Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,204)

Search Parameters:
Keywords = 5% saline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3156 KiB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 (registering DOI) - 7 Aug 2025
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
12 pages, 1451 KiB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

17 pages, 1388 KiB  
Article
Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications
by Larisa Golovatyuk, Timur Kanapatskiy, Olga Samylina, Nikolay Pimenov, Larisa Nazarova and Anna Kallistova
Water 2025, 17(15), 2330; https://doi.org/10.3390/w17152330 - 5 Aug 2025
Abstract
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate [...] Read more.
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate alkalinity (0.03 to 4.03 mol-eq L−1). The invertebrate fauna was characterized by low diversity. Only five taxa of macrozoobenthos and two taxa of planktonic invertebrates were identified. As water salinity increased, the taxonomic diversity of the studied lakes decreased, and at salinities > 276 g L−1, monodominant assemblages were formed. The high numbers and biomass of aquatic organism provide a rich food supply for native and migratory waterfowl. The low taxonomic diversity of the invertebrate assemblages of the lakes makes them vulnerable to any negative external impact. The climate in the Kulunda steppe demonstrates a long-term aridization trend. If this continues in the future, then over time, this may lead to the gradual salinization of lakes and a further decrease in the taxonomic diversity of hydrobiological assemblages. This emphasizes the ecological importance of the studied territory and the necessity for its inclusion in the list of sites protected by the Ramsar Convention. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

12 pages, 2299 KiB  
Article
An Ultrasound-Guided Thoracolumbar Erector Spinae Plane Block: An Experimental Preliminary Study in Horses
by Francisco Medina-Bautista, Irene Nocera, Antonia Sánchez de Medina, Chiara Di Franco, Angela Briganti, Juan Morgaz and María del Mar Granados
Animals 2025, 15(15), 2264; https://doi.org/10.3390/ani15152264 - 1 Aug 2025
Viewed by 123
Abstract
The objective of this study was to evaluate the feasibility and efficacy of the ultrasound-guided thoracolumbar erector spinae plane (TL-ESP) block in standing horses. A total of 24 injections (n = 12) were performed at the L1 level using either 0.1 mL/kg [...] Read more.
The objective of this study was to evaluate the feasibility and efficacy of the ultrasound-guided thoracolumbar erector spinae plane (TL-ESP) block in standing horses. A total of 24 injections (n = 12) were performed at the L1 level using either 0.1 mL/kg of saline solution (SS group) or 2% lidocaine (LID group). The block feasibility was assessed based on needle visualization and injection time, while efficacy was evaluated through craniocaudal and dorsoventral (DV) spread using the pinprick technique over 270 min. Desensitization was observed at least once in 100% of horses in the LID group and in 75% in the SS group (p = 0.001). However, in the SS group, desensitization was primarily limited to the Th18 metamer at the 2 cm DV position, with a shorter duration compared to the LID group. The block onset occurred at 22.5 (11.25–60) min in the LID group and at 5 (5–30) min in the SS group (p = 0.069). The number of affected metamers was significantly higher in the LID group (2 [1–3]) compared to the SS group (1 [1–2.25], p = 0.014). At the 2 cm DV point, the end of the block effect occurred at 135 (120–210) min in the LID group and at 60 (3.75–60) min in the SS group (p = 0.001). Needle visualization was excellent in 95.8% of cases, and the mean injection time was 2.5 (2–3) min. These findings confirm that the TL-ESP block is a feasible technique in standing horses. However, its effect is predominantly localized to dorsal dermatomes with a limited ventral spread. Future studies evaluating larger volumes and multiple injection sites are warranted to enhance its clinical applicability. Full article
Show Figures

Graphical abstract

10 pages, 738 KiB  
Article
Preliminary Pharmacokinetics and Appetite Stimulant Efficacy of Oral Mirtazapine in Guinea Pigs (Cavia porcellus)
by Jessica Ayers, Elizabeth Stietzle, Megan Ellis, Jeffrey Kim and Lon V. Kendall
Animals 2025, 15(15), 2256; https://doi.org/10.3390/ani15152256 - 31 Jul 2025
Viewed by 315
Abstract
Guinea pigs used in research may experience inappetence or decreased intestinal motility, which can significantly compromise their welfare. This study evaluates the use of mirtazapine on appetite and intestinal motility in guinea pigs. An initial pharmacokinetics and efficacy study was performed using healthy [...] Read more.
Guinea pigs used in research may experience inappetence or decreased intestinal motility, which can significantly compromise their welfare. This study evaluates the use of mirtazapine on appetite and intestinal motility in guinea pigs. An initial pharmacokinetics and efficacy study was performed using healthy male guinea pigs administered mirtazapine at 1.88, 3.75, or 7.5 mg orally once daily for four days (n = 6), in a crossover design where all animals received all doses. Body, feed, and fecal weights were taken daily for 4 days. There were no significant differences in weight gains, feed intake, or fecal output as compared to guinea pigs given saline only (n = 3). Blood was collected under anesthesia at 0, 0.5, 1, 2, 8, 12, and 24 h post-administration. Pharmacokinetic analysis completed after the first dose showed peak plasma levels at 30 min, then falling below the limit of detection between 8 h and 12 h at all doses. Based on the pharmacokinetic profile, a follow-up study was performed in another set of healthy male guinea pigs with every 8 h dosing at 1.88 mg orally for 5 days (n = 6). There was a significant increase in feed intake during mirtazapine administration as compared to baseline intake, but no significant difference in weight gains. This study shows that mirtazapine can be used as an appetite stimulant in guinea pigs but must be dosed at least every eight hours to be effective. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity
by Shuaihu Chen, Tingting Liu, Junyao Chen, Hong Shen and Jungang Wang
Microorganisms 2025, 13(8), 1795; https://doi.org/10.3390/microorganisms13081795 - 31 Jul 2025
Viewed by 249
Abstract
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome [...] Read more.
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome and metabolites to perform fecal virome transplantation (FVT), aiming to investigate its regulatory role in broiler growth. Healthy yellow-feathered broilers with high body weights (top 10% of the population) were used as FVT donors. Ninety-six 8-day-old healthy male yellow-feathered broilers (95.67 ± 3.31 g) served as FVT recipients. Recipient chickens were randomly assigned to a control group and an FVT group. The control group was gavaged with 0.5 mL of normal saline daily, while the FVT group was gavaged with 0.5 mL of FVT solution daily. Growth performance, immune and antioxidant capacity, intestinal development and related gene expression, and microbial diversity were measured. The results showed that FVT improved the feed utilization rate of broilers (the feed conversion ratio decreased by 3%; p < 0.05), significantly increased jejunal length (21%), villus height (69%), and crypt depth (84%) (p < 0.05), and regulated the jejunal barrier: insulin-like growth factor-1 (IGF-1) (2.5 times) and Mucin 2 (MUC2) (63 times) were significantly upregulated (p < 0.05). FVT increased the abundance of beneficial bacteria Lactobacillales. However, negative effects were also observed: Immunoglobulin A (IgA), Immunoglobulin G (IgG), Immunoglobulin M (IgM), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-gamma (IFN-γ) in broilers were significantly upregulated (p < 0.05), indicating immune system overactivation. Duodenal barrier-related genes Mucin 2 (MUC2), Occludin (OCLN), Claudin (CLDN1), and metabolism-related genes solute carrier family 5 member 1 (SLC5A1) and solute carrier family 7 member 9 (SLC7A9) were significantly downregulated (p < 0.05). The results of this trial demonstrate that, besides the microbiota, the gut virome and metabolites are also functional components contributing to the growth-promoting effect of FMT. The differential responses in the duodenum and jejunum reveal spatial heterogeneity and dual effects of FVT on the intestine. The negative effects limit the application of FMT/FVT. Identifying the primary functional components of FMT/FVT to develop safe and targeted microbial preparations is one potential solution. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 3738 KiB  
Article
Effect of Alternate Sprinkler Irrigation with Saline and Fresh Water on Soil Water–Salt Transport and Corn Growth
by Yue Jiang, Luya Wang, Yanfeng Li, Hao Li and Run Xue
Agronomy 2025, 15(8), 1854; https://doi.org/10.3390/agronomy15081854 - 31 Jul 2025
Viewed by 310
Abstract
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels [...] Read more.
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels (3 and 5 g·L−1, representing S1 and S2, respectively) and three irrigation strategies—saline–fresh–saline–fresh (F1), saline–fresh (F2), and mixed saline–fresh (F3)—were tested, resulting in six treatments: S1F1, S1F2, S1F3, S2F1, S2F2, and S2F3. S1F1 significantly improved soil water retention at a 30–50 cm depth and reduced surface electrical conductivity (EC) and Na+ concentration (p < 0.05). S1F1 also promoted more uniform Mg2+ distribution and limited Ca2+ loss. Under high salinity (5 g·L−1), surface salt accumulation and ion concentration (Na+, Mg2+, and Ca2+) increased, particularly in S2F3. Corn growth under alternating irrigation (F1/F2) outperformed the mixed mode (F3), with S1F1 achieving the highest plant height, leaf area, grain number, and 100-grain weight. The S1F1 yield surpassed others by 0.4–3.0% and maintained a better ion balance. These results suggest that alternating irrigation with low-salinity water (S1F1) effectively regulates root-zone salinity and improves crop productivity, offering a practical strategy for the sustainable use of low-saline water resources. Full article
Show Figures

Figure 1

19 pages, 7853 KiB  
Article
Pre-Transport Salt Baths Mitigate Physiological Stress and Tissue Damage in Channel Catfish (Ictalurus punctatus) Fingerlings: Evidence from Multi-Biomarker Assessment and Histopathology
by Guowei Huang, Haohua Li, Juguang Wang, Tao Liao, Liang Qiu, Guangquan Xiong, Lan Wang, Chan Bai and Yu Zhang
Animals 2025, 15(15), 2249; https://doi.org/10.3390/ani15152249 - 31 Jul 2025
Viewed by 151
Abstract
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), [...] Read more.
Effective transport strategies are critical for the survival and welfare of juvenile Ictalurus punctatus, but the effects of pre-transport salt bath treatments remain uncertain. In this study, we systematically evaluated the effects of pre-transport salt bath acclimation at 0‰ (S1), 1‰ (S2), 5‰ (S3), and 9‰ (S4) salinity for 30 min on stress resilience and recovery in fingerlings during 12 h of simulated transport and 24 h of recovery. All fish survived, but total ammonia nitrogen (TAN) increased, and pH decreased in all groups, except S3, which showed significantly lower TAN and higher pH (p < 0.05). The S3 and S4 groups showed attenuated increases in serum cortisol and glucose, with S3 exhibiting the fastest return to baseline levels and stable serum sodium and potassium levels. Liver antioxidant enzyme activities in group S3 remained stable, with the lowest malondialdehyde (MDA) accumulation. Integrated biomarker response (IBR) and histological analyses demonstrated that S3 had the lowest systemic stress and tissue damage, whereas S1 and S4 displayed marked cellular disruption. These results indicate that a 5‰ salt bath applied prior to transport may improve water quality, mitigate stress responses, and preserve tissue integrity in juvenile channel catfish. Further studies are needed to confirm these findings in other species and under commercial transport conditions. Full article
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 - 24 Jul 2025
Viewed by 334
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

24 pages, 6353 KiB  
Article
Dynamic Response and Residual Bearing Capacity of Corroded RC Piers Under Rockfall Impact
by Jieqiong Wu, Feiyang Ye, Jian Yang and Jianchao Xu
Buildings 2025, 15(15), 2592; https://doi.org/10.3390/buildings15152592 - 22 Jul 2025
Viewed by 301
Abstract
RC piers in mountainous coastal or saline areas face the dual threats of rockfall impacts and chloride-induced steel corrosion, but their combined effects on dynamic response and residual bearing capacity remain unquantified. This study aims to investigate these combined effects over a 90-year [...] Read more.
RC piers in mountainous coastal or saline areas face the dual threats of rockfall impacts and chloride-induced steel corrosion, but their combined effects on dynamic response and residual bearing capacity remain unquantified. This study aims to investigate these combined effects over a 90-year service time and propose a damage assessment formula. A validated numerical model (relative error ≤14.7%) of corroded RC columns under impact is developed using ABAQUS, based on which the dynamic response and residual bearing capacity of an actual RC pier subjected to rockfall impacts during the service time of 90 years incorporating corrosion initiation (via Life-365 software 2.2) and propagation are analyzed, with the consideration of various impact energies (1–5 t mass, 5–15 m/s velocity). Results show that (1) increasing impact mass/velocity expands damage and increases displacement (e.g., the velocity of increases peak displacement by 33.41 mm in comparison to 5 m/s); (2) a 90-year service time leads to >50% severe surface damage and 47.1% residual capacity loss; and (3) the proposed and validated damage formula assessment formula for the residual bearing capacity enables lifecycle maintenance guidance. This work provides a validated framework for assessing combined corrosion-rockfall effects, aiding design and maintenance of structures. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 580
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

18 pages, 751 KiB  
Article
Effects of Salinity, Temperature, and Diet on the Biological Characteristics of Brachionus plicatilis Müller, 1786
by Quynh-Anh Tran-Nguyen, Truong Nhat Phan, Quang-Anh Tran, Hong Thi Mai, Thao Linh Phan Thi, Dang Doan Phan and Mau Trinh-Dang
Biology 2025, 14(7), 878; https://doi.org/10.3390/biology14070878 - 18 Jul 2025
Viewed by 354
Abstract
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a [...] Read more.
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a salinity of 5 ppt, B. plicatilis achieved the highest fecundity (25.50 ± 0.58 inds.), while the longest lifespan (273.00 ± 72.52 h) was observed at 35 ppt. The temperature had a strong influence on developmental rates, with the shortest juvenile period recorded at 35 °C (8.00 ± 0.00 h) and the longest lifespan at 20 °C (270.62 ± 30.38 h). The diet also played a critical role, with Chlorella vulgaris supporting maximum fecundity, whereas mixed diets prolonged lifespan to 290.50 ± 62.83 (h). These findings provide valuable insights into optimizing rotifer culture systems to improve aquaculture productivity and sustainability. Full article
Show Figures

Figure 1

16 pages, 644 KiB  
Article
Isolation and Identification of Secondary Metabolites in Rheum tataricum L.fil. Growing in Kazakhstan and Surveying of Its Anticancer Potential
by Aiman A. Turgunbayeva, Nurgul A. Sultanova, Mohammad Saleh Hamad, Victor A. Savelyev, Elena I. Chernyak, Irina Yu. Bagryanskaya, Mikhail A. Pokrovsky, Andrey G. Pokrovsky, Nadezhda G. Gemejiyeva and Elvira E. Shults
Molecules 2025, 30(14), 2978; https://doi.org/10.3390/molecules30142978 - 15 Jul 2025
Viewed by 420
Abstract
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, [...] Read more.
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, kidney, womb, and bladder diseases and also relapsing fever. An ethanol extract of the roots of R. tataricum was prepared and further successively fractionated by extraction with tert-butyl methyl ether (TBME) and ethyl acetate (EtOAc). The obtained extract fractions were subjected to a series of chromatographic separations on silica gel for the isolation of its individual compounds. A total of 12 individual compounds, 2-O-β-D-glucopyranoside of R-(4-hydroxyphenyl)-2-butanol (rhododendrin) 1, gallic acid 2, 2-O-β-D-glucopyranoside of S-4-(4-hydroxyphenyl)-2-butanol (epi-rhododendrin) 3, their aglycones (-)-(2R)-rhododendrol 4 and (+)-(2S)-rhododendrol 5, gallotannin β-glucogallin 6, chlorogenic acids (3,5-di-O-caffeoylquinic acid 7 and 5-O-caffeoyl-3-O-(p-coumaroyl) quinic acid 8), 4-(4-hydroxyphenyl)-2-butanon (raspberry ketone) 9 and three stilbenes (rhaponticin 10, desoxyrhaponticin 11 and resveratroloside 12), were isolated and characterized. The structure of desoxyrhaponticin 11 was confirmed by X-ray diffraction analyses. The results of in vitro biological assays (the MTT test) showed that ethanol extract Rheum tataricum was non-toxic against the normal epithelial VERO cells. The isolated compounds 1, 4, 11 and 12 exhibited cytotoxicity against a cervical cancer cell line (CaSki), breast adenocarcinoma (MCF7) and glioblastoma cell line (SNB-19) at low micromolar concentrations. Polyhydroxystilbenes 11 and 12 showed the best potency against adenocarcinoma cells (GI50 = 7–8 μM). The inhibition activity towards cancer cells was comparable to those of the standard drug doxorubicin. The available from R. tataricum secondary metabolites may serve as new leads for the discovery of anticancer drugs. Full article
Show Figures

Graphical abstract

15 pages, 2446 KiB  
Article
Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress?
by João Henrique Constantino Sales Silva, Joyce Naiara da Silva, Luís Gustavo Alves de Almeida, Eduardo Luã Fernandes da Silva, Aline das Graças Souza and Edna Ursulino Alves
Seeds 2025, 4(3), 33; https://doi.org/10.3390/seeds4030033 - 15 Jul 2025
Viewed by 195
Abstract
Guilandina bonduc L. is a pantropical coastal shrub with varied fruits and seeds, capable of germinating under saline stress. This study aimed to morphologically characterize the fruits and seeds of the species, correlate these characteristics, and evaluate the tolerance of seedlings to salt [...] Read more.
Guilandina bonduc L. is a pantropical coastal shrub with varied fruits and seeds, capable of germinating under saline stress. This study aimed to morphologically characterize the fruits and seeds of the species, correlate these characteristics, and evaluate the tolerance of seedlings to salt according to seed mass. Physical variables (length, width, thickness, and weight) were analyzed, and Spearman’s correlation was applied. Germination was tested with light seeds (<1.55 g) and heavy seeds (≥1.55 g) under five levels of salt stress, in a 2 × 5 factorial design. G. bonduc can produce seeds with variations in mass and size that are not necessarily related to fruit size. The reduction in osmotic potential resulted in lower seed germination and vigor; even so, the species demonstrated tolerance to salt stress, maintaining germination rates above 50% even under conditions of −1.0 MPa, regardless of seed mass. Lighter seeds germinate more quickly and uniformly, while heavier seeds produce more vigorous seedlings, especially in the absence of salinity, and are therefore more suitable for seedling production. These results indicate that G. bonduc has potential for revegetation of saline areas, being useful in adaptation to climate change due to its tolerance to saline stress and the relationship between seed mass and seedling vigor. Full article
(This article belongs to the Special Issue Seed Germination Techniques in Halophyte Plants)
Show Figures

Figure 1

19 pages, 6209 KiB  
Article
Structural and Thermal Effects of Beeswax Incorporation in Electrospun PVA Nanofibers
by Margarita P. Neznakomova, Fabien Salaün, Peter D. Dineff, Tsvetozar D. Tsanev and Dilyana N. Gospodinova
Materials 2025, 18(14), 3293; https://doi.org/10.3390/ma18143293 - 12 Jul 2025
Viewed by 385
Abstract
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, [...] Read more.
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, conductivity, and surface tension—were systematically evaluated. Electrospinning was performed at 30 kV and a working distance of 14.5 cm, yielding nanofibers with diameters between 125 and 425 nm. Scanning electron microscopy (SEM) revealed increased surface roughness and diameter variability in PVA/BW fibers compared to the PVA. Fourier transform infrared spectroscopy (FTIR) confirmed physical incorporation of BW without evidence of chemical bonding. Thermogravimetric and differential scanning calorimetry analyses (TGA/DSC) demonstrated altered behavior and an expanded profile of temperature transitions due to the waxy components. The solubility test of the nanofiber mat in saline indicated that BW slows dissolution and improves the structural integrity of the fibers. This study demonstrates, for the first time, the incorporation of beeswax into electrospun PVA nanofibers with improved structural and thermal properties, indicating potential for further exploration in biomedical material design. Full article
Show Figures

Graphical abstract

Back to TopTop