Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Fabrication of Samples
2.4. Tensile Test
2.5. Hardness Test
2.6. Analysis of Variance
2.7. Machine Learning
2.7.1. Linear Regression
2.7.2. Extreme Gradient Boosting (XG Boosting)
2.7.3. Gaussian Process (GP)
2.7.4. SHapley Additive exPlanations (SHAP)
3. Results and Discussion
3.1. Experimental Design
| Run | (F1) (Wt.%) | (F2) (°C) | (F3) (mm/s) | (F4) (Deg.) | (F5) (mm) | Tensile Strength (MPa) | Young’s Modulus (MPa) | Hardness (HV) | 
|---|---|---|---|---|---|---|---|---|
| E1 | Pure PLA | 200 | 40 | 45 | 0.25 | 25.80 | 866.68 | 65.40 | 
| E2 | 5 | 190 | 20 | 90 | 0.35 | 34.80 | 1558.83 | 83.90 | 
| E3 | Pure PLA | 190 | 20 | 0 | 0.15 | 29.20 | 813.14 | 65.30 | 
| E4 | 2 | 200 | 40 | 0 | 0.25 | 24.60 | 655.11 | 65.80 | 
| E5 | 5 | 210 | 20 | 90 | 0.15 | 33.10 | 2064.15 | 82.20 | 
| E6 | 5 | 210 | 60 | 0 | 0.15 | 43.10 | 1418.12 | 77.90 | 
| E7 | 2 | 200 | 40 | 90 | 0.25 | 24.40 | 561.55 | 52.40 | 
| E8 | 5 | 210 | 20 | 0 | 0.35 | 37.90 | 2041.56 | 76.40 | 
| E9 | 2 | 200 | 40 | 45 | 0.25 | 18.80 | 408.96 | 62.60 | 
| E10 | Pure PLA | 210 | 60 | 90 | 0.15 | 28.50 | 1499.22 | 66.00 | 
| E11 | 2 | 200 | 40 | 45 | 0.35 | 14.10 | 509.71 | 75.10 | 
| E12 | Pure PLA | 210 | 60 | 0 | 0.35 | 17.20 | 759.56 | 80.60 | 
| E13 | 2 | 200 | 20 | 45 | 0.25 | 18.40 | 488.46 | 89.80 | 
| E14 | Pure PLA | 210 | 20 | 90 | 0.35 | 26.70 | 2647.26 | 90.25 | 
| E15 | 2 | 190 | 40 | 45 | 0.25 | 18.60 | 254.75 | 94.30 | 
| E16 | 2 | 210 | 40 | 45 | 0.25 | 15.50 | 737.27 | 82.70 | 
| E17 | 2 | 200 | 60 | 45 | 0.25 | 13.70 | 624.19 | 79.20 | 
| E18 | 2 | 200 | 40 | 45 | 0.15 | 13.00 | 1797.28 | 51.40 | 
| E19 | 5 | 200 | 40 | 45 | 0.25 | 21.60 | 1056.32 | 76.00 | 
| E20 | 5 | 190 | 60 | 90 | 0.15 | 21.40 | 767.72 | 70.20 | 
| E21 | Pure PLA | 190 | 60 | 90 | 0.35 | 15.40 | 458.54 | 62.90 | 
| E22 | 5 | 190 | 60 | 0 | 0.35 | 28.20 | 1546.76 | 77.00 | 
3.2. Tensile Test
3.3. Hardness Test
3.4. Analysis of Variance
3.4.1. Tensile Strength
3.4.2. Young’s Modulus
3.4.3. Hardness Test
3.5. Machine Learning
3.5.1. Tensile Strength
3.5.2. Young’s Modulus
3.5.3. Hardness Test
3.5.4. K-Fold Cross-Validation and Correlation
4. Conclusions
- Under optimal conditions (5% GNP content, nozzle temperature 210 °C, print speed 20 mm/s, and layer thickness 0.35 mm), the mechanical properties of PLA/GNP composites were significantly enhanced, showing a 67% improvement in tensile strength, a 205% increase in Young’s modulus, and a 40% improvement in hardness compared to pure PLA. These results were calculated relative to pure PLA as the baseline for comparison.
- The regression models produced an R2 of 99.35% and an Adjusted R2 of 97.3% securing highly predictive reliability. While high R2 values suggest a strong model fit, it is essential to acknowledge that overfitting can occur, particularly with small datasets. These models were validated using K-Fold Cross-Validation (K = 5), ensuring robust predictions and minimizing overfitting.
- Gaussian Process Regression and XGBoost demonstrated superior performance under the tested conditions, each exceeding R2 = 0.99 and achieving MAPE values below 4%. The Gaussian Process Regression model achieved an R2 of 0.9900 ± 0.0021, and XGBoost showed an R2 of 0.9716 ± 0.0103. These models demonstrated superior performance compared to linear regression, providing better predictive accuracy for the mechanical properties of PLA/GNP composites.
- SHAP feature importance analysis confirmed that GNP composition and layer thickness are the most influential contributors to the prediction of mechanical properties, with SHAP values reaching ±0.75, highlighting their critical roles in mechanical optimization.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nattukallingal, M.N.; Ran, Z.; Abass, A. A Material-Recycling Unit for the Fused Deposition Modelling of Three-Dimensional Printing Systems. Appl. Sci. 2023, 13, 7515. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Khajepour, M.; Bayati, A.; Mirasadi, K.; Yousefi, M.A.; Shegeft, A.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; et al. Advancing sustainable shape memory polymers through 4D printing of polylactic acid-polybutylene adipate terephthalate blends. Eur. Polym. J. 2024, 216, 113289. [Google Scholar] [CrossRef]
- Shahroodi, Z.; Momeni, V.; Moshkriz, A.; Rajabifar, N.; Darvishi, R. Mechanical and Morphological Perspectives on PLA-Based Thermoplastic Vulcanizates (TPVs): A Brief Review. Macromol. Mater. Eng. 2025, 310, 2400209. [Google Scholar] [CrossRef]
- Paul, A.; Sreedevi, K.; Sharma, S.S.; Anjana, V.N. Polylactic Acid (PLA). In Handbook of Biopolymers; Thomas, S., AR, A., Jose Chirayil, C., Thomas, B., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Agrawal, K.; Bhat, A.R. Advances in 3D printing with eco-friendly materials: A sustainable approach to manufacturing. RSC Sustain. 2025, 3, 2582–2604. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, S.; Ravichandran, D.; Ramanathan, A.; Sobczak, M.T.; Sacco, A.F.; Patil, D.; Thummalapalli, S.V.; Pulido, T.V.; Lancaster, J.N.; et al. 3D-Printed Polymeric Biomaterials for Health Applications. Adv. Healthc. Mater. 2025, 14, 2402571. [Google Scholar] [CrossRef]
- Jash, C.; Birla, P.N.; Naveenraj, R.; Shinde, M.D.; Waghulde, K.B.; Rane, S.B. Solution chemistry-assisted preparation of ZnO NPs–PLA nanocomposites and their filaments for fused filament fabrication 3D printing process. Prog. Addit. Manuf. 2024, 10, 2505–2518. [Google Scholar] [CrossRef]
- Dou, H.; Cheng, Y.; Ye, W.; Zhang, D.; Li, J.; Miao, Z.; Rudykh, S. Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites. Materials 2020, 13, 3850. [Google Scholar] [CrossRef]
- Arora, N.; Dua, S.; Choudhary, V.; Singh, S.K.; Senthilkumar, T. Mechanical properties of novel PLA composite infused with betel nut waste biocarbon for sustainable 3D printing. Compos. Commun. 2025, 53, 102188. [Google Scholar] [CrossRef]
- Kilinc, F.B.; Bozaci, E.; Kilinc, A.C.; Turkoglu, T. Effect of Atmospheric Plasma Treatment on Mechanical Properties of 3D-Printed Continuous Aramid Fiber/PLA Composites. Polymers 2025, 17, 397. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Singh, J.; Singh, M.; Singh, G.; Parmar, A.S.; Chaudhary, S. Graphene oxide/polylactic acid composites with enhanced electrical and mechanical properties for 3D-printing materials. J. Mol. Struct. 2025, 1329, 141420. [Google Scholar] [CrossRef]
- Awwad, K.Y.; Yousif, B.F.; Fallahnezhad, K.; Saleh, K.; Zeng, X. Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites. Friction 2021, 9, 856–875. [Google Scholar] [CrossRef]
- Arunkumar, P.; Balaji, D.; Radhika, N.; Rajeshkumar, L.; Mavinkere Rangappa, S.; Siengchin, S. Effect of infill pattern on mechanical properties of 3D printed PLA-Zn composites for drone frame structures: A topology optimization integrated application study. Results Eng. 2025, 25, 104107. [Google Scholar] [CrossRef]
- Sutar, H.; Mishra, B.; Senapati, P.; Murmu, R.; Sahu, D. Mechanical, Thermal, and Morphological Properties of Graphene Nanoplatelet-Reinforced Polypropylene Nanocomposites: Effects of Nanofiller Thickness. J. Compos. Sci. 2021, 5, 24. [Google Scholar] [CrossRef]
- Peixoto, T.; Nunes, J.; Lopes, M.A.; Marinho, E.; Proença, M.F.; Lopes, P.E.; Paiva, M.C. Poly(Lactic acid) composites with few layer graphene produced by noncovalent chemistry. Polym. Compos. 2022, 43, 8409–8425. [Google Scholar] [CrossRef]
- Gharehbaghi, H.; Shojaei, A.; Sadeghzadeh, M.; Farrokhabadi, A. Residual stiffness and strength analysis of fatigue behavior in a 3D-printed honeycomb structure of continuous glass fiber-reinforced polylactic acid (PLA) composite. Compos. Part. C 2025, 16, 100552. [Google Scholar] [CrossRef]
- Tezel, T.; Kovan, V.; Ozenc, M. Enhancing mechanical properties of 3D-printed PLA composites via topology optimization and nickel coating. Polym.-Plast. Technol. Mater. 2025, 64, 1798–1805. [Google Scholar] [CrossRef]
- Sztorch, B.; Pakuła, D.; Frydrych, M.; Gąsiorek, M.; Szatkowska, A.; Brzęczek-Szafran, Z.; Wyrzykowski, D.; Kloskowski, M.; Pikus, S. SH-SSQ as a modifier for superior mechanical properties and improved plasticity of 3D printed PLA. Sci. Rep. 2025, 15, 7779. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, M.; Saravanan, R.; Sathish, T. Optimization of processing parameters for enhanced tensile performance of 3D-printed TCNP reinforced PLA composites. Results Eng. 2025, 26, 104562. [Google Scholar] [CrossRef]
- Seo, J.-S.; Kim, D.-H.; Jung, H.-S.; Kim, H.-D.; Choi, J.; Kim, M.; Baeck, S.-H.; Shim, S.-E. Effect of the Particle Size and Layer Thickness of GNP Fillers on the Dielectric Properties and Actuated Strain of GNP–PDMS Composites. Polymers 2022, 14, 3824. [Google Scholar] [CrossRef] [PubMed]
- Khalifah Mahameru, R.D.; Faizin, A.K.; Lamura, M.D.P.; Lestari, W.D. Optimization of 3D Printing Parameters for Enhanced PLA Tensile Strength Using the Taguchi Method. Int. J. Automot. Mech. Eng. 2025, 22, 12035–12047. [Google Scholar] [CrossRef]
- Sahu, S.K.; Sundarasetty, H. Experimental and Computational Study on the Tensile and Flexural Properties of Polylactic Acid Filled with Boron Nitride Nanoplatelets. Fract. Struct. Integr. 2025, 19, 211–224. [Google Scholar] [CrossRef]
- Sritharan, R.; Taklimi, S.R.; Ghazinezami, A.; Askari, D. The chemical functionalization advantages of carbon nano heli-coil reinforcements for multifunctional polymeric nanocomposites. J. Compos. Mater. 2025, 59, 1705–1720. [Google Scholar] [CrossRef]
- Uddin, M.S.; Sidek, M.F.R.; Faizal, M.A.; Ghomashchi, R.; Pramanik, A. Evaluating Mechanical Properties and Failure Mechanisms of Fused Deposition Modeling Acrylonitrile Butadiene Styrene Parts. J. Manuf. Sci. Eng. 2017, 139, 081018. [Google Scholar] [CrossRef]
- Sapre, M.; Jatti, A.V.; Khedkar, N.K.; Jatti, V.S. Mechanical Properties of 3D-Printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor. Appl. Syst. Innov. 2022, 5, 112. [Google Scholar] [CrossRef]
- Pernica, J.; Vodák, M.; Šarocký, R.; Šustr, M.; Dostál, P.; Cerny, M.; Dobrocky, D. Mechanical Properties of Recycled Polymer Materials in Additive Manufacturing. Manuf. Technol. 2022, 22, 200–203. [Google Scholar] [CrossRef]
- Sarangi, S.S.; Lavakumar, A.; Singh, P.; Katiyar, P.K.; Ray, R. Indentation size effect in steels with different carbon contents and microstructures. Mater. Sci. Technol. 2022, 39, 338–346. [Google Scholar] [CrossRef]
- Ghorbal, G.B.; Tricoteaux, A.; Thuault, A.; Louis, G.; Chicot, D. Comparison of conventional Knoop and Vickers hardness of ceramic materials. J. Eur. Ceram. Soc. 2017, 37, 2531–2535. [Google Scholar] [CrossRef]
- Mung’au, M.; Waititu, H.W.; Cornelious, N.O. Application of central composite design to minimize product variability in iron sheet production process. Int. J. Stat. Appl. Math. 2024, 9, 34–39. [Google Scholar] [CrossRef]
- Zheng, M.; Wen, Q.; Xu, F.; Wu, D. Regional Forest Carbon Stock Estimation Based on Multi-Source Data and Machine Learning Algorithms. Forests 2025, 16, 420. [Google Scholar] [CrossRef]
- Khalfa, A.; Manai, L.; Mchara, W. Advanced artificial intelligence model for solar irradiance forecasting for solar electric vehicles. Int. J. Dyn. Control 2025, 13, 1–21. [Google Scholar] [CrossRef]
- Gergonne, J.D. The application of the method of least squares to the interpolation of sequences. Hist. Math. 1974, 1, 439–447. [Google Scholar] [CrossRef]
- Li, X.; Tian, Z.; Zhang, X.; Ren, W.; Chen, Y.; Li, Y.; Li, X.; Chen, Z. A Fusion XGBoost Approach for Large-Scale Monitoring of Soil Heavy Metal in Farmland Using Hyperspectral Imagery. Agronomy 2025, 15, 676. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Lin, Z. Improving soil moisture prediction using Gaussian process regression. Smart Agric. Technol. 2025, 11, 100905. [Google Scholar] [CrossRef]
- Ponce-Bobadilla, A.V.; Schmitt, V.; Maier, C.S.; Mensing, S.; Stodtmann, S. Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin. Transl. Sci. 2024, 17, e70056. [Google Scholar] [CrossRef]
- Lei, M.; Wei, Q.; Li, M.; Zhang, J.; Yang, R.; Wang, Y. Numerical Simulation and Experimental Study the Effects of Process Parameters on Filament Morphology and Mechanical Properties of FDM 3D Printed PLA/GNPs Nanocomposite. Polymers 2022, 14, 3081. [Google Scholar] [CrossRef]
- Muckley, E.S.; Saal, J.E.; Meredig, B.; Roper, C.S.; Martin, J.H. Interpretable models for extrapolation in scientific machine learning. Digit. Discov. 2023, 2, 1425–1435. [Google Scholar] [CrossRef]
- Ma, Q.; Yusof, N.H.M.; Sahu, S.K.; Song, Y.; Radzuan, N.A.M.; Sun, B.; Nasution, A.Y.; Kumar, A.P.; Rejab, M.R.M. Bio-Inspired Thin-Walled Straight and Tapered Tubes with Variable Designs Subjected to Multiple Impact Angles for Building Constructions. Buildings 2025, 15, 620. [Google Scholar] [CrossRef]
- Ma, Q.; Rejab, M.R.M.; Sahu, S.K.; Song, Y.; Ng, L.F.; Kumar, A.P. Experimental study on composite spherical-roof contoured-core (SRCC) sandwich panels under the V-shaped quasi-static indentation loading. Vacuum 2024, 227, 113457. [Google Scholar] [CrossRef]




















| S.No | Factor | Minimum | Maximum | 
|---|---|---|---|
| 1 | Filler Composition (F1) | 0.00 wt.% | 5.00 wt.% | 
| 2 | Temperature (F2) | 190 °C | 210 °C | 
| 3 | Print Speed (F3) | 20 mm/s | 60 mm/s | 
| 4 | Print Angle (F4) | 0° (no rotation in the infill orientation) | 90° | 
| 5 | Layer Thickness (F5) | 0.15 mm | 0.35 mm | 
| Source | DF | Seq SS | Adj MS | F-Value | p-Value | 
|---|---|---|---|---|---|
| Model | 16 | 1440.93 | 90.06 | 47.77 | 0.0002 | 
| Composition (F1) | 1 | 15.74 | 15.74 | 8.35 | 0.0342 | 
| Temperature (F2) | 1 | 0.1397 | 0.1397 | 0.0741 | 0.7963 | 
| Print Speed (F3) | 1 | 1.72 | 1.72 | 0.9097 | 0.3840 | 
| print angle (F4) | 1 | 0.5178 | 0.5178 | 0.2746 | 0.6226 | 
| Layer Thickness (F5) | 1 | 3.32 | 3.32 | 1.76 | 0.2416 | 
| F1*F2 | 1 | 83.92 | 83.92 | 44.51 | 0.0011 | 
| F1*F3 | 1 | 25.17 | 25.17 | 13.35 | 0.0147 | 
| F1*F4 | 1 | 13.14 | 13.14 | 6.97 | 0.0460 | 
| F1*F5 | 1 | 36.53 | 36.53 | 19.37 | 0.0070 | 
| F2*F5 | 1 | 21.59 | 21.59 | 11.45 | 0.0196 | 
| F3*F4 | 1 | 45.46 | 45.46 | 24.11 | 0.0044 | 
| F3*F5 | 1 | 145.36 | 145.36 | 77.10 | 0.0003 | 
| F4*F5 | 1 | 36.18 | 36.18 | 19.19 | 0.0072 | 
| F12 | 1 | 150.40 | 150.40 | 79.77 | 0.0003 | 
| F42 | 1 | 170.80 | 170.80 | 90.59 | 0.0002 | 
| F52 | 1 | 26.30 | 26.30 | 13.95 | 0.0135 | 
| Residual | 5 | 9.43 | 1.89 | ||
| Cor Total | 21 | 1450.35 | |||
| R2 = 99.35% | R2(adj) = 97.27% | ||||
| Source | DF | Seq SS (104) | Adj MS (104) | F-Value | p-Value | 
|---|---|---|---|---|---|
| Model | 15 | 879.7 | 58.64 | 40.41 | <0.0001 | 
| Composition (F1) | 1 | 5.171777 | 5.171777 | 3.56 | 0.108 | 
| Temperature (F2) | 1 | 12.8 | 12.8 | 8.82 | 0.025 | 
| Print Speed (F3) | 1 | 1.094886 | 1.094886 | 0.7545 | 0.4185 | 
| Print angle (F4) | 1 | 1.006589 | 1.006589 | 0.6936 | 0.4368 | 
| Layer Thickness (F5) | 1 | 91.47 | 91.47 | 63.03 | 0.0002 | 
| F1*F2 | 1 | 17.66 | 17.66 | 12.17 | 0.013 | 
| F1*F3 | 1 | 39.48 | 39.48 | 27.2 | 0.002 | 
| F1*F4 | 1 | 17.2 | 17.2 | 11.85 | 0.0138 | 
| F1*F5 | 1 | 37.16 | 37.16 | 25.61 | 0.0023 | 
| F2*F3 | 1 | 77.94 | 77.94 | 53.71 | 0.0003 | 
| F2*F5 | 1 | 27.75 | 27.75 | 19.12 | 0.0047 | 
| F3*F4 | 1 | 65.87 | 65.87 | 45.39 | 0.0005 | 
| F4*F5 | 1 | 43.36 | 43.36 | 29.88 | 0.0016 | 
| F12 | 1 | 28.33 | 28.33 | 19.52 | 0.0045 | 
| F52 | 1 | 83.45 | 83.45 | 57.5 | 0.0003 | 
| Residual | 6 | 8.707293 | 1.451216 | ||
| Cor Total | 21 | 888.4 | 58.64 | ||
| R2 = 99.02% | R2 (adj.) = 96.57% | ||||
| Source | DF | Seq. SS | Adj. MS | F-Value | p-Value | 
|---|---|---|---|---|---|
| Model | 12 | 2412.19 | 201.02 | 4.69 | 0.0134 | 
| Composition (F1) | 1 | 338.68 | 338.68 | 7.89 | 0.0204 | 
| Temperature (F2) | 1 | 0.4817 | 0.4817 | 0.0112 | 0.9179 | 
| Print Speed (F3) | 1 | 140.52 | 140.52 | 3.28 | 0.1038 | 
| Print angle (F4) | 1 | 9.13 | 9.13 | 0.2129 | 0.6555 | 
| Layer Thickness (F5) | 1 | 503.53 | 503.53 | 11.74 | 0.0076 | 
| F1*F5 | 1 | 339.54 | 339.54 | 7.91 | 0.0203 | 
| F2*F3 | 1 | 187.56 | 187.56 | 4.37 | 0.0661 | 
| F2*F4 | 1 | 207.06 | 207.06 | 4.83 | 0.0556 | 
| F22 | 1 | 610.25 | 610.25 | 14.22 | 0.0044 | 
| F32 | 1 | 335.49 | 335.49 | 7.82 | 0.0208 | 
| F42 | 1 | 494.63 | 494.63 | 11.53 | 0.0079 | 
| F52 | 1 | 243.79 | 243.79 | 5.68 | 0.0410 | 
| Residual | 9 | 386.12 | 42.90 | ||
| Cor Total | 21 | 2798.31 | |||
| R2 = 86.20% | R2(adj) = 67.80% | ||||
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harishbabu, S.; Alrasheedi, N.H.; Louhichi, B.; Sahu, S.K.; Ma, Q. Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models. Polymers 2025, 17, 2894. https://doi.org/10.3390/polym17212894
Harishbabu S, Alrasheedi NH, Louhichi B, Sahu SK, Ma Q. Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models. Polymers. 2025; 17(21):2894. https://doi.org/10.3390/polym17212894
Chicago/Turabian StyleHarishbabu, Sundarasetty, Nashmi H. Alrasheedi, Borhen Louhichi, Santosh Kumar Sahu, and Quanjin Ma. 2025. "Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models" Polymers 17, no. 21: 2894. https://doi.org/10.3390/polym17212894
APA StyleHarishbabu, S., Alrasheedi, N. H., Louhichi, B., Sahu, S. K., & Ma, Q. (2025). Optimization and Prediction of Mechanical Properties of Additively Manufactured PLA/GNP Composites via Response Surface Methodology and Machine Learning Models. Polymers, 17(21), 2894. https://doi.org/10.3390/polym17212894
 
        





 
       