Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress?
Abstract
1. Introduction
2. Materials and Methods
2.1. Diaspore Collection Site
2.2. Biometric Characterization of Guilandina bonduc Diaspores
2.3. Experiment Establishment and Conduction
2.4. Parameters Evaluated in the Germination and Seedling Vigor Test of Guilandina bonduc
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization of Guilandina bonduc L. (Fabaceae) Diaspores
3.2. Seed Germination Under Salt Stress as a Function of G. bonduc Seed Mass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BOD | Biochemical oxygen demand |
CCA | Centro de Ciências Agrárias |
CRD | Completely randomized design |
CV | Coefficient of variation |
DF | Degrees of freedom |
FL | Fruit length |
FM | Fruit thickness |
FT | Fruit thickness |
FW | Fruit width |
G | Germination |
GSI | Germination speed index |
IUCN | International Union for Conservation of Nature |
LAS | Laboratório de Análise de Sementes |
LC | Least concern |
MGT | Mean germination time |
NS | Normal seedlings |
RDM | Root dry mass |
RSL | Root system length |
SD | Seed diameter |
SDM | Shoot dry mass |
SHL | Shoot length |
SL | Seed length |
SM | Seed mass |
ST | Seed thickness |
UFPB | Universidade Federal da Paraíba |
References
- Smiderle, O.J.; Souza, A.G. Do scarification and seed soaking periods promote maximum vigor in seedlings of Hymenaea courbaril? J. Seed Sci. 2021, 43, e202143030. [Google Scholar] [CrossRef]
- Leão, N.V.M.; Araújo, E.A.A.; Shimizu, E.S.C.; Felipe, S.H.S. Características biométricas e massa de frutos e sementes de Lecythis pisonis Cambess. Enciclop. Biosf. 2016, 13, 167–175. [Google Scholar] [CrossRef]
- Menegatti, R.D.; Souza, A.G.; Bianchi, V.J. Estimating genetic divergence between peach rootstock cultivars using multivariate techniques based on characteristics associated with seeds. Genet. Mol. Res. 2019, 18, gmr18345. [Google Scholar] [CrossRef]
- Srinivasan, P.; Karunanithi, K.; Muniappan, A.; Singamoorthy, A.; Kadaikunnan, S.; Narayanan, S.P.; Thiruvengadam, M.; Nagamuthu, P. Botany, traditional usages, phytochemistry, pharmacology, and toxicology of Guilandina bonduc L.: A systematic review. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024, 397, 2747–2775. [Google Scholar] [CrossRef] [PubMed]
- Bachman, S. Guilandina bonduc. In The IUCN Red List of Threatened Species 2018; International Union for Conservation of Nature: Fontainebleau, France, 2018. [Google Scholar] [CrossRef]
- Queiroz, R.T. Guilandina in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. 2024. Available online: https://floradobrasil.jbrj.gov.br/FB100887 (accessed on 26 June 2024).
- Kandasamy, V.; Balasundaram, U. Caesalpinia bonduc (L.) Roxb. as a promising source of pharmacological compounds to treat poly cystic ovary syndrome (PCOS): A review. J. Ethnopharmacol. 2021, 279, 114375. [Google Scholar] [CrossRef]
- Rathi, J.J.; Sasirekha, R.; Kumar, R.R. Effect of physical and chemical treatments on breaking the seed dormancy of Caesalpinia bonduc (L.) Roxb. Plant Sci. Today 2021, 8, 572–577. [Google Scholar] [CrossRef]
- Souza, A.G.; Smiderle, O.J.; Spinelli, V.M.; Souza, R.O.; Bianchi, V.J. Correlation of biometrical characteristics of fruit and seed with twinning and vigor of Prunus persica rootstocks. J. Seed Sci. 2016, 38, 322–328. [Google Scholar] [CrossRef]
- Montenegro, R.A.; Smiderle, O.J.; Souza, A.G. Correlation of biometric characteristics of fruits and seeds with the vigor of Agonandra brasiliensis seedlings in northern Amazonia. Biosci. J. 2022, 38, e38011. [Google Scholar] [CrossRef]
- Silva, E.L.M.; Steiner, F.; Zuffo, A.L. Caracterização morfológica de frutos e sementes de guavira [Campomanesia adamantium (Cambess.) O. Berg.]. Rev. Agronegócio Meio. Ambient. 2023, 16, e10121. [Google Scholar] [CrossRef]
- Silva, M.J.; Alves, E.U.; Silva, J.N.; Silva, R.S.; Bernardo, M.K.F.; Rodrigues, C.M.; Pádua, G.V.G.; Silva, J.H.C.S.; Silva, M.C.L.; Souza, A.G.; et al. Biometric aspects of fruits and seeds and determination of the absorption curve of Hymenaea martiana Hayne seeds. Braz. J. Biol. 2024, 84, e285632. [Google Scholar] [CrossRef]
- Souza, O.M.; Smiderle, O.J.; Souza, A.G.; Chagas, E.A.; Chagas, P.C.; Bacelar-Lima, C.G.; Morais, B.S. Influência do tamanho da semente na germinação e vigor de plântulas de populações de camu-camu. Sci. Agropecu. 2017, 8, 119–125. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Padilha, M.S.; Siega, Y.P.; Coelho, C.M.M.; Ehrhardt-Brocardo, N.C.M. O tamanho de sementes de feijão afeta a utilização das reservas armazenadas durante a germinação. Rev. Ciênc. Agroveterinárias 2023, 22, 529–537. [Google Scholar] [CrossRef]
- Lopes, M.F.Q.; Lima, L.K.S.; Ferreira, J.T.A.; Silva, T.I.; Bruno, R.L.A. Seed mass modulates tolerance to water deficit in Luetzelburgia auriculata (Allemão) Ducke seedling. Sci. Forest. 2022, 50, e3773. [Google Scholar] [CrossRef]
- Farhoudi, R.; Motamedi, M. Effect of salt stress and seed size on germination and early seedling growth of safflower (Carthamus tinctorius L.). Seed Sci. Technol. 2010, 38, 73–78. [Google Scholar] [CrossRef]
- Silva, J.H.C.S.; Azerêdo, G.A. Germination of cactus seeds under saline stress. Rev. Caatinga 2022, 35, 79–86. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Marcos-Filho, J. Fisiologia de Sementes de Plantas Cultivadas, 2nd ed.; ABRATES: Londrina, Brazil, 2015. [Google Scholar]
- Steiner, F.; Zuffo, A.M.; Busch, A.; Sousa, T.O.; Zoz, T. Does seed size affect the germination rate and seedling growth of peanut under salinity and water stress? Pesq. Agropecuária Trop. 2019, 49, e54353. [Google Scholar]
- Silva, J.H.C.S.; Azerêdo, G.A.; Ferreira, W.M.; Souza, V.C. Water restriction in seeds of Cereus jamacaru DC. Rev. Bras. Cienc. Agrar. 2021, 16, e8431. [Google Scholar] [CrossRef]
- Silva, J.H.C.S.; Rodrigues, C.M.; Souza, A.G.; Nascimento, N.F.F.; Alves, E.U. Effects of temperature and salt stress on Cereus fernambucensis seed germination. Biology 2025, 14, 393. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Weather Spark. Climate and Average Weather Year-Round in Pitimbu, Paraíba, Brazil. 2024. Available online: https://weatherspark.com/ (accessed on 30 September 2024).
- Correia, B.E.F.; Almeida Jr, E.B.; Zanin, M. Key points about North and Northern Brazilian Restinga: A review of geomorphological characterization, phytophysiognomies classification, and studies’ tendencies. Bot. Rev. 2020, 3, 329–337. [Google Scholar] [CrossRef]
- Brasil. Regras para Análise de Sementes; Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, MAPA/ACS: Brasília, Brazil, 2009. [Google Scholar]
- Salisbury, F.B.; Ross, C.W. Plant Physiology, 4th ed.; Wadworth: Belmont, CA, USA, 1991. [Google Scholar]
- Maguire, J.O. Speed of germination and in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Labouriau, L.F.G. Germinação das Sementes; Secretaria da OEA: Washington, DC, USA, 1983. [Google Scholar]
- Davis, J.A. Elementary Survey Analysis; Prentice-Hall: Englewood, CO, USA, 1971. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 15 September 2024).
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Silva, R.A.R.; Pinheiro, L.G.; Chagas, K.P.T.; Freire, A.S.M.; Santos, J.R.M.; Vieira, F.A. Características biométricas dos frutos e sementes da palmeira Copernicia prunifera (Arecaceae). Rev. Ciênc. Agroambientais 2018, 15, 144–149. [Google Scholar] [CrossRef]
- Piña-Rodrigues, F.C.M.; Figliolia, M.B.; Silva, A. Sementes Florestais Tropicais: Da Ecologia à Produção; ABRATES: Londrina, Brazil, 2015; p. 477. [Google Scholar]
- Silva, J.N.; Alves, E.U.; Medeiros, M.L.S.; Pádua, G.V.G.; Silva, M.J.; Rodrigues, M.H.B.S.; Bernardo, M.K.F.; Cruz, J.M.F.L.; Souza, A.G.; Araújo, L.D.A. Caracterização morfológica de frutos e sementes em uma população natural de Hymenaea martiana Hayne. Sci. Forest. 2022, 50, e3929. [Google Scholar] [CrossRef]
- Norden, N.; Daws, M.I.; Antoine, C.; Gonzalez, M.A.; Garwood, N.C.; Chave, J. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Funct. Ecol. 2009, 23, 203–210. [Google Scholar] [CrossRef]
- Krzyzanowski, C.F.; Vieira, R.D.; França-Neto, J.B.; Marcos-Filho, J. Vigor De Sementes: Conceitos E Testes, 2nd ed.; ABRATES: Londrina, Brazil, 2020. [Google Scholar]
- Campos, K.M.; Herrera, R.C.; Prates, H.U.S.; Lima, L.O.; Debrito, I.I.C.; Cruz, C.F.; Garcia, M.G.; Brito, G.C. Desenvolvimento de Vouacapoua americana Aubl. (Fabaceae): Influência da biometria de sementes e diferentes níveis de luz. Rev. Bras. Ciênc. Amaz. 2024, 13, 31–47. [Google Scholar]
- Kopper, A.C.; Malavasi, M.M.; Malavasi, U.C. Influência da temperatura e do substrato na germinação de sementes de Cariniana estrellensis (Raddi) Kuntze. Rev. Bras. Sementes 2010, 32, 160–165. [Google Scholar] [CrossRef]
- Mircea, D.M.; Estrelles, E.; Al Hassan, M.; Soriano, P.; Sestras, R.E.; Boscaiu, M.; Sestras, A.F.; Vicente, O. Effect of water deficit on germination, growth and biochemical responses of four potentially invasive ornamental grass species. Plants 2023, 12, 1260. [Google Scholar] [CrossRef]
- Stefanello, R.; Viana, B.B.; Goergen, P.C.H.; Neves, L.A.S.; Nunes, U.R. Germination of chia seeds submitted to saline stress. Braz. J. Biol. 2020, 80, 285–289. [Google Scholar] [CrossRef]
- Almeida, J.P.N.; Pinheiro, C.L.; Lessa, B.F.T.; Gomes, F.M.; Medeiros Filho, S. Estresse hídrico e massa de sementes na germinação e crescimento de plântulas de Amburana cearensis (Allemão) AC Smith. Rev. Ciênc. Agron. 2014, 45, 777–787. [Google Scholar] [CrossRef]
- Soares, M.M.; Santos-Junior, H.C.; Simões, M.G.; Pazzin, D.; Silva, L.J. Estresse hídrico e salino em sementes de soja classificadas em diferentes tamanhos. Pesq. Agropecuária Trop. 2015, 45, 370–378. [Google Scholar] [CrossRef]
- Padilha, M.S.; Donatto, N.M.; Sobral, L.S. Qualidade fisiológica de sementes de Peltophorum dubium (Sprengel.) Taubert classificadas pelo tamanho. BIOFIX Sci. J. 2021, 6, 20–27. [Google Scholar] [CrossRef]
Biometric Characteristics | Minimum | Maximum | Mean | Standard Deviation | CV (%) 1 |
---|---|---|---|---|---|
Fruit length (mm) | 32.88 | 64.23 | 54.82 | 4.63 | 8.44 |
Fruit width (mm) | 28.75 | 37.64 | 33.86 | 1.73 | 5.11 |
Fruit thickness (mm) | 11.45 | 19.03 | 16.16 | 1.60 | 9.92 |
Fruit mass (g) | 2.35 | 7.33 | 4.17 | 0.86 | 20.65 |
Seed length (mm) | 14.95 | 17.39 | 16.20 | 0.47 | 2.87 |
Seed diameter (mm) | 13.68 | 17.85 | 15.60 | 0.77 | 4.91 |
Seed thickness (mm) | 9.75 | 13.10 | 11.51 | 0.66 | 5.72 |
Seed mass (g) | 0.78 | 2.14 | 1.51 | 0.22 | 14.44 |
SV | DF | Mean Squares 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
G (%) | NS (%) | GSI | MGT (Days) | SHL (cm) | RSL (cm) | SDM (g) | RDM (g) | ||
Potential (P) | 4 | 1906.4 ** | 9867.6 ** | 2.07 ** | 77.76 ** | 23.89 ** | 26.19 ** | 0.003 ** | 0.0004 ** |
Mass (M) | 1 | 229.6 ns | 608.4 ** | 0.28 ns | 31.93 ** | 5.78 ** | 0.64 ns | 0.001 ** | 0.0002 ** |
P × M | 4 | 229.6 ** | 222.4 ** | 0.01 ns | 2.64 ** | 0.87 ns | 1.59 * | 0.00003 ns | 0.0001 ** |
Residual | 30 | 24.4 | 30.3 | 0.08 | 0.55 | 0.57 | 0.53 | 0.00004 | 0.00001 |
CV (%) | 5.8 | 9.4 | 18.5 | 4.2 | 19.0 | 17.1 | 14.6 | 20.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.H.C.S.; Silva, J.N.d.; Almeida, L.G.A.d.; Silva, E.L.F.d.; Souza, A.d.G.; Alves, E.U. Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress? Seeds 2025, 4, 33. https://doi.org/10.3390/seeds4030033
Silva JHCS, Silva JNd, Almeida LGAd, Silva ELFd, Souza AdG, Alves EU. Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress? Seeds. 2025; 4(3):33. https://doi.org/10.3390/seeds4030033
Chicago/Turabian StyleSilva, João Henrique Constantino Sales, Joyce Naiara da Silva, Luís Gustavo Alves de Almeida, Eduardo Luã Fernandes da Silva, Aline das Graças Souza, and Edna Ursulino Alves. 2025. "Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress?" Seeds 4, no. 3: 33. https://doi.org/10.3390/seeds4030033
APA StyleSilva, J. H. C. S., Silva, J. N. d., Almeida, L. G. A. d., Silva, E. L. F. d., Souza, A. d. G., & Alves, E. U. (2025). Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress? Seeds, 4(3), 33. https://doi.org/10.3390/seeds4030033