Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,121)

Search Parameters:
Keywords = AC/DC converters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8880 KB  
Article
A Distributed Electric Vehicles Charging System Powered by Photovoltaic Solar Energy with Enhanced Voltage and Frequency Control in Isolated Microgrids
by Pedro Baltazar, João Dionísio Barros and Luís Gomes
Electronics 2026, 15(2), 418; https://doi.org/10.3390/electronics15020418 - 17 Jan 2026
Viewed by 172
Abstract
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing [...] Read more.
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing and SEWP (Spread Energy with Priority). The DC/AC converter demonstrated high efficiency, with stable AC output and Total Harmonic Distortion (THD) limited to 1%. The MPPT algorithm ensured optimal energy extraction under both gradual and abrupt irradiance variations. The DC/DC converter operated in constant current mode followed by constant voltage regulation, enabling stable power delivery and preserving battery integrity. The Power Sharing algorithm, which distributes PV energy equally, favored vehicles with a higher initial state of charge (SOC), while leaving low-SOC vehicles at modest levels, reducing satisfaction under limited irradiance. In contrast, SEWP prioritized low-SOC EVs, enabling them to achieve higher SOC values compared to the Power Sharing algorithm, reducing SOC dispersion and enhancing fairness. The integration of voltage and frequency droop controls allowed the station to support microgrid stability by limiting reactive power injection to 30% of apparent power and adjusting charging current in response to frequency deviation. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

21 pages, 7192 KB  
Article
A Flying Capacitor Zero-Sequence Leg Based 3P4L Converter with DC Second Harmonic Suppression and AC Three-Phase Imbalance Compensation Abilities
by Yufeng Ma, Chao Zhang, Xufeng Yuan, Wei Xiong, Zhiyang Lu, Huajun Zheng, Yutao Xu and Zhukui Tan
Electronics 2026, 15(2), 412; https://doi.org/10.3390/electronics15020412 - 16 Jan 2026
Viewed by 96
Abstract
In flexible DC distribution systems, the three-phase four-leg (3P4L) converter demonstrates excellent performance in addressing three-phase load imbalance problems, but suffers from DC-side second harmonics and complex multi-parameter control coordination. In this paper, a flying capacitor zero-sequence leg-based 3P4L (FCZS-3P4L) converter is proposed, [...] Read more.
In flexible DC distribution systems, the three-phase four-leg (3P4L) converter demonstrates excellent performance in addressing three-phase load imbalance problems, but suffers from DC-side second harmonics and complex multi-parameter control coordination. In this paper, a flying capacitor zero-sequence leg-based 3P4L (FCZS-3P4L) converter is proposed, which introduces the three-level flying capacitor structure into the fourth zero-sequence leg, making it possible to suppress the DC-side second harmonics by using the flying capacitor for energy buffering. Meanwhile, a modulated model predictive control (MMPC) strategy for proposed FCZS-3P4L is presented. This strategy utilizes a dual-layer control strategy based on a phase-split power outer loop and a model predictive current inner loop to simultaneously achieve AC three-phase imbalance current compensation and the energy buffering of the flying capacitor, thereby eliminating the complex parameter coordination among multiple control loops in conventional control structures. A MATLAB-based simulation model and Star-Sim hardware-in-the-loop (HIL) semi-physical experimental platforms are built. The results show that the proposed FCZS-3P4L converter and corresponding MMPC control can effectively reduces three-phase current unbalance by 19.57%, and reduce the second harmonic amplitude by 57%, i.e., decreasing from 14.74 V to 6.31 V, simultaneously realizing DC-side second harmonic and AC-side three-phase unbalance suppression. Full article
Show Figures

Figure 1

18 pages, 3548 KB  
Article
A Novel Sliding-Mode Control Strategy Based on Exponential Reaching Law for Three-Phase AC/DC Converter
by Sheng Zhou, Xianyang Cui and Tao Jin
Electronics 2026, 15(2), 406; https://doi.org/10.3390/electronics15020406 - 16 Jan 2026
Viewed by 91
Abstract
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address [...] Read more.
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address these issues, Sliding-Mode Control (SMC) is widely adopted for its robustness against parameter uncertainties and rapid dynamic performance. However, the chattering phenomenon inherent in traditional SMC near the sliding surface remains a critical challenge. To improve the dynamic performance of sliding-mode control, this work introduces a redesigned exponential reaching law into the control framework. The proposed strategy is implemented in a voltage–current cascaded (double closed-loop) structure, where the improved reaching law is embedded in the outer DC-link voltage loop and the inner loop regulates the grid currents in the synchronous dq frame. By modifying the reaching dynamics, the proposed approach effectively weakens chattering phenomena while enabling faster convergence of the system states. Comprehensive validation was conducted using Matlab/Simulink simulations and experimental prototypes. The results demonstrate that, compared to PI control and traditional exponential reaching law-based SMC, the proposed strategy significantly mitigates chattering while delivering superior static stability and faster dynamic response. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

32 pages, 10354 KB  
Article
Advanced Energy Management and Dynamic Stability Assessment of a Utility-Scale Grid-Connected Hybrid PV–PSH–BES System
by Sharaf K. Magableh, Mohammad Adnan Magableh, Oraib M. Dawaghreh and Caisheng Wang
Electronics 2026, 15(2), 384; https://doi.org/10.3390/electronics15020384 - 15 Jan 2026
Viewed by 135
Abstract
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of [...] Read more.
Despite the growing adoption of hybrid energy systems integrating solar photovoltaic (PV), pumped storage hydropower (PSH), and battery energy storage (BES), comprehensive studies on their dynamic stability and interaction mechanisms remain limited, particularly under weak grid conditions. Due to the high impedance of weak grids, ensuring stability across varied operating scenarios is crucial for advancing grid resilience and energy reliability. This paper addresses these research gaps by examining the interaction dynamics between PV, PSH, and BES on the DC side and the utility grid on the AC side. The study identifies operating-region-dependent instability mechanisms arising from negative incremental resistance behavior and weak grid interactions and proposes a virtual-impedance-based active damping control strategy to suppress poorly damped oscillatory modes. The proposed controller effectively reshapes the converter output impedance, shifts unstable eigenmodes into the left-half plane, and improves phase margins without requiring additional hardware components or introducing steady-state power losses. System stability is analytically assessed using root-locus, Bode, and Nyquist criteria within a developed small-signal state-space model, and further validated through large-signal real-time simulations on an OPAL-RT platform. The main contributions of this study are threefold: (i) a comprehensive stability analysis of a utility-scale grid-connected hybrid PV–PSH–BES system under weak grid conditions, (ii) identification of operating-region-dependent instability mechanisms associated with DC–link interactions, and (iii) development and real-time validation of a practical virtual-impedance-based active damping strategy for enhancing system stability and grid integration reliability. Full article
(This article belongs to the Special Issue Advances in Power Electronics Converters for Modern Power Systems)
Show Figures

Figure 1

25 pages, 3169 KB  
Review
Review on Power Routing Techniques and Converter Losses Model for VSC-Based Power Router
by Vinicius Gadelha, João Soares-Vila-Luz, Antonio E. Saldaña-González and Andreas Sumper
Electricity 2026, 7(1), 5; https://doi.org/10.3390/electricity7010005 - 14 Jan 2026
Viewed by 205
Abstract
In this work, a comprehensive literature review on power-routing devices is presented, outlining their current design principles and potential uses. Additionally, a comprehensive loss model for Modular Multilevel Converters (MMCs) in the context of power routers (PRs), a promising technology for enhancing flexibility [...] Read more.
In this work, a comprehensive literature review on power-routing devices is presented, outlining their current design principles and potential uses. Additionally, a comprehensive loss model for Modular Multilevel Converters (MMCs) in the context of power routers (PRs), a promising technology for enhancing flexibility and efficiency in future smart and hybrid AC–DC grids. Despite their potential, large-scale PR deployment is still limited by the lack of accurate and validated loss models. To address this gap, a detailed analytical model based on the Marquardt approach is proposed, capturing both conduction and switching losses in converter-based PRs. The model is validated through analytical comparison and PLECS simulations, showing strong agreement with theoretical and experimental data. Four case studies are presented to assess the effect of parameters such as power factor, active and reactive power, and the number of submodules on the overall converter losses. The results demonstrate that PR efficiency improves with optimized converter design and proper parameter selection. Full article
Show Figures

Figure 1

18 pages, 2562 KB  
Article
Power Electronics for Aerospace Applications: An Experimental Validation with WBG Technologies
by Rosalina Morais, Ana Dias, Joao L. Afonso and Vitor Monteiro
Energies 2026, 19(2), 381; https://doi.org/10.3390/en19020381 - 13 Jan 2026
Viewed by 141
Abstract
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) are key enablers of power-electronics converters for aerospace platforms, where high efficiency, weight reduction, and thermal robustness are critical requirements. This paper presents the main challenges associated with the use [...] Read more.
Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) are key enablers of power-electronics converters for aerospace platforms, where high efficiency, weight reduction, and thermal robustness are critical requirements. This paper presents the main challenges associated with the use of these technologies, including protection requirements, electromagnetic compatibility, and thermal management, as well as the material advantages that enable higher switching frequencies and lower losses compared to conventional Si technologies. A comparative analysis of semiconductor technologies and suitable power-conversion topologies for the aerospace context is provided. Representative laboratory-scale experimental validation is presented, including the development of a DC–DC boost converter and a DC–AC full-bridge inverter, which are linked through the common DC-link and are used for interfacing batteries and an electrical motor, both based on GaN and SiC diodes. The results demonstrated the correct operation, with stable high-frequency performance under controlled laboratory conditions, supporting aerospace-oriented development, although evaluated in a laboratory environment, confirming the potential of WBG technologies for future power-conversion architectures. Full article
(This article belongs to the Special Issue Power Electronics Technologies for Aerospace Applications)
Show Figures

Figure 1

15 pages, 2576 KB  
Article
Active Power Criterion Based High-Adaptive Differential Protection for Power Electronic Equipment
by Yigong Xie, Chen Wu, Min Cheng, Dan Zhang, Xiao Zhang and Qian Chen
Energies 2026, 19(2), 356; https://doi.org/10.3390/en19020356 - 11 Jan 2026
Viewed by 171
Abstract
In flexible AC/DC microgrids, a variety of non-traditional power equipment are in operation, such as AC/DC interlinking converters. Moreover, due to the influence of interlinking converters, short-circuit fault characteristics in microgrids are much different from those in traditional distribution networks, which makes existing [...] Read more.
In flexible AC/DC microgrids, a variety of non-traditional power equipment are in operation, such as AC/DC interlinking converters. Moreover, due to the influence of interlinking converters, short-circuit fault characteristics in microgrids are much different from those in traditional distribution networks, which makes existing protection methods have poor adaptability. This paper introduces an active power variable-based differential protection method, which is suitable for various non-traditional power equipment. While in normal operation or during an external fault state, internal active power losses are rather minimum, resulting in nearly zero power difference between equipment terminals. However, during an internal fault state, the active power difference between terminals becomes extremely large, which can be adopted as protection criteria. The selectivity and rapidity are verified by simulation cases, and the aforementioned method is applicable to various non-traditional equipment, such as single-phase AC/DC converters, three-phase AC/DC converters, etc. Full article
Show Figures

Figure 1

21 pages, 3714 KB  
Article
Modular, Multiport AC-DC Converter with Add-On HF Isolating Units
by Pawel B. Derkacz, Pawel Milewski, Daniel Wojciechowski, Natalia Strzelecka and Ryszard Strzelecki
Energies 2026, 19(1), 85; https://doi.org/10.3390/en19010085 - 23 Dec 2025
Viewed by 240
Abstract
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC [...] Read more.
In this paper, we propose a novel concept of a modular, multiport, single-stage, bidirectional, isolated, three-phase AC-DC converter system. This new system is realized using add-ons to a standard voltage source inverter, including both grid-connected AC-DC converters, like PWM rectifiers, and AC-drive DC-AC inverters. The proposed add-on converters provide isolated DC ports and can be installed into existing inverters of the abovementioned types, with no need for any modification of their topology or control system. Moreover, the add-on converters provide a minimum transistor count and high efficiency. The efficiency of the proposed add-on converters can be further improved by switching the type of pulse width modulation (PWM) scheme based on their operating point. The proposed converter system is validated for a power of 20 kW, an output voltage of 500–800 V DC, and a 40 kHz PWM frequency. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 3370 KB  
Article
The Improvement of the Mathematical Model of a Calculable Voltage Standard with a Single Junction Thermal Voltage Converter
by Michał Pecyna, Krzysztof Kubiczek and Marian Kampik
Energies 2026, 19(1), 62; https://doi.org/10.3390/en19010062 - 22 Dec 2025
Viewed by 273
Abstract
This paper presents the modification and experimental validation of a mathematical model for a single junction thermal voltage converter (SJTC) designed for high-precision alternating current (AC) voltage transfer. The original model is severely constrained by two main issues: (1) computational instability above 50 [...] Read more.
This paper presents the modification and experimental validation of a mathematical model for a single junction thermal voltage converter (SJTC) designed for high-precision alternating current (AC) voltage transfer. The original model is severely constrained by two main issues: (1) computational instability above 50 MHz due to the limitations of the housing impedance approximation, and (2) insufficient accuracy above 1 MHz due to the neglect of high-frequency skin effect and magnetic core effects in the Dumet wire leads. Significant refinements are subsequently implemented to extend the calculable frequency range of the standard from 1 to 100 MHz. This required re-evaluation of the Dumet wire leads’ frequency-dependent resistance and inductance using finite element method (FEM) simulations, which accounted for the skin effect and the magnetic permeability of the FeNi42 core. Additionally, the housing impedance calculation is stabilized using a formulation based on scaled modified Bessel functions, and the electrical conductivity of the input N-type connector pin is explicitly modeled. The improved model is validated against a reference calorimetric thermal voltage converter (CTVC) using 3 and 5 V nominal voltage standards. The results indicated excellent agreement between the calculated and measured AC-direct current (DC) transfer differences up to 10 MHz. In the extended frequency regime, the model correctly predicted the transition to negative transfer differences observed above 2 MHz for the 5 V standard. The largest discrepancies between the measured and calculated values occurred at 100 MHz. The measured transfer difference reached −15,090 (µV/V) with an expanded uncertainty (k = 2) of 190 (µV/V), whereas the calculated value is −12,500 (µV/V) with an expanded uncertainty of 3900 (µV/V). Although the deviation between the model and measurement increased above 30 MHz, the results remained consistent within the expanded measurement uncertainties across the entire 10 kHz to 100 MHz range, demonstrating the model’s suitability for providing traceability in high-frequency voltage metrology. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

12 pages, 3103 KB  
Article
Design and Implementation of a Resonant Inductive Wireless Power Transfer System Powered by a Class D Amplifier for Smart Sensors in Inaccessible Environments
by Anouar Chebbi, Amira Haddouk, Vitor Monteiro, João L. Afonso and Hfaiedh Mechergui
Electronics 2026, 15(1), 33; https://doi.org/10.3390/electronics15010033 - 22 Dec 2025
Viewed by 398
Abstract
This paper presents a high-efficiency wireless power transfer (WPT) architecture employing a resonant inductive coupling to power smart sensor nodes in remote or sealed environments, where conventional power delivery is unfeasible. The system integrates a photovoltaic (PV) energy source with a step-down DC-DC [...] Read more.
This paper presents a high-efficiency wireless power transfer (WPT) architecture employing a resonant inductive coupling to power smart sensor nodes in remote or sealed environments, where conventional power delivery is unfeasible. The system integrates a photovoltaic (PV) energy source with a step-down DC-DC converter based on the LM2596 buck regulator to adjust the voltage from the PV. The proposed conditioned power system supplies the entire electronic circuit consisting of a PWM modulator based on an NE555, which drives an IR2110 gate driver connected to a Class D power amplifier. The amplifier excites a pair of high-Q resonant coils designed for mid-range inductive coupling. On the receiver side, the inductively coupled AC signal is rectified and regulated through an AC-DC conversion stage to charge a secondary energy storage unit. The design eliminates the need for physical electrical connections, ensuring efficient, contactless energy transfer. The proposed system operates at a resonant frequency of 24.46 kHz and achieves up to 80% transmission efficiency at a distance of 113 mm. The receiver provides a regulated DC output between 4.80 V and 4.97 V, sufficient to power low-consumption smart sensors. Full article
(This article belongs to the Special Issue Emerging Technologies in Wireless Power and Energy Transfer Systems)
Show Figures

Figure 1

15 pages, 4175 KB  
Article
Low-Frequency Transient Model of Single-Phase Four-Limb Converter Transformer Considering the Nonlinear Excitation Characteristics of the Iron Core
by Xichen Pei, Lan Xiong, Zhanlong Zhang, Zijian Dong, Yu Yang, Jiatai Gao and Tao Feng
Appl. Sci. 2026, 16(1), 16; https://doi.org/10.3390/app16010016 - 19 Dec 2025
Viewed by 169
Abstract
Transformer modeling is a crucial method for analyzing transient phenomena such as inrush currents. The primary characteristic of a transformer transient model is its ability to reflect how the transformer’s structure and material properties influence the magnetic and electric fields. In high-voltage direct [...] Read more.
Transformer modeling is a crucial method for analyzing transient phenomena such as inrush currents. The primary characteristic of a transformer transient model is its ability to reflect how the transformer’s structure and material properties influence the magnetic and electric fields. In high-voltage direct current (HVDC), the single-phase converter adopts a double-core-limb and double-side-limb configuration, whose core structure, magnetic flux distribution, and ferromagnetic materials differ from conventional power transformers. This paper conducts research on low-frequency transient modeling of single-phase four-limb converter transformers. This study first determines the magnetic field distribution of the single-phase converter transformer with the inclusion of leakage flux. Subsequently, a corresponding model is derived from the principle of duality. Due to the laminated structure, the iron core exhibits different excitation characteristics from those of a single silicon steel sheet. For the excitation branch, AC-DC hybrid excitation is used to measure incremental excitation inductance and the nonlinear excitation curve is calculated based on this inductance. Furthermore, the allocation method of this curve in the core limb, side limb, and yoke is proposed to establish the converter transformer model. The results of no-load and inrush current tests based on the scaled model validate the effectiveness of this model, which can accurately calculate the inrush current under different remanence and closing conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 2034 KB  
Article
Modeling an Energy Router with an Energy Storage Device for Connecting Electric Vehicle Charging Stations and Sustainable Development of Power Supply Systems
by Yuri Bulatov, Andrey Kryukov, Vadim Kizhin, Konstantin Suslov, Iliya Iliev, Hristo Beloev and Ivan Beloev
Sustainability 2025, 17(24), 11041; https://doi.org/10.3390/su172411041 - 10 Dec 2025
Viewed by 277
Abstract
The efficiency of using electric vehicles largely depends on the availability of charging stations in power supply systems (PSS). To improve the power quality and the ability to control power flows, charging stations can be connected via energy routers built on the basis [...] Read more.
The efficiency of using electric vehicles largely depends on the availability of charging stations in power supply systems (PSS). To improve the power quality and the ability to control power flows, charging stations can be connected via energy routers built on the basis of solid-state high-frequency transformers. The paper proposes incorporating an energy storage device in the DC circuit of the energy router to improve the reliability of the power supply. The paper presents the results of modeling the operation of a power system supplying DC charging stations based on an energy router with an energy storage device. The study aimed to test the efficiency of the developed regulation system of the energy router with an energy storage device and its impact on the voltage in the power supply system and harmonic distortion levels. An algorithm for stabilizing voltage in the DC and AC networks of the energy router is proposed relying on the transformation of three-phase coordinates a–b–c into the d–q–0 system. The diagrams and descriptions of the models of the power supply system with DC charging stations, as well as an energy router with an energy storage device and a converter for control in normal and emergency modes are presented. The modeling results reveal that the proposed regulator of the energy router with an energy storage device reduces voltage drops when connecting a high-power load and ensures acceptable power quality indicators to meet the criterion of harmonic components. By implementing the control system of the energy storage device within the energy router and electric vehicle charging stations, we can effectively maintain voltage at consumers during emergencies. Thus, the use of energy routers with an automatic voltage regulation system will ensure the sustainable development of modern power supply systems with the ability to connect renewable energy sources, energy storage devices, and electric vehicle charging stations. Full article
Show Figures

Figure 1

18 pages, 5879 KB  
Article
Study on HILS Implementation of FPGA-Based PFC Circuits Using Sub-Cycle Average Models
by Tae-Hun Kim, Won-Cheol Hong, Su-Han Pyo, Byeong-Hyeon An and Tae-Sik Park
Energies 2025, 18(24), 6443; https://doi.org/10.3390/en18246443 - 9 Dec 2025
Viewed by 276
Abstract
This paper presents a Field-Programmable Gate Array (FPGA)-based Hardware-in-the-Loop (HIL) simulation of an Interleaved Boost Power Factor Correction (PFC) converter using the Sub-Cycle Average (SCA) modeling technique. The main objective is to achieve accurate real-time simulation performance given the hardware constraints of low-cost [...] Read more.
This paper presents a Field-Programmable Gate Array (FPGA)-based Hardware-in-the-Loop (HIL) simulation of an Interleaved Boost Power Factor Correction (PFC) converter using the Sub-Cycle Average (SCA) modeling technique. The main objective is to achieve accurate real-time simulation performance given the hardware constraints of low-cost FPGAs. By combining the SCA modeling approach with a time-averaging correction method, the proposed model effectively reduces sampling delays and duty-cycle estimation errors arising from asynchronous Pulse Width Modulation (PWM) signal acquisition. The SCA-based converter model and time-averaging correction technique were implemented in MATLAB/Simulink R2024b using the HDL Coder environment. To validate real-time simulation accuracy, power factor improvement was evaluated for a two-phase Interleaved Boost PFC operating at a switching frequency of 60 kHz. Experimental results confirm that the proposed approach enables accurate Controller–HIL testing of power converters, even when implemented on low-cost FPGA platforms such as the Zybo Z7-10 evaluation board. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

12 pages, 13726 KB  
Article
A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors
by Hui Wang, Xiang Yan and Xiaochao Hou
Energies 2025, 18(24), 6414; https://doi.org/10.3390/en18246414 - 8 Dec 2025
Viewed by 509
Abstract
This paper proposes a single-phase AC-AC solid-state transformer (SST) that eliminates bulky energy storage components. The proposed matrix-type structure comprises a line-frequency (LF) rectifier, a half-bridge (HB) LLC resonant converter, a buck–boost converter, and an LF inverter. The HB LLC resonant converter not [...] Read more.
This paper proposes a single-phase AC-AC solid-state transformer (SST) that eliminates bulky energy storage components. The proposed matrix-type structure comprises a line-frequency (LF) rectifier, a half-bridge (HB) LLC resonant converter, a buck–boost converter, and an LF inverter. The HB LLC resonant converter not only achieves high efficiency at unity voltage gain but also provides high-frequency (HF) isolation as a DC transformer (DCX). Meanwhile, the buck–boost converter ensures precise voltage regulation. The replacement of traditional DC-link electrolytic capacitors with small film capacitors effectively suppresses the second-harmonic power ripple, leading to a significant improvement in both power density and operational reliability. Experimental results from a 1 kW prototype demonstrate high-quality sinusoidal input and output, a wide range of zero-voltage switching (ZVS) operations, and stable output voltage control. Full article
Show Figures

Figure 1

13 pages, 3553 KB  
Article
Design of the Active-Control Coil Power Supply for Keda Torus eXperiment
by Qinghua Ren, Yingqiao Wang, Xiaolong Liu, Weibin Li, Hong Li, Tao Lan and Zhen Tao
Electronics 2025, 14(24), 4830; https://doi.org/10.3390/electronics14244830 - 8 Dec 2025
Viewed by 288
Abstract
Active-control coils on Keda Torus eXperiment (KTX) are used to suppress error fields and mitigate MHD instabilities, thereby extending discharge duration and improving plasma confinement quality. Achieving effective active MHD control imposes stringent requirements on the coil power supplies: wide-bandwidth and high-precision current [...] Read more.
Active-control coils on Keda Torus eXperiment (KTX) are used to suppress error fields and mitigate MHD instabilities, thereby extending discharge duration and improving plasma confinement quality. Achieving effective active MHD control imposes stringent requirements on the coil power supplies: wide-bandwidth and high-precision current regulation, deterministic low-latency response, and tightly synchronized operation across 136 independently driven coils. Specifically, the supplies must deliver up to ±200 A with fast slew rates and bandwidths up to several kilohertz, while ensuring sub-100 μs control latency, programmable waveforms, and inter-channel synchronization for real-time feedback. These demands make the power supply architecture a key enabling technology and motivate this work. This paper presents the design and simulation of the KTX active-control coil power supply. The system adopts a modular AC–DC–AC topology with energy storage: grid-fed rectifiers charge DC-link capacitor banks, each H-bridge IGBT converter (20 kHz) independently drives one coil, and an EMC filter shapes the output current. Matlab/Simulink R2025b simulations under DC, sinusoidal, and arbitrary current references demonstrate rapid tracking up to the target bandwidth with ±0.5 A ripple at 200 A and limited DC-link voltage droop (≤10%) from an 800 V, 50 mF storage bank. The results verify the feasibility of the proposed scheme and provide a solid basis for real-time multi-coil active MHD control on KTX while reducing instantaneous grid loading through energy storage. Full article
Show Figures

Figure 1

Back to TopTop