S.; Iseda, N.; Tomiyama, T.; Yoshiya, S.; Toshima, T.; Liu, Y.C.; Iwasaki, T.; Okuzaki, D.; Taniguchi, K.; et al. Impact of ACSL4 on the prognosis of hepatocellular carcinoma: Association with cancer-associated fibroblasts and the tumour immune microenvironment. Liver Int. 2024, 44, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, Z.; Xia, Y.; Li, B.; Chen, L.; Yan, X.; Yuan, T.; Song, B.; Yu, W.; Rao, T.; et al. YAP/ACSL4 Pathway-Mediated Ferroptosis Promotes Renal Fibrosis in the Presence of Kidney Stones. Biomedicines 2023, 11, 2692. [Google Scholar] [CrossRef]
- Cao, D.; Zheng, J.; Li, Z.; Yu, Y.; Chen, Z.; Wang, Q. ACSL4 inhibition prevents macrophage ferroptosis and alleviates fibrosis in bleomycin-induced systemic sclerosis model. Arthritis Res. Ther. 2023, 25, 212. [Google Scholar] [CrossRef]
- Ghosh, M.; Rana, S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int. Immunopharmacol. 2023, 118, 110081. [Google Scholar] [CrossRef]
- Horiuchi, T.; Tsukamoto, H. Complement-targeted therapy: Development of C5- and C5a-targeted inhibition. Inflamm. Regen. 2016, 36, 11. [Google Scholar] [CrossRef]
- Gu, H.; Fisher, A.J.; Mickler, E.A.; Duerson, F., 3rd; Cummings, O.W.; Peters-Golden, M.; Twigg, H.L., 3rd; Woodruff, T.M.; Wilkes, D.S.; Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis. FASEB J. 2016, 30, 2336–2350. [Google Scholar] [CrossRef]
- Gu, H.; Mickler, E.A.; Cummings, O.W.; Sandusky, G.E.; Weber, D.J.; Gracon, A.; Woodruff, T.; Wilkes, D.S.; Vittal, R. Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis. FASEB J. 2014, 28, 4223–4234. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Li, L.; Yang, H.; Liu, H.; Wu, D.; Liu, Z.; Liu, B.; Shen, T. C5a-C5aR1 axis mediates lung inflammation and fibrosis induced by single-walled carbon nanotubes via promoting neutrophils recruitment. Ecotoxicol. Environ. Saf. 2025, 289, 117627. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, C.; Pan, H.; Gao, X.; Wang, X.; Xiao, W.; Yan, S.; Gao, Y.; Fu, J.; Zhou, Y. Indeno[1,2,3-cd]pyrene enhances the sensitivity of airway epithelial cells to ferroptosis and aggravates asthma. Chemosphere 2024, 363, 142885. [Google Scholar] [CrossRef]
- Reeves, A.R.; Sansbury, B.E.; Pan, M.; Han, X.; Spite, M.; Greenberg, A.S. Correction: Myeloid-Specific Deficiency of Long-Chain Acyl CoA Synthetase 4 Reduces Inflammation by Remodeling Phospholipids and Reducing Production of Arachidonic Acid-Derived Proinflammatory Lipid Mediators. J. Immunol. 2022, 208, 2593. [Google Scholar] [CrossRef] [PubMed]
- Nelke, C.; Schroeter, C.B.; Stascheit, F.; Huntemann, N.; Pawlitzki, M.; Willison, A.; Räuber, S.; Melzer, N.; Distler, U.; Tenzer, S.; et al. Eculizumab treatment alters the proteometabolome beyond the inhibition of complement. JCI Insight 2023, 8, e169135. [Google Scholar] [CrossRef] [PubMed]
- Linde, I.L.; Prestwood, T.R.; Qiu, J.; Pilarowski, G.; Linde, M.H.; Zhang, X.; Shen, L.; Reticker-Flynn, N.E.; Chiu, D.K.; Sheu, L.Y.; et al. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023, 41, 356–372.e10. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.; Brattelid, T. PREPARE: Guidelines for planning animal research and testing. Lab. Anim. 2018, 52, 135–141. [Google Scholar] [CrossRef]
- Lilley, E.; Stanford, S.C.; Kendall, D.E.; Alexander, S.; Cirino, G.; Docherty, J.R.; George, C.H.; Insel, P.A.; Izzo, A.A.; Ji, Y.; et al. ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. Br. J. Pharmacol. 2020, 177, 3611–3616. [Google Scholar] [CrossRef]
- Xie, H.; Zhong, X.; Chen, J.; Wang, S.; Huang, Y.; Yang, N. VISTA Deficiency Exacerbates the Development of Pulmonary Fibrosis by Promoting Th17 Differentiation. J. Inflamm. Res. 2024, 17, 3983–3999. [Google Scholar] [CrossRef]
- Hao, M.; Guan, Z.; Zhang, Z.; Ai, H.; Peng, X.; Zhou, H.; Xu, J.; Gu, Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol. Ther. 2023, 31, 3015–3033. [Google Scholar] [CrossRef]
- Benveniste, R.E.; Todaro, G.J. Segregation of RD-114 AND FeL-V-related sequences in crosses between domestic cat and leopard cat. Nature 1975, 257, 506–508. [Google Scholar] [CrossRef]
- Kolb, P.; Upagupta, C.; Vierhout, M.; Ayaub, E.; Bellaye, P.S.; Gauldie, J.; Shimbori, C.; Inman, M.; Ask, K.; Kolb, M. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur. Respir. J. 2020, 55, 1901105. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Huang, X.; Liu, K.; Wang, Q.D.; Chen, A.F.; Sun, K.; Lui, K.O.; Zhou, B. Seamless Genetic Recording of Transiently Activated Mesenchymal Gene Expression in Endothelial Cells During Cardiac Fibrosis. Circulation 2021, 144, 2004–2020. [Google Scholar] [CrossRef] [PubMed]
- Rabelink, T.J.; van den Berg, B.M.; Garsen, M.; Wang, G.; Elkin, M.; van der Vlag, J. Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 2017, 13, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Staab-Weijnitz, C.A. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am. J. Respir. Cell Mol. Biol. 2022, 66, 363–381. [Google Scholar] [CrossRef]
- McKleroy, W.; Lee, T.H.; Atabai, K. Always cleave up your mess: Targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 304, L709–L721. [Google Scholar] [CrossRef]
- Everts, V.; van der Zee, E.; Creemers, L.; Beertsen, W. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem. J. 1996, 28, 229–245. [Google Scholar] [CrossRef]
- Küch, E.M.; Vellaramkalayil, R.; Zhang, I.; Lehnen, D.; Brügger, B.; Sreemmel, W.; Ehehalt, R.; Poppelreuther, M.; Füllekrug, J. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim. Biophys. Acta 2014, 1841, 227–239. [Google Scholar] [CrossRef]
- Chen, F.; Kang, R.; Liu, J.; Tang, D. The ACSL4 Network Regulates Cell Death and Autophagy in Diseases. Biology 2023, 12, 864. [Google Scholar] [CrossRef]
- Hashimoto, S.; Gon, Y.; Takeshita, I.; Matsumoto, K.; Maruoka, S.; Horie, T. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am. J. Respir. Crit. Care Med. 2001, 163, 152–157. [Google Scholar] [CrossRef]
- Kletukhina, S.; Mutallapova, G.; Titova, A.; Gomzikova, M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2022, 23, 11212. [Google Scholar] [CrossRef]
- Habiel, D.M.; Hogaboam, C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Front. Pharmacol. 2014, 5, 2. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sheng, W.; Sun, R.; Janssen, L.J. Ca2+/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 312, L510–L519. [Google Scholar] [CrossRef] [PubMed]
- Ayilya, B.L.; Balde, A.; Ramya, M.; Benjakul, S.; Kim, S.K.; Nazeer, R.A. Insights on the mechanism of bleomycin to induce lung injury and associated in vivo models: A review. Int. Immunopharmacol. 2023, 121, 110493. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kim, H.K.; Sul, J.H.; Lee, J.; Baek, S.H.; Cho, Y.; Han, J.; Kim, J.; Park, S.; Park, J.H.; et al. Extracellular Vesicles Derived from Adipose Stem Cells Alleviate Systemic Sclerosis by Inhibiting TGF-β Pathway. Biomol. Ther. 2024, 32, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, A.O.; Prendergast, C.M.; Salvatore, M.M.; Capaccione, K.M. TGF-β signaling: Critical nexus of fibrogenesis and cancer. J. Transl. Med. 2024, 22, 594. [Google Scholar] [CrossRef]
- Sabir, U.; Gu, H.M.; Zhang, D.W. Extracellular matrix turnover: Phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother. Res. 2023, 37, 4932–4962. [Google Scholar] [CrossRef]
- Shan, L.; Wang, F.; Zhai, D.; Meng, X.; Liu, J.; Lv, X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed. Pharmacother. 2023, 161, 114472. [Google Scholar] [CrossRef]
- Henderson, N.C.; Rieder, F.; Wynn, T.A. Fibrosis: From mechanisms to medicines. Nature 2020, 587, 555–566. [Google Scholar] [CrossRef]
- Tsukui, T.; Wolters, P.J.; Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 2024, 631, 627–634. [Google Scholar] [CrossRef]
- Plikus, M.V.; Wang, X.; Sinha, S.; Forte, E.; Thompson, S.M.; Herzog, E.L.; Driskell, R.R.; Rosenthal, N.; Biernaskie, J.; Horsley, V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021, 184, 3852–3872. [Google Scholar] [CrossRef]
- Bock-Pereda, A.; Cruz-Soca, M.; Gallardo, F.S.; Córdova-Casanova, A.; Gutierrez-Rojas, C.; Faundez-Contreras, J.; Chun, J.; Casar, J.C.; Brandan, E. Involvement of lysophosphatidic acid-LPA(1)-YAP signaling in healthy and pathological FAPs migration. Matrix Biol. 2024, 133, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Briggs, S.L. The role of fibronectin in fibroblast migration during tissue repair. J. Wound Care 2005, 14, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, E.; Fisher, A.J.; Gu, H.; Mickler, E.A.; Agarwal, M.; Wilke, C.A.; Kim, K.K.; Moore, B.B.; Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis. FASEB J. 2017, 31, 5543–5556. [Google Scholar] [CrossRef]
- Fisher, A.J.; Cipolla, E.; Varre, A.; Gu, H.; Mickler, E.A.; Vittal, R. Potential Mechanisms Underlying TGF-β-mediated Complement Activation in Lung Fibrosis. Cell. Mol. Med. Open Access 2017, 3, 14. [Google Scholar] [CrossRef]
- Yiu, W.H.; Li, R.X.; Wong, D.; Wu, H.J.; Chan, K.W.; Chan, L.; Leung, J.; Lai, K.N.; Sacks, S.H.; Zhou, W.; et al. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol. Dial. Transplant. 2018, 33, 1323–1332. [Google Scholar] [CrossRef]
- Castellano, G.; Franzin, R.; Stasi, A.; Divella, C.; Sallustio, F.; Pontrelli, P.; Lucarelli, G.; Battaglia, M.; Staffieri, F.; Crovace, A.; et al. Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling. Front. Immunol. 2018, 9, 1002. [Google Scholar] [CrossRef]
- Rech, L.; Dietrich-Ntoukas, T.; Reinach, P.S.; Brockmann, T.; Pleyer, U.; Mergler, S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024, 13, 1329. [Google Scholar] [CrossRef]
- Davignon, I.; Catalina, M.D.; Smith, D.; Montgomery, J.; Swantek, J.; Croy, J.; Siegelman, M.; Wilkie, T.M. Normal hematopoiesis and inflammatory responses despite discrete signaling defects in Galpha15 knockout mice. Mol. Cell. Biol. 2000, 20, 797–804. [Google Scholar] [CrossRef]
- Shin, K.J.; Wall, E.A.; Zavzavadjian, J.R.; Santat, L.A.; Liu, J.; Hwang, J.I.; Rebres, R.; Roach, T.; Seaman, W.; Simon, M.I.; et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 13759–13764. [Google Scholar] [CrossRef]
- Roach, T.I.; Rebres, R.A.; Fraser, I.D.; Decamp, D.L.; Lin, K.M.; Sternweis, P.C.; Simon, M.I.; Seaman, W.E. Signaling and cross-talk by C5a and UDP in macrophages selectively use PLCbeta3 to regulate intracellular free calcium. J. Biol. Chem. 2008, 283, 17351–17361. [Google Scholar] [CrossRef]
- Gadjeva, M. The complement system. Overview. Methods Mol. Biol. 2014, 1100, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Johswich, K.; Martin, M.; Thalmann, J.; Rheinheimer, C.; Monk, P.N.; Klos, A. Ligand specificity of the anaphylatoxin C5L2 receptor and its regulation on myeloid and epithelial cell lines. J. Biol. Chem. 2006, 281, 39088–39095. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Whitfeld, P.L.; Mackay, C.R. Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunol. Cell Biol. 2008, 86, 153–160. [Google Scholar] [CrossRef]
- Chuinsiri, N.; Siraboriphantakul, N.; Kendall, L.; Yarova, P.; Nile, C.J.; Song, B.; Obara, I.; Durham, J.; Telezhkin, V. Calcium-sensing receptor regulates Kv7 channels via G(i/o) protein signalling and modulates excitability of human induced pluripotent stem cell-derived nociceptive-like neurons. Br. J. Pharmacol. 2024, 181, 2676–2696. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, H.; Zhang, J.; Occelli, L.M.; Seemab, U.; Choi, E.H.; Marinho, L.F.L.P.; Querubin, J.; Kolesnikov, A.V.; Galinska, A.; Kordecka, K.; et al. A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models. Nat. Commun. 2024, 15, 5943. [Google Scholar] [CrossRef]
- Pei, Z.; Qin, Y.; Fu, X.; Yang, F.; Huo, F.; Liang, X.; Wang, S.; Cui, H.; Lin, P.; Zhou, G.; et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 2022, 57, 102509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Shi, J.; Zhuang, L.; Su, R.; Lai, Y.; Yang, N. ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis. Biomolecules 2025, 15, 1106. https://doi.org/10.3390/biom15081106
Ren T, Shi J, Zhuang L, Su R, Lai Y, Yang N. ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis. Biomolecules. 2025; 15(8):1106. https://doi.org/10.3390/biom15081106
Chicago/Turabian StyleRen, Tingting, Jia Shi, Lili Zhuang, Ruiting Su, Yimei Lai, and Niansheng Yang. 2025. "ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis" Biomolecules 15, no. 8: 1106. https://doi.org/10.3390/biom15081106
APA StyleRen, T., Shi, J., Zhuang, L., Su, R., Lai, Y., & Yang, N. (2025). ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis. Biomolecules, 15(8), 1106. https://doi.org/10.3390/biom15081106