Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,213)

Search Parameters:
Keywords = 5G wireless networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3804 KiB  
Article
Enabling Intelligent 6G Communications: A Scalable Deep Learning Framework for MIMO Detection
by Muhammad Yunis Daha, Ammu Sudhakaran, Bibin Babu and Muhammad Usman Hadi
Telecom 2025, 6(3), 58; https://doi.org/10.3390/telecom6030058 - 6 Aug 2025
Abstract
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in [...] Read more.
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in signal detection under high-dimensional and noisy environments. To address these limitations, this paper proposes MIMONet, a novel deep learning (DL)-based MIMO detection framework built upon a lightweight and optimized feedforward neural network (FFNN) architecture. MIMONet is specifically designed to achieve a balance between detection performance and complexity by optimizing the neural network architecture for MIMO signal detection tasks. Through extensive simulations across multiple MIMO configurations, the proposed MIMONet detector consistently demonstrates superior bit error rate (BER) performance. It achieves a notably lower error rate compared to conventional benchmark detectors, particularly under moderate to high signal-to-noise ratio (SNR) conditions. In addition to its enhanced detection accuracy, MIMONet maintains significantly reduced computational complexity, highlighting its practical feasibility for advanced wireless communication systems. These results validate the effectiveness of the MIMONet detector in optimizing detection accuracy without imposing excessive processing burdens. Moreover, the architectural flexibility and efficiency of MIMONet lay a solid foundation for future extensions toward large-scale ma-MIMO configurations, paving the way for practical implementations in beyond-5G (B5G) and 6G communication infrastructures. Full article
Show Figures

Figure 1

21 pages, 4163 KiB  
Article
Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks
by Onem Yildiz
Electronics 2025, 14(15), 3023; https://doi.org/10.3390/electronics14153023 - 29 Jul 2025
Viewed by 316
Abstract
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a [...] Read more.
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a digital twin-based evaluation approach utilizing ray tracing simulations to assess the influence of antenna orientation on critical performance metrics: path gain, received signal strength (RSS), and signal-to-interference-plus-noise ratio (SINR). A thorough array of orientation scenarios was simulated to produce a dataset reflecting varied coverage conditions. The dataset was utilized to investigate antenna configurations that produced the optimal and suboptimal performance for each parameter. Additionally, three machine learning models—k-nearest neighbors (KNN), multi-layer perceptron (MLP), and XGBoost—were developed to forecast ideal configurations. XGBoost had superior prediction accuracy compared to the other models, as evidenced by regression outcomes and cumulative distribution function (CDF) analyses. The proposed workflow demonstrates that learning-based predictors can uncover orientation refinements that conventional grid sweeps overlook, enabling agile, interference-aware optimization. Key contributions include an end-to-end digital twin methodology for rapid what-if analysis and a systematic comparison of lightweight machine learning predictors for antenna orientation. This comprehensive method provides a pragmatic and scalable solution for the data-driven optimization of wireless systems in real-world settings. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Performance Analysis)
Show Figures

Figure 1

20 pages, 1023 KiB  
Article
Joint Optimization of Radio and Computational Resource Allocation in Uplink NOMA-Based Remote State Estimation
by Rongzhen Li and Lei Xu
Sensors 2025, 25(15), 4686; https://doi.org/10.3390/s25154686 - 29 Jul 2025
Viewed by 171
Abstract
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant [...] Read more.
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant interference and latency, impairing the KF’s ability to continuously obtain reliable observations. Meanwhile, existing remote state estimation systems typically rely on oversimplified wireless communication models, unable to adequately handle the dynamics and interference in realistic network scenarios. To address these limitations, this paper formulates a novel dynamic wireless resource allocation problem as a mixed-integer nonlinear programming (MINLP) model. By jointly optimizing sensor grouping and power allocation—considering sensor available power and outage probability constraints—the proposed scheme minimizes both estimation outage and transmission delay. Simulation results demonstrate that, compared to conventional approaches, our method significantly improves transmission reliability and KF estimation performance, thus providing robust technical support for remote state estimation in next-generation industrial wireless networks. Full article
Show Figures

Figure 1

13 pages, 2005 KiB  
Article
Automatic Classification of 5G Waveform-Modulated Signals Using Deep Residual Networks
by Haithem Ben Chikha, Alaa Alaerjan and Randa Jabeur
Sensors 2025, 25(15), 4682; https://doi.org/10.3390/s25154682 - 29 Jul 2025
Viewed by 230
Abstract
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. [...] Read more.
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. The approach is tailored to accurately identify advanced 5G waveform types such as Orthogonal Frequency-Division Multiplexing (OFDM), Filtered OFDM (FOFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Weighted Overlap and Add OFDM (WOLA), using both 16-QAM and 64-QAM modulation schemes. To our knowledge, this is the first application of deep learning in the classification of such a diverse set of complex 5G waveforms. The proposed model combines the deep learning capabilities of DRNs for feature extraction with Principal Component Analysis (PCA) for dimensionality reduction and feature refinement. A detailed performance evaluation is conducted using metrics like classification recall, precision, accuracy, and F-measure. When compared with traditional machine learning approaches reported in recent studies, our DRN-based method shows significantly improved classification accuracy and robustness. These results highlight the effectiveness of deep residual networks in improving adaptive signal processing and enabling automatic modulation recognition in future wireless communication technologies. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

23 pages, 1734 KiB  
Article
Design and Implementation of a Cost-Effective Failover Mechanism for Containerized UPF
by Kiem Nguyen Trung and Younghan Kim
Electronics 2025, 14(15), 2991; https://doi.org/10.3390/electronics14152991 - 27 Jul 2025
Viewed by 267
Abstract
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads [...] Read more.
Private 5G networks offer exclusive, secure wireless communication with full control deployments for many clients, such as enterprises and campuses. In these networks, edge computing plays a critical role by hosting both application services and the User Plane Functions (UPFs) as containerized workloads close to end devices, reducing latency and ensuring stringent Quality of Service (QoS). However, edge environments often face resource constraints and unpredictable failures such as network disruptions or hardware malfunctions, which can severely affect the reliability of the network. In addition, existing redundancy-based UPF resilience strategies, which maintain standby instances, incur substantial overheads and degrade resource efficiency and scalability for the applications. To address this issue, this study introduces a novel design that enables quick detection of UPF failures and two failover mechanisms to restore failed UPF instances either within the cluster hosting the failed UPF or across multiple clusters, depending on that cluster’s resource availability and health. We implemented and evaluated our proposed approach on a Kubernetes-based testbed, and the results demonstrate that our approach reduces UPF redeployment time by up to 37% compared to baseline methods and lowers system cost by up to 50% under high-reliability requirements compared to traditional redundancy-based failover methods. These findings demonstrate that our design can serve as a complementary solution alongside traditional resilience strategies, offering a particularly cost-effective and resource-efficient alternative for edge computing and other constrained environments. Full article
(This article belongs to the Special Issue Advances in Intelligent Systems and Networks, 2nd Edition)
Show Figures

Figure 1

20 pages, 2352 KiB  
Article
Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
by Yuran Jiang and Xiao Chen
Electronics 2025, 14(15), 2990; https://doi.org/10.3390/electronics14152990 - 27 Jul 2025
Viewed by 214
Abstract
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base [...] Read more.
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base stations with unmanned ground vehicles. To enhance the system’s adaptability, we implement a fluid antenna system (FAS) at the unmanned ground vehicle (UGV) terminal. This innovative model demonstrates exceptional versatility across various wireless communication scenarios through the strategic adjustment of active ports. The inherent dynamic reconfigurability of the FAS provides superior flexibility and adaptability in air-to-ground communication environments. In the paper, we derive and study key performance characteristics like the autocorrelation function (ACF), validating the model’s effectiveness. The results demonstrate that the RIS-FAS collaborative scheme significantly enhances channel reliability while effectively addressing critical challenges in 6G networks, including signal blockage and spatial constraints in mobile terminals. Full article
Show Figures

Figure 1

17 pages, 3650 KiB  
Article
Towards Intelligent Threat Detection in 6G Networks Using Deep Autoencoder
by Doaa N. Mhawi, Haider W. Oleiwi and Hamed Al-Raweshidy
Electronics 2025, 14(15), 2983; https://doi.org/10.3390/electronics14152983 - 26 Jul 2025
Viewed by 178
Abstract
The evolution of sixth-generation (6G) wireless networks introduces a complex landscape of cybersecurity challenges due to advanced infrastructure, massive device connectivity, and the integration of emerging technologies. Traditional intrusion detection systems (IDSs) struggle to keep pace with such dynamic environments, often yielding high [...] Read more.
The evolution of sixth-generation (6G) wireless networks introduces a complex landscape of cybersecurity challenges due to advanced infrastructure, massive device connectivity, and the integration of emerging technologies. Traditional intrusion detection systems (IDSs) struggle to keep pace with such dynamic environments, often yielding high false alarm rates and poor generalization. This study proposes a novel and adaptive IDS that integrates statistical feature engineering with a deep autoencoder (DAE) to effectively detect a wide range of modern threats in 6G environments. Unlike prior approaches, the proposed system leverages the DAE’s unsupervised capability to extract meaningful latent representations from high-dimensional traffic data, followed by supervised classification for precise threat detection. Evaluated using the CSE-CIC-IDS2018 dataset, the system achieved an accuracy of 86%, surpassing conventional ML and DL baselines. The results demonstrate the model’s potential as a scalable and upgradable solution for securing next-generation wireless networks. Full article
(This article belongs to the Special Issue Emerging Technologies for Network Security and Anomaly Detection)
Show Figures

Figure 1

13 pages, 560 KiB  
Article
Balancing Complexity and Performance in Convolutional Neural Network Models for QUIC Traffic Classification
by Giovanni Pettorru, Matteo Flumini and Marco Martalò
Sensors 2025, 25(15), 4576; https://doi.org/10.3390/s25154576 - 24 Jul 2025
Viewed by 286
Abstract
The upcoming deployment of sixth-generation (6G) wireless networks promises to significantly outperform 5G in terms of data rates, spectral efficiency, device densities, and, most importantly, latency and security. To cope with the increasingly complex network traffic, Network Traffic Classification (NTC) will be essential [...] Read more.
The upcoming deployment of sixth-generation (6G) wireless networks promises to significantly outperform 5G in terms of data rates, spectral efficiency, device densities, and, most importantly, latency and security. To cope with the increasingly complex network traffic, Network Traffic Classification (NTC) will be essential to ensure the high performance and security of a network, which is necessary for advanced applications. This is particularly relevant in the Internet of Things (IoT), where resource-constrained platforms at the edge must manage tasks like traffic analysis and threat detection. In this context, balancing classification accuracy with computational efficiency is key to enabling practical, real-world deployments. Traditional payload-based and packet inspection methods are based on the identification of relevant patterns and fields in the packet content. However, such methods are nowadays limited by the rise of encrypted communications. To this end, the research community has turned its attention to statistical analysis and Machine Learning (ML). In particular, Convolutional Neural Networks (CNNs) are gaining momentum in the research community for ML-based NTC leveraging statistical analysis of flow characteristics. Therefore, this paper addresses CNN-based NTC in the presence of encrypted communications generated by the rising Quick UDP Internet Connections (QUIC) protocol. Different models are presented, and their performance is assessed to show the trade-off between classification accuracy and CNN complexity. In particular, our results show that even simple and low-complexity CNN architectures can achieve almost 92% accuracy with a very low-complexity architecture when compared to baseline architectures documented in the existing literature. Full article
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 526
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

28 pages, 1858 KiB  
Article
Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network
by Alexis Barrios-Ulloa, Andrés Solano-Barliza, Wilson Arrubla-Hoyos, Adelaida Ojeda-Beltrán, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos and Alejandro Cama-Pinto
Sustainability 2025, 17(15), 6664; https://doi.org/10.3390/su17156664 - 22 Jul 2025
Viewed by 529
Abstract
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the [...] Read more.
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the evolution of wireless technologies to sixth-generation networks (6G) can support innovation in Colombia’s agricultural sector and foster rural advancement. The study follows three main phases: search, analysis, and selection of information. In the search phase, key government policies, spectrum management strategies, and the relevant literature from 2020 to 2025 were reviewed. The analysis phase addresses challenges such as spectrum regulation and infrastructure deployment within the context of a developing country. Finally, the selection phase evaluates technological readiness and policy frameworks. Findings suggest that 6G could revolutionize Colombian agriculture by improving connectivity, enabling real-time monitoring, and facilitating precision farming, especially in rural areas with limited infrastructure. Successful 6G deployment could boost agricultural productivity, reduce socioeconomic disparities, and foster sustainable rural development, contingent on aligned public policies, infrastructure investments, and human capital development. Full article
(This article belongs to the Special Issue Sustainable Precision Agriculture: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 6343 KiB  
Article
Smart Sensor Platform for MIMO Antennas with Gain and Isolation Enhancement Using Metamaterial
by Kranti Dhirajsinh Patil, Dinesh M. Yadav and Jayshri Kulkarni
Electronics 2025, 14(14), 2892; https://doi.org/10.3390/electronics14142892 - 19 Jul 2025
Viewed by 285
Abstract
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed [...] Read more.
In modern wireless communication systems, achieving high isolation and consistent signal gain is essential for optimizing Multiple-Input Multiple-Output (MIMO) antenna performance. This study presents a metamaterial-integrated smart sensor platform featuring a hexagonal two-element MIMO antenna designed to improve isolation and directive gain. Constructed on an FR4 substrate (1.6 mm thick), the proposed antenna configurations include a base hexagonal patch, an orthogonally oriented two-element system (TEH_OC), and further enhanced variants employing metamaterial arrays as the superstrate and reflector (TEH_OC_MTS and TEH_OC_MTR). The metamaterial structures significantly suppress mutual coupling, yielding superior diversity parameters such as Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL). All configurations were fabricated and validated through comprehensive anechoic chamber measurements. The results demonstrate robust isolation and radiation performance across the 3 GHz and 5 GHz bands, making these antennas well-suited for deployment in compact, low-latency smart sensor networks operating in 5G and IoT environments. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

17 pages, 4473 KiB  
Article
Dual-Band Wearable Antenna Integrated with Glasses for 5G and Wi-Fi Systems
by Łukasz Januszkiewicz
Appl. Sci. 2025, 15(14), 8018; https://doi.org/10.3390/app15148018 - 18 Jul 2025
Viewed by 248
Abstract
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the [...] Read more.
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the proposed design supports both fifth-generation (5G) wireless communication and Wi-Fi networks. The compact antenna is specifically dimensioned for integration within eyeglass temples and operates in the 3.5 GHz and 5.8 GHz frequency bands. Prototype measurements, conducted using a human head phantom, validate the antenna’s performance. The results demonstrate good impedance matching across the desired frequency bands and a maximum gain of at least 4 dBi in both bands. Full article
(This article belongs to the Special Issue Antenna Technology for 5G Communication)
Show Figures

Figure 1

21 pages, 2065 KiB  
Article
Enhancing Security in 5G and Future 6G Networks: Machine Learning Approaches for Adaptive Intrusion Detection and Prevention
by Konstantinos Kalodanis, Charalampos Papapavlou and Georgios Feretzakis
Future Internet 2025, 17(7), 312; https://doi.org/10.3390/fi17070312 - 18 Jul 2025
Viewed by 373
Abstract
The evolution from 4G to 5G—and eventually to the forthcoming 6G networks—has revolutionized wireless communications by enabling high-speed, low-latency services that support a wide range of applications, including the Internet of Things (IoT), smart cities, and critical infrastructures. However, the unique characteristics of [...] Read more.
The evolution from 4G to 5G—and eventually to the forthcoming 6G networks—has revolutionized wireless communications by enabling high-speed, low-latency services that support a wide range of applications, including the Internet of Things (IoT), smart cities, and critical infrastructures. However, the unique characteristics of these networks—extensive connectivity, device heterogeneity, and architectural flexibility—impose significant security challenges. This paper introduces a comprehensive framework for enhancing the security of current and emerging wireless networks by integrating state-of-the-art machine learning (ML) techniques into intrusion detection and prevention systems. It also thoroughly explores the key aspects of wireless network security, including architectural vulnerabilities in both 5G and future 6G networks, novel ML algorithms tailored to address evolving threats, privacy-preserving mechanisms, and regulatory compliance with the EU AI Act. Finally, a Wireless Intrusion Detection Algorithm (WIDA) is proposed, demonstrating promising results in improving wireless network security. Full article
(This article belongs to the Special Issue Advanced 5G and Beyond Networks)
Show Figures

Figure 1

20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 335
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

Back to TopTop