Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = 3D-printed graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16704 KB  
Article
TiO2, GO, and TiO2/GO Coatings by APPJ on Waste ABS/PMMA Composite Filaments Filled with Carbon Black, Graphene, and Graphene Foam: Morphology, Wettability, Thermal Stability, and 3D Printability
by Alejandra Xochitl Maldonado Pérez, Alma Delfina Arenas Flores, José de Jesús Pérez Bueno, Maria Luisa Mendoza López, Yolanda Casados Mexicano, José Luis Reyes Araiza, Alejandro Manzano-Ramírez, Salomón Ramiro Vásquez García, Nelly Flores-Ramírez, Carlos Montoya Suárez and Edain Belén Pérez Mendoza
Polymers 2025, 17(24), 3263; https://doi.org/10.3390/polym17243263 - 9 Dec 2025
Viewed by 311
Abstract
This work presents a multifactorial strategy for reusing waste thermoplastics and generating multifunctional filaments for additive manufacturing. Acrylonitrile–butadiene–styrene (ABS) waste and commercial poly(methyl methacrylate) (PMMA) were compounded with carbon black (CB), graphene (G), or graphene foam (GF) at different loadings and extruded into [...] Read more.
This work presents a multifactorial strategy for reusing waste thermoplastics and generating multifunctional filaments for additive manufacturing. Acrylonitrile–butadiene–styrene (ABS) waste and commercial poly(methyl methacrylate) (PMMA) were compounded with carbon black (CB), graphene (G), or graphene foam (GF) at different loadings and extruded into composite filaments. The aim is to couple filler-induced bulk modifications with atmospheric pressure plasma jet (APPJ) surface coatings of TiO2 and graphene oxide (GO) to obtain waste-derived filaments with tunable morphology, wettability, and thermal stability for advanced 3D-printed architectures. The filaments were subsequently coated with TiO2 and/or GO using an APPJ process, which tailored surface wettability and enabled the formation of photocatalytically relevant interfaces. Digital optical microscopy and SEM revealed that CB, G, and GF were reasonably well dispersed in both polymer matrices but induced distinct surface and cross-sectional morphologies, including a carbon-rich outer crust in ABS and filler-dependent porosity in PMMA. For ABS composites, static contact-angle measurements show that APPJ coatings broaden the apparent wettability window from ~60–80° for uncoated filaments to ~40–50° (TiO2/GO) up to >90° (GO), corresponding to a ≈150% increase in contact-angle span. For PMMA/CB composites, TiO2/GO coatings expand the accessible contact-angle range to ~15–125° while maintaining surface energies around 50 mN m−1. TGA/DSC analyses confirm that the composites and coatings remain thermally stable within typical extrusion and APPJ processing ranges, with graphene showing only ≈3% mass loss over the explored temperature range, compared with ≈65% for CB and ≈10% for GF. Fused deposition modeling trials verify the printability and dimensional fidelity of ABS-based composite filaments, whereas PMMA composites were too brittle for reliable FDM printing. Overall, combining waste polymer reuse, tailored carbonaceous fillers, and APPJ TiO2/GO coatings provides a versatile route to design surface-engineered filaments for applications such as photocatalysis, microfluidics, and soft robotics within a circular polymer manufacturing framework. Full article
Show Figures

Graphical abstract

17 pages, 4235 KB  
Article
Additive Manufacturing of Graphene Oxide/Sodium Alginate–Cotton Microfiber Composite Hydrogels: Structure, Properties, and Adsorption Performance
by Nickolly B. V. Serafim, Caroline M. B. de Araujo, Margarida S. C. A. Brito, Yaidelin A. Manrique, Cláudia G. Silva, Marcos G. Ghislandi, Jose L. Sanchez-Salvador, Angeles Blanco, Jorge V. F. L. Cavalcanti, Maurício A. da Motta Sobrinho and Alexandre F. P. Ferreira
J. Compos. Sci. 2025, 9(12), 673; https://doi.org/10.3390/jcs9120673 - 4 Dec 2025
Viewed by 441
Abstract
The high use and improper disposal of chloroquine (CQ) during the COVID-19 pandemic have significantly increased its presence in water bodies, representing an environmental risk. Adsorption is one of the most-used treatments to remove recalcitrant compounds, although there is still a lack of [...] Read more.
The high use and improper disposal of chloroquine (CQ) during the COVID-19 pandemic have significantly increased its presence in water bodies, representing an environmental risk. Adsorption is one of the most-used treatments to remove recalcitrant compounds, although there is still a lack of efficient biosorbents. This work aimed to develop an efficient biosorbent using additive manufacturing (AM) to synthesize bionanocomposite hydrogels based on cellulose fibers, sodium alginate (SA), and graphene oxide (GO) for CQ adsorption. The hydrogels were characterized by mechanical, morphological, and physicochemical techniques. Results show that increasing GO content and reducing water contributed to higher yield stress, which is important for maintaining shape fidelity during the printing. SEM images evidenced thin GO layers interacting with the polymer matrix and cellulose fibers, resulting in 3D disordered porous microstructures. The adsorption capacity of the 3D-printed hydrogel samples for aqueous CQ was analyzed by evaluating the pH effect, contact time, and the adsorption equilibrium isotherms, showing notorious potential for CQ removal, with maximum adsorption capacity of ~25 mg∙g−1 at 25 °C. Results show that the tested formulations were stable for producing hydrogels and efficient on chloroquine adsorption, revealing their potential as novel adsorbents for removing emerging organic pollutants from water. Full article
Show Figures

Graphical abstract

12 pages, 1750 KB  
Article
Laser-Fabricated GO/ZIF-67 Hybrid Nanocomposites for High-Performance 3D-Printed Supercapacitors
by Mahshid Mokhtarnejad, Erick L. Ribeiro, Karen Y. Patino Jaimes, Mariana Milano-Benitez and Bamin Khomami
Nanoenergy Adv. 2025, 5(4), 20; https://doi.org/10.3390/nanoenergyadv5040020 - 4 Dec 2025
Viewed by 226
Abstract
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor [...] Read more.
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor applications. By tuning LASiS parameters, we precisely controlled framework size, morphology, and crystallinity, enabling sustainable and scalable production. The incorporation of GO during synthesis markedly enhances the uniform dispersion of ZIF-67 frameworks, minimizing aggregation and establishing interconnected conductive pathways via strong π-π stacking interactions. Following thermal reduction at 250 °C, the Co/ZIF-67–rGO composites exhibit outstanding electrochemical performance, achieving a specific capacitance of 1152 Fg−1 at 1 Ag−1 in a three-electrode configuration, driven by the synergistic combination of pseudocapacitive cobalt centers and double-layer capacitance from rGO. Structural analyses confirm the preservation of ZIF crystallinity and robust interfacial integration with the graphene sheets. Embedding these nanocomposites into fully 3D-printed supercapacitors yields a specific capacitance of 875 Fg−1, demonstrating their suitability for additive manufacturing despite minor increases in interfacial resistance. The 3D-printed supercapacitor devices delivered an energy density of 77.7 Wh/kg at a power density of 399.6 W/kg. Collectively, these results highlight the potential of LASiS-engineered MOF-based nanocomposites as scalable, high-performance materials for next-generation energy storage devices. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

21 pages, 19895 KB  
Article
Polymer-BN Composites as Thermal Interface Materials for Lithium-Ion Battery Modules: Experimental and Simulation Insights
by Sajib Kumar Mohonta, Shinto Mundackal Francis, Andrew Ferebee, Gajendra Bohara, Pooja Puneet, Yi Ding and Ramakrishna Podila
Batteries 2025, 11(12), 431; https://doi.org/10.3390/batteries11120431 - 22 Nov 2025
Viewed by 872
Abstract
Efficient thermal management is critical for the safety and performance of lithium-ion battery (LIB) systems, particularly under high C-rate charge–discharge cycling. Here, we investigate two classes of polymer composite thermal interface materials (TIMs): graphene-PLA (GPLA) fabricated via 3D printing and boron nitride nanoplatelets [...] Read more.
Efficient thermal management is critical for the safety and performance of lithium-ion battery (LIB) systems, particularly under high C-rate charge–discharge cycling. Here, we investigate two classes of polymer composite thermal interface materials (TIMs): graphene-PLA (GPLA) fabricated via 3D printing and boron nitride nanoplatelets (BN)-loaded thermoplastic polyurethane (TPU) composites with 20 and 40 wt.% BN content. To understand cooling dynamics, we developed a simple analytical model based on Newtonian heat conduction, predicting an inverse relationship between the cooling rate and the TIM thermal diffusivity. We validated this model experimentally using a six-cell LIB module equipped with active liquid cooling, and complemented it with finite-element simulations in COMSOL Multiphysics incorporating experimentally derived parameters. Across all approaches, analytical, numerical, and experimental, we observed excellent agreement in predicting the temperature decay profiles and inter-cell temperature differentials (ΔT). Charge–discharge cycling studies at varying C-rates demonstrated that high-diffusivity TIMs enable faster cooling but require careful design to minimize lateral thermal gradients. Our results establish that an ideal TIM must simultaneously support rapid vertical heat sinking and effective lateral thermal diffusion to ensure thermal uniformity. Among the studied materials, the 40% BN–60% TPU composite achieved the best overall performance, highlighting the potential of BN filler-engineered polymer composites for scalable thermal management in next-generation battery systems. Full article
(This article belongs to the Special Issue Thermal Management System for Lithium-Ion Batteries: 2nd Edition)
Show Figures

Figure 1

15 pages, 2571 KB  
Article
Multiscale Ion-Electron Transport in 3D-Printed Hierarchically Porous Full Batteries
by Teng Wang, Lei Feng, Bohua Su, Xiaocong Tian and Yan Zhao
Nanomaterials 2025, 15(21), 1680; https://doi.org/10.3390/nano15211680 - 5 Nov 2025
Cited by 1 | Viewed by 604
Abstract
The rapid advancement of next-generation energy storage technologies demands advanced manufacturing strategies that offer structural precision, scalability, and compositional tunability. Three-dimensional (3D) printing has emerged as a transformative approach to constructing energy storage architectures. In this work, we report a 3D-printed LiCoO2 [...] Read more.
The rapid advancement of next-generation energy storage technologies demands advanced manufacturing strategies that offer structural precision, scalability, and compositional tunability. Three-dimensional (3D) printing has emerged as a transformative approach to constructing energy storage architectures. In this work, we report a 3D-printed LiCoO2//Li4Ti5O12 full battery featuring a hierarchically porous and conductive reduced graphene oxide-carbon nanotubes (rGO-CNTs) framework that enables desirable ion-electron transport. The resulting full cells exhibit a high capacity of 151.4 mAh g−1 at the rate of 0.1 C, superior rate performance, and outstanding cycling stability, maintaining 97.1% capacity after 3000 cycles. Furthermore, the fully printed cell successfully powers a digital stopwatch, demonstrating its practical applicability for devices. This study presents a structural and compositional study for constructing high-performance customizable 3D-printed batteries, advancing the digital manufacturing of next-generation energy systems. Full article
Show Figures

Figure 1

16 pages, 5621 KB  
Article
Optimized 3D-Printed Polylactic Acid/Graphene Oxide Scaffolds for Enhanced Bone Regeneration
by Jung-Tae Lee, Dajung Lee, Ye-Seul Jung, Sung-Ho Lee, Sungtae Kim, Bongju Kim and Dong-Wook Han
Bioengineering 2025, 12(11), 1192; https://doi.org/10.3390/bioengineering12111192 - 1 Nov 2025
Cited by 1 | Viewed by 2458
Abstract
Background: Three-dimensional (3D) printed scaffolds have emerged as promising tools for bone regeneration, but the optimal structural design and pore size remain unclear. Polylactic acid (PLA) reinforced with graphene oxide (GO) offers enhanced mechanical and biological performance, yet systematic evaluation of architecture and [...] Read more.
Background: Three-dimensional (3D) printed scaffolds have emerged as promising tools for bone regeneration, but the optimal structural design and pore size remain unclear. Polylactic acid (PLA) reinforced with graphene oxide (GO) offers enhanced mechanical and biological performance, yet systematic evaluation of architecture and pore size is limited. Methods: Two scaffold architectures (lattice-type and dode-type) with multiple pore sizes were fabricated using UV-curable PLA/GO resin. Physical accuracy, porosity, and mechanical properties were assessed through compression and fatigue testing. Based on in vitro screening, four pore sizes (930 μm, 690 μm, 558 μm, 562 μm) within the dode-type structure were analyzed. The 558 μm and 562 μm scaffolds, showing distinct fracture thresholds, were further evaluated in rat and rabbit calvarial defect models for inflammation and bone regeneration. Results: In vitro testing revealed that while 930 μm and 690 μm scaffolds exhibited superior compressive strength, the 562 μm scaffold showed a unique critical fracture behavior, and the 558 μm scaffold offered comparable stability with higher resistance to premature failure. In vivo studies confirmed excellent biocompatibility in both groups, with early bone formation favored in the 558 μm scaffold and more continuous and mature bone observed in the 562 μm scaffold at later stages. Conclusions: This stepwise strategy—from structural design to pore size screening and preclinical validation—demonstrates that threshold-level mechanical properties can influence osteogenesis. PLA/GO scaffolds optimized at 558 μm and 562 μm provide a translationally relevant balance between mechanical stability and biological performance for bone tissue engineering. Full article
(This article belongs to the Special Issue Advanced 3D-Printed Biomaterials in Dentistry)
Show Figures

Figure 1

23 pages, 7181 KB  
Article
Characteristics of the Mesostructure of 3D-Printed PLA/GNP Composites
by Mingju Lei, Pengfei Liu, Caiyun Niu, Yiyi Xu, Qiaowen Li, Xueru Liang and Hongfeng Chen
J. Compos. Sci. 2025, 9(11), 585; https://doi.org/10.3390/jcs9110585 - 1 Nov 2025
Viewed by 421
Abstract
This study investigates the influence of 3D printing process parameters on the mesoscopic structure of polylactic acid/graphene nanoplatelet (PLA/GNP) composites. A computational fluid dynamics (CFD) multiphase flow model was developed to simulate the deposition, flow, and solidification behavior of the molten composite during [...] Read more.
This study investigates the influence of 3D printing process parameters on the mesoscopic structure of polylactic acid/graphene nanoplatelet (PLA/GNP) composites. A computational fluid dynamics (CFD) multiphase flow model was developed to simulate the deposition, flow, and solidification behavior of the molten composite during the printing process. The effects of nozzle temperature (180–220 °C) and printing speed (30–50 mm/s) on the filament morphology, porosity, surface roughness, dimensional accuracy, and tensile strength of the printed parts were systematically examined. The accuracy of the model was validated by comparing simulation results with experimental data from scanning electron microscopy (SEM) observations and mechanical tests. The findings reveal that a higher nozzle temperature and a lower printing speed result in a flatter filament cross-section, which effectively reduces porosity and surface roughness, thereby enhancing print quality. Furthermore, a skewed deposition configuration achieves a denser structure and superior surface quality compared to an aligned configuration. The research uncovered a critical trade-off between dimensional accuracy and mechanical properties: low-temperature, low-speed conditions favor dimensional accuracy, whereas high-temperature, high-speed conditions improve tensile strength. A comprehensive analysis identified an optimal processing window at a nozzle temperature of 210–215 °C and a printing speed of 30–35 mm/s. This window balances performance, enabling the fabrication of composite parts with both high tensile strength (approximately 56 MPa) and excellent dimensional accuracy (root mean square deviation below 0.18 mm). This study provides a theoretical basis and process guidance for the application of 3D printing for high-performance PLA/GNP composites. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

30 pages, 8522 KB  
Article
Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models
by Sundarasetty Harishbabu, Nashmi H. Alrasheedi, Borhen Louhichi, Santosh Kumar Sahu and Quanjin Ma
Polymers 2025, 17(21), 2894; https://doi.org/10.3390/polym17212894 - 29 Oct 2025
Viewed by 733
Abstract
This study investigates the optimization and prediction of mechanical properties in 3D-printed PLA composites reinforced with graphene nanoplatelets (GNP). The effects of GNP content (0, 2, and 5 wt.%), nozzle temperature (190–210 °C), print speed (20–60 mm/s), and layer thickness (0.15–0.35 mm) on [...] Read more.
This study investigates the optimization and prediction of mechanical properties in 3D-printed PLA composites reinforced with graphene nanoplatelets (GNP). The effects of GNP content (0, 2, and 5 wt.%), nozzle temperature (190–210 °C), print speed (20–60 mm/s), and layer thickness (0.15–0.35 mm) on tensile strength, Young’s modulus, and hardness were analyzed using a central composite design, at three print orientations (0°, 45°, and 90°). Compared to pure PLA, the incorporation of 5 wt.% GNP led to a 67% improvement in tensile strength, a 205% increase in Young’s modulus, and a 44% enhancement in hardness. Advanced machine learning models, such as XGBoost and Gaussian Process Regression, were employed for prediction, with R2 values exceeding 0.99 and MAPE below 4%. The models were validated using K-Fold Cross-Validation (K = 5), ensuring reliable and robust predictions while preventing overfitting. SHAP (Shapley Additive exPlanations) analysis indicated that GNP composition and layer thickness were the most influential factors, with SHAP values ranging between ±0.75. The Gaussian Process model outperformed both Linear Regression and XGBoost, achieving the highest R2 of 0.9900 ± 0.0021, the lowest MSE (0.6593 ± 0.1054), RMSE (0.812 ± 0.323), MAE (0.6755 ± 0.1123), MAPE (3.157% ± 0.320), and RRMSE (3.409% ± 0.513), highlighting its superior predictive accuracy and stability. This integrated methodology, combining experimental optimization, ANOVA, and interpretable machine learning, presents a promising and potentially robust strategy for optimizing the mechanical performance of GNP-reinforced PLA composites, emphasizing their potential for high-performance engineering applications. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites, 2nd Edition)
Show Figures

Figure 1

32 pages, 6328 KB  
Article
A Combined Experimental, Theoretical, and Simulation Approach to the Effects of GNPs and MWCNTs on Joule Heating Behavior of 3D Printed PVDF Nanocomposites
by Giovanni Spinelli, Rosella Guarini, Rumiana Kotsilkova, Evgeni Ivanov and Vladimir Georgiev
Polymers 2025, 17(21), 2835; https://doi.org/10.3390/polym17212835 - 24 Oct 2025
Viewed by 611
Abstract
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction [...] Read more.
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction on both electrical and thermal conductivity was systematically assessed using a Design of Experiments (DoE) approach. Response Surface Methodology (RSM) was employed to derive an analytical relationship linking conductivity values to filler loading, revealing clear trends and interaction effects. Among all tested formulations, the composite containing 6 wt% of GNPs exhibited the highest performance in terms of thermal response and electrical conductivity, reaching a steady-state temperature of 88.1 °C under an applied voltage of just 4 V. This optimal formulation was further analyzed through multiphysics simulations, validated against experimental data and theoretical predictions, to evaluate its effectiveness for potential practical applications—particularly in de-icing systems leveraging Joule heating. The integrated experimental–theoretical–numerical workflow proposed herein offers a robust strategy for guiding the development and optimization of next-generation polymer nanocomposites for thermal management technologies. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

23 pages, 2355 KB  
Review
Environmentally Friendly PLA-Based Conductive Composites: Electrical and Mechanical Performance
by Nassima Naboulsi, Fatima Majid and Mohamed Louzazni
J. Compos. Sci. 2025, 9(10), 571; https://doi.org/10.3390/jcs9100571 - 16 Oct 2025
Cited by 2 | Viewed by 1232
Abstract
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its [...] Read more.
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its printability, PLA is briefly compared to other commonly used thermoplastics in additive manufacturing. The review then examines the incorporation of conductive fillers such as carbon black, carbon nanotubes, graphene, and metal particles into the PLA matrix, with a particular focus on the percolation threshold and its effect on conductivity. Critical challenges such as filler dispersion, agglomeration, and conductivity anisotropy are also highlighted. Recent results are summarized to identify promising formulations that combine improved electrical performance with acceptable mechanical integrity, while also emphasizing the structural and morphological characteristics that govern these properties. Finally, potential applications in the fields of electronics, biomedicine, energy, and electromagnetic shielding are discussed. From an overall perspective, the review highlights that while PLA-based conductive composites show great potential for sustainable functional materials, further progress is needed to improve reproducibility, optimize processing parameters, and ensure reliable large-scale applications. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 1786
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Cited by 2 | Viewed by 4157
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

30 pages, 6580 KB  
Article
Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products
by Ana Kuprešanin, Marija Pavlović, Ljiljana Šašić Zorić, Milinko Perić, Stefan Jarić, Teodora Knežić, Ljiljana Janjušević, Zorica Novaković, Marko Radović, Mila Djisalov, Nikola Kanas, Jovana Paskaš and Zoran Pavlović
Biosensors 2025, 15(9), 584; https://doi.org/10.3390/bios15090584 - 5 Sep 2025
Viewed by 1338
Abstract
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in [...] Read more.
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in genetically modified (GM) plants, combining the loop-mediated isothermal amplification (LAMP) method with electrodes functionalized by two-dimensional (2D) nanomaterials. The sensor design exploits the high surface area and excellent conductivity of reduced graphene oxide, Ti3C2Tx, and molybdenum disulfide (MoS2) to enhance signal transduction. Furthermore, we used a “green synthesis” method for Ti3C2Tx preparation that eliminates the use of hazardous hydrofluoric acid (HF) and hydrochloric acid (HCl), providing a safer and more sustainable approach for nanomaterial production. Within this framework, the performance of various custom-fabricated electrodes, including laser-patterned gold leaf films, physical vapor deposition (PVD)-deposited gold electrodes, and screen-printed gold electrodes, is evaluated and compared with commercial screen-printed gold electrodes. Additionally, gold and carbon electrodes were electrochemically covered by gold nanoparticles (AuNPs), and their properties were compared. Several electrochemical methods were used during the DNA detection, and their importance and differences in excitation signal were highlighted. Electrochemical properties, sensitivity, selectivity, and reproducibility are characterized for each electrode type to assess the influence of fabrication methods and material composition on sensor performance. The developed biosensing systems exhibit high sensitivity, specificity, and rapid response, highlighting their potential as practical tools for on-site GMO screening and regulatory compliance monitoring. This work advances electrochemical nucleic acid detection by integrating environmentally-friendly nanomaterial synthesis with robust biosensing technology. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

18 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 - 31 Aug 2025
Viewed by 1396
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
Show Figures

Figure 1

30 pages, 2009 KB  
Review
Innovative Smart Materials in Restorative Dentistry
by Roxana Ionela Vasluianu, Livia Bobu, Iulian-Costin Lupu, Magda Antohe, Bogdan Petru Bulancea, Antonia Moldovanu, Ovidiu Stamatin, Catalina Cioloca Holban and Ana Maria Dima
J. Funct. Biomater. 2025, 16(9), 318; https://doi.org/10.3390/jfb16090318 - 30 Aug 2025
Cited by 1 | Viewed by 2187
Abstract
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting [...] Read more.
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting bone integration. AgNP-polymers effectively combat S. mutans and C. albicans but require controlled dosing (<0.3 wt% in PMMA) to avoid cytotoxicity. Chitosan coatings enable pH-triggered drug release, disrupting acidic biofilms. Emerging innovations like quaternary ammonium compounds, graphene oxide hybrids, and 4D-printed hydrogels offer on-demand antimicrobial and regenerative functions. However, clinical translation depends on addressing cytotoxicity, standardizing antibiofilm testing (≥3-log CFU/mL reduction), and ensuring long-term efficacy. These smart materials pave the way for self-defending restorations, merging infection control with tissue regeneration. Future advancements may integrate AI-driven design for multifunctional, immunomodulatory dental solutions. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

Back to TopTop