Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = ABS, PC-ABS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5204 KiB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 299
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

33 pages, 3709 KiB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Viewed by 319
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Graphical abstract

23 pages, 3314 KiB  
Article
The Effect of Poly (Methyl Methacrylate) Content on Chemical, Thermomechanical, Mechanical, and Fatigue Life Characteristics of Ternary PC/ABS/PMMA Blends
by Hamdi Kuleyin and Recep Gümrük
Polymers 2025, 17(14), 1905; https://doi.org/10.3390/polym17141905 - 10 Jul 2025
Viewed by 520
Abstract
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as [...] Read more.
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as tensile, impact, and fatigue tests, were conducted. The results indicate that the viscoelastic modulus improves with increasing PMMA content in ternary blends. Furthermore, PC/ABS/PMMA blends exhibit an immiscible phase morphology. The elastic modulus, yield strength, and tensile strength increase with higher PMMA content, while the elongation at break and impact strength decrease. Fatigue strength and the fatigue strength exponent were found to vary nonlinearly with PMMA content. Compared to PC/ABS blends, PC/ABS/PMMA blends demonstrated improvements of approximately 12% to 58% and 26% to 117% in hysteresis energy and the dynamic elastic modulus, respectively. Additionally, fatigue life cycles improved by 5% to 11% at low stress amplitudes. This experimental study provides comprehensive insight into the complex interplay among the chemical, thermomechanical, mechanical, and fatigue properties of ternary PC/ABS/PMMA blends, highlighting their potential for applications requiring balanced or tailored structural and material characteristics. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1146
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Dyeing to Know: Harmonizing Nile Red Staining Protocols for Microplastic Identification
by Derek Ho and Julie Masura
Colorants 2025, 4(2), 20; https://doi.org/10.3390/colorants4020020 - 3 Jun 2025
Cited by 1 | Viewed by 1281
Abstract
The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains [...] Read more.
The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains lacking. This study evaluated eight NR-carrier solvents (n-hexane, chloroform, acetone, methanol, ethanol, acetone/hexane, acetone/ethanol, and acetone/water) across ten common MP polymers (HDPE, LDPE, PP, EPS, PS, PC, ABS, PVC, PET, and PA). Fluorescence intensity, Stokes shift, and solvent-induced polymer degradation were analyzed. The study also assessed HSV (Hue/Saturation/Value) color spaces for Stokes shift representation and MP differentiation. Fenton oxidation effectively quenched fluorescence in natural organic matter (e.g., eggshells, fingernails, wood, cotton) while preserving NR-stained MPs. Acetone/water [25% (v/v)] emerged as the optimal solvent, balancing fluorescence performance and minimal degradation. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Figure 1

15 pages, 3853 KiB  
Article
Fermented Chive (Allium schoenoprasum) with Lactobacillus plantarum: A Potential Antibiotic Alternative Feed Additive for Broilers Challenged with Escherichia coli
by Phan Vu Hai, Le Xuan Anh and Nguyen Xuan Hoa
Fermentation 2025, 11(5), 277; https://doi.org/10.3390/fermentation11050277 - 12 May 2025
Viewed by 756
Abstract
This study aimed to evaluate the effects of fermented chive (Allium schoenoprasum) with Lactobacillus plantarum 1582 (FC) as an alternative to antibiotics for controlling Escherichia coli infection in broiler chickens. A total of 250 J-Dabaco male chickens were allocated into five [...] Read more.
This study aimed to evaluate the effects of fermented chive (Allium schoenoprasum) with Lactobacillus plantarum 1582 (FC) as an alternative to antibiotics for controlling Escherichia coli infection in broiler chickens. A total of 250 J-Dabaco male chickens were allocated into five experimental groups: NC (negative control), PC (positive control), FC1 (1% FC), FC3 (3% FC), and AB (antibiotic treatment). The PC, FC1, FC3, and AB groups were challenged with E. coli ExPEC_A338 on day 8 and monitored until day 35. The results indicated that FC supplementation, particularly at 3% (FC3 group), significantly improved body weight gain, feed intake, the survival rate, and the production efficiency index (PEI). The FC3 group exhibited optimal performance, potentially due to enhanced immune responses, as evidenced by higher IgA and IgG levels, and favorable cytokine regulation. Additionally, FC maintained intestinal epithelial integrity by upregulating tight junction proteins (ZO-1, Claudin-2) and reducing inflammatory responses (IFN-γ, TNF-α). Furthermore, FC3 demonstrated the ability to inhibit pathogenic bacteria (Salmonella spp., E. coli), promote beneficial Lactobacillus spp., and enhance intestinal mucosal morphology (villus height and crypt depth). These findings suggest that FC supplementation, particularly at 3%, is a promising natural alternative to antibiotics for controlling E. coli infections in broiler production. Full article
Show Figures

Figure 1

13 pages, 3003 KiB  
Article
Extraction-Based Pretreatment of End-of-Life Plastics from Waste Electrical and Electronic Equipment for Brominated Flame Retardant Removal and Subsequent Valorization via Pyrolysis
by Maria-Anna Charitopoulou, Maria Papadimitriou, Lambrini Papadopoulou and Dimitriοs S. Achilias
Processes 2025, 13(5), 1458; https://doi.org/10.3390/pr13051458 - 9 May 2025
Viewed by 562
Abstract
Due to the increasing volumes of plastic waste generated from electric and electronic devices, research has focused on the investigation of recycling methods for their safe handling. Pyrolysis converts plastics from waste electric and electronic equipment (WEEE) into valuable products (pyrolysis oil). Nevertheless, [...] Read more.
Due to the increasing volumes of plastic waste generated from electric and electronic devices, research has focused on the investigation of recycling methods for their safe handling. Pyrolysis converts plastics from waste electric and electronic equipment (WEEE) into valuable products (pyrolysis oil). Nevertheless, the frequent presence of flame retardants, mainly brominated flame retardants (BFR), hinders pyrolysis’s wide application, since hazardous compounds may be produced, limiting the use of pyrolysis oils. Taking the aforementioned into account, this work focuses on the recycling, via pyrolysis, of various plastic samples gathered from WEEE, to explore the valuable products that are formed. Specifically, 14 plastic samples were collected, including parts of computer peripheral equipment, remote controls, telephones and other household appliances. Considering the difficulties when BFRs are present, the study went one step further, applying XRF analysis to identify their possible presence, and then Soxhlet extraction as an environmentally friendly method for the debromination of the samples. Based on the XRF results, it was found that 23% of the samples contained bromine. After each Soxhlet extraction, bromine was reduced, achieving a complete removal in the case of a remote control sample and when butanol was the solvent. Thermal pyrolysis led to the formation of valuable products, including the monomer styrene and other secondary useful compounds, such as alpha-methylstyrene. The FTIR results, in combination with the pyrolysis products, enabled the identification of the polymers present in the samples. Most of them were ABS or HIPS, while only three samples were PC. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Graphical abstract

19 pages, 5914 KiB  
Article
A Comparative Analysis of Mechanical Properties in Injection Moulding (IM), Fused Filament Fabrication (FFF), and Arburg Plastic Freeforming (APF) Processes
by Caolan Jameson, Declan M. Devine, Gavin Keane and Noel M. Gately
Polymers 2025, 17(7), 990; https://doi.org/10.3390/polym17070990 - 5 Apr 2025
Viewed by 653
Abstract
This study explores the mechanical performance of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) filaments fabricated using fused filament fabrication (FFF), Arburg plastic freeforming (APF), and injection moulding (IM). A series of controlled experiments, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), [...] Read more.
This study explores the mechanical performance of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) filaments fabricated using fused filament fabrication (FFF), Arburg plastic freeforming (APF), and injection moulding (IM). A series of controlled experiments, including differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMA), and mechanical tests, were conducted to evaluate the material’s mechanical, thermal, and chemical properties. The results highlight the influence of process parameters and material choice on the mechanical properties of PC/ABS components. The FFF samples exhibited the highest impact strength (up to 28.82 kJ/m²), attributed to porosity acting as a stress absorber under impact load. However, this same porosity led to a 9.14% and 19.27% reduction in flexural and tensile strength, respectively, compared to the APF samples, where stress concentration effects were more pronounced under flexural loads. APF’s mechanical properties were comparable to those of IM, with the process achieving the highest tensile strength, highlighting its potential for producing robust PC/ABS samples. This study aims to provide valuable insight into the selection of additive manufacturing (AM) processes for PC/ABS components. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 8810 KiB  
Article
The Experimental Comparison of Abrasion Resistance of Extruded and 3D Printed Plastics
by Maciej Kujawa and Anita Ptak
Materials 2025, 18(7), 1592; https://doi.org/10.3390/ma18071592 - 1 Apr 2025
Cited by 1 | Viewed by 2648
Abstract
3D printing is becoming widely used and printed parts very often replace extruded parts. Plastics, due to their ability to work with steel without lubrication, are commonly used for sliding components and are therefore exposed to various types of wear, including abrasive wear. [...] Read more.
3D printing is becoming widely used and printed parts very often replace extruded parts. Plastics, due to their ability to work with steel without lubrication, are commonly used for sliding components and are therefore exposed to various types of wear, including abrasive wear. In this paper, abrasive wear resistance tests were carried out to compare extruded and 3D-printed samples. Moreover, microhardness tests, surface topography and microscopic observations of the surface of the samples before and after friction were also conducted. Samples were made from eight materials that are most commonly used in 3D FDM printing: PLA, PET-G, ABS, PA, PP, PC, PMMA and HIPS. For six out of the eight materials tested, samples made by extrusion proved to be more resistant to abrasive wear (between 10% and 24%) than those printed ones. Fabrication by 3D printing can lead to different object properties and thus different abrasion resistance. The abrasion resistance of extruded samples depends on factors reported in the literature such as hardness, density and surface roughness. In the case of 3D printed samples, no such relationship was found. For this reason, the researchers believe that the reduced abrasion wear resistance of printed samples is due to their specific internal structure. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

18 pages, 10800 KiB  
Article
An Automatic Algorithm for Mapping Algal Blooms and Aquatic Vegetation Using Sentinel-1 SAR and Sentinel-2 MSI Data
by Yihao Xin, Juhua Luo, Jinlong Zhai, Kang Wang, Ying Xu, Haitao Qin, Chao Chen, Bensheng You and Qing Cao
Land 2025, 14(3), 592; https://doi.org/10.3390/land14030592 - 12 Mar 2025
Viewed by 755
Abstract
Aquatic vegetation, including floating-leaved and emergent aquatic vegetation (FEAV), submerged aquatic vegetation (SAV), and algal blooms (AB), are primary producers in eutrophic lake ecosystems and hold significant ecological importance. Aquatic vegetation and AB dominate in clear and turbid water states, respectively. Monitoring their [...] Read more.
Aquatic vegetation, including floating-leaved and emergent aquatic vegetation (FEAV), submerged aquatic vegetation (SAV), and algal blooms (AB), are primary producers in eutrophic lake ecosystems and hold significant ecological importance. Aquatic vegetation and AB dominate in clear and turbid water states, respectively. Monitoring their dynamics is essential for understanding lake states and transitions. Sentinel imagery provides high-resolution data for capturing changes in aquatic vegetation and AB. However, the existing mapping algorithms for aquatic vegetation and AB based on Sentinel data only focused on one or two types. There are still limited algorithms that comprehensively reflect the dynamic changes of aquatic vegetation and AB. Additionally, the unique red-edge bands of Sentinel-2 MSI have not yet been fully exploited for mapping aquatic vegetation and AB. Therefore, we developed an automated mapping algorithm that utilizes Sentinel data, especially red-edge bands, to comprehensively reflect the dynamic changes of FEAV, SAV, and AB. The key indicator of the algorithm, the second principal component (PC2) derived from four red-edge bands and four other bands of Sentinel-2 MSI, can effectively distinguish between FEAV and AB. SAV was mapped by the Sentinel-based submerged aquatic vegetation index (SSAVI), which was constructed by fusing Sentinel-1 SAR and Sentinel-2 MSI data. The algorithm was tested in three representative lakes, including Lake Taihu, Lake Hongze, and Lake Chaohu, and yielded an average accuracy of 87.65%. The algorithm was also applied to track changes in aquatic vegetation and AB from 2019 to 2023. The results show that, over the past five years, AB coverage in all three lakes has decreased. The coverage of aquatic vegetation in Lake Taihu and Lake Hongze is also declining, while coverage remains relatively stable in Lake Chaohu. This algorithm leverages the high spatiotemporal resolution of Sentinel data, as well as its band advantages, and is expected to be applicable for large-scale monitoring of aquatic vegetation and AB dynamics. It will provide valuable technical support for future assessments of lake ecological health and state transitions. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

27 pages, 5231 KiB  
Article
Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study
by Qiaoshuang Lu, Zheng Ye and Chun Yang
Molecules 2025, 30(3), 619; https://doi.org/10.3390/molecules30030619 - 31 Jan 2025
Viewed by 1015
Abstract
Proanthocyanidins have received extensive attention due to their high functional value, but their sources are limited. Therefore, this experiment studied the preparation, biological activities, and characterization of proanthocyanidins from Chinese jujube (Ziziphus jujuba Mill. cv. Muzao) at different periods, aiming to [...] Read more.
Proanthocyanidins have received extensive attention due to their high functional value, but their sources are limited. Therefore, this experiment studied the preparation, biological activities, and characterization of proanthocyanidins from Chinese jujube (Ziziphus jujuba Mill. cv. Muzao) at different periods, aiming to explore a new source of proanthocyanidins and enhance their utilization value. Through ultrasonic-assisted enzymatic extraction, the optimal extraction conditions for PC from Muzao were determined, yielding a proanthocyanidin content of 2.01%. Purification using AB-8 macroporous resin increased the proanthocyanidin content by 11 times. The bioactivity results indicated that proanthocyanidins demonstrated significant in vitro antioxidant activity (scavenging rate ≥ 83.4%) and blood glucose-lowering activity (inhibition rate ≥ 84.7%). Both activities decreased with maturity, while the degree of polymerization also exhibited a positive effect. Mass spectrometry identified a total of 102 compounds, with cyanidin-based compounds being the most abundant, comprising 28 species. The comprehensive research results indicate that the oligomeric proanthocyanidins extracted, purified, and isolated from Muzao during the young fruit stage exhibit diverse biological activities and are abundant in content. They can be utilized for the extraction and purification of proanthocyanidins, offering a reference for the expansion of natural sources of proanthocyanidins and the development of functional foods. Full article
Show Figures

Figure 1

12 pages, 4498 KiB  
Article
Polycarbonate–Acrylonitrile Butadiene Styrene Three Dimensional Printing Material Exhibits Biocompatibility and Enhances Osteogenesis and Gingival Tissue Formation with Human Cells
by Li Xiao, Naohiro Shimamura, Takashi Kamio, Ryoji Ide, Mai Mochizuki and Taka Nakahara
Cells 2025, 14(3), 167; https://doi.org/10.3390/cells14030167 - 22 Jan 2025
Cited by 1 | Viewed by 1440
Abstract
Three dimensional (3D) printing materials are widely used in dental applications, but their biocompatibility and interactions with human cells require evaluation. This study aimed to identify materials meeting biocompatibility, mechanical strength, and tissue-forming requirements for safe dental applications. We assessed the cytotoxicity of [...] Read more.
Three dimensional (3D) printing materials are widely used in dental applications, but their biocompatibility and interactions with human cells require evaluation. This study aimed to identify materials meeting biocompatibility, mechanical strength, and tissue-forming requirements for safe dental applications. We assessed the cytotoxicity of resins and thermoplastic filaments in human HaCaT keratinocytes, gingival fibroblasts (hGFs), and stem cells from human exfoliated deciduous teeth (SHED) using PrestoBlue assays. Three resins, including two types of surgical guide resins, exhibited strong cytotoxicity after 4–72 h, while 2 h exposure to an FDA-approved surgical guide resin did not affect SHED cell viability. In contrast, six thermoplastic filaments showed no significant cytotoxicity even after 72 h. Among these, polycarbonate–acrylonitrile butadiene styrene (PC-ABS) demonstrated excellent toughness, heat resistance, and surface quality at a low cost. SHED cells cultured on PC-ABS dishes and micro bone structures showed strong proliferation and osteogenic potential. Culture inserts made of PC-ABS also supported the growth of HaCaT keratinocytes and the hGFs formed gingival tissue, which was superior to that formed on commercially available PET inserts. In conclusion, PC-ABS is a promising 3D printing material for dental applications due to its biocompatibility, ability to promote osteogenesis, and support for gingival tissue formation, with no observed cytotoxicity. Full article
(This article belongs to the Special Issue Recent Advances in Regenerative Dentistry—Second Edition)
Show Figures

Figure 1

19 pages, 7241 KiB  
Article
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer “Theranostics” in Boron Neutron Capture Therapy
by Abdul Basith Fithroni, Haruki Inoue, Shengli Zhou, Taufik Fatwa Nur Hakim, Takashi Tada, Minoru Suzuki, Yoshinori Sakurai, Manabu Ishimoto, Naoyuki Yamada, Rani Sauriasari, Wolfgang A. G. Sauerwein, Kazunori Watanabe, Takashi Ohtsuki and Eiji Matsuura
Cells 2025, 14(1), 60; https://doi.org/10.3390/cells14010060 - 6 Jan 2025
Cited by 1 | Viewed by 1918
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved [...] Read more.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”. Full article
Show Figures

Figure 1

15 pages, 6729 KiB  
Article
Assessment of Dielectric Strength for 3D Printed Solid Materials in Terms of Insulation Coordination
by Cihat Cagdas Uydur
Appl. Sci. 2024, 14(24), 11860; https://doi.org/10.3390/app142411860 - 18 Dec 2024
Cited by 1 | Viewed by 1854
Abstract
Insulating materials can be classified into solid, liquid, and gaseous forms. Solid insulation materials are divided into different types such as organic, inorganic, and polymer types. In electrical circuits, solid insulation materials are generally used as components that provide insulation and mechanical support. [...] Read more.
Insulating materials can be classified into solid, liquid, and gaseous forms. Solid insulation materials are divided into different types such as organic, inorganic, and polymer types. In electrical circuits, solid insulation materials are generally used as components that provide insulation and mechanical support. In recent years, as a result of developing technologies, the production of participation insulation materials with 3D printing technology has become widespread. Three-dimensional printing technology enables the rapid creation of objects by combining materials based on digital model data. It is important to evaluate the materials produced with 3D printing in terms of insulation coordination. Studies have shown that the electrical breakdown strength of solid dielectrics varies depending on factors such as sample type, thickness, the magnitude of applied voltage, and the temperature of the physical environment. According to IEC-60243 standards, there are various methods to measure the breakdown strength of solid insulators applied to different voltage types. In this study, the behavior of PLA, ABS, ASA, PETG, and PC/ABS materials produced with 3D printing and having the potential to be used as insulation materials when exposed to high voltage within the scope of insulation coordination was investigated. The breakdown strengths of solid insulation materials produced with 3D printing were measured in the high-voltage laboratory within the scope of IEC-60243. Breakdown strength was statistically evaluated with the Weibull distribution. Damage analysis of the breakdowns in the test specimens was examined in detail with ImageJ software. With the comparative analysis, the behaviors of PLA, ABS, ASA, PETG, and PC/ABS solid insulation materials were revealed and their superiority over each other was determined. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Symmetry Breaking of Electronic Structure upon the π→π* Excitation in Anthranilic Acid Homodimer
by Marcin Andrzejak, Joanna Zams, Jakub Goclon and Przemysław Kolek
Molecules 2024, 29(23), 5562; https://doi.org/10.3390/molecules29235562 - 25 Nov 2024
Cited by 2 | Viewed by 1165
Abstract
The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA2) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA2 towards [...] Read more.
The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA2) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA2 towards the geometry of the S1 state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles—CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange–correlation functionals, i.e., B3LYP and CAM-B3LYP. The composition of the wavefunctions is investigated using the one-electron transition density matrix and difference density maps. We demonstrate that in the case of AA2, small asymmetric distortions of geometry bring about unproportionally large changes in the excited state wavefunctions. We further provide comprehensive characterization of the AA2 electronic structure, showing that the excitation is nearly completely localized on one of the monomers, which stands in agreement with the experimental evidence. The excitation increases the π-electronic coupling of the substituents and the aromatic ring, but only in the excited monomer, while the changes in the electronic structure of the unexcited monomer are negligible (after geometry relaxation). The increased electronic density strengthens both intra- and intermolecular hydrogen bonds formed by the carbonyl oxygen atom of the excited monomer, making them significantly stronger than in the ground state. Although the overall pattern of changes remains qualitatively consistent across all methods employed, CC2 predicts more pronounced excitation-induced modifications of the electronic structure compared to the more routinely used TDDFT approach. The most important deficiency of the B3LYP functional in the present context is locating two charge-transfer states at erroneously low energies, in close proximity of the S1 and S2 states. The range-corrected CAM-B3LYP exchange–correlation functional gives a considerably improved description of the CT states at the price of overshot excitation energies. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

Back to TopTop