Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = 3D archaeology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 63497 KiB  
Article
From Earth to Interface: Towards a 3D Semantic Virtual Stratigraphy of the Funerary Ara of Ofilius Ianuarius from the Via Appia Antica 39 Burial Complex
by Matteo Lombardi and Rachele Dubbini
Heritage 2025, 8(8), 305; https://doi.org/10.3390/heritage8080305 - 30 Jul 2025
Viewed by 137
Abstract
This paper presents the integrated study of the funerary ara of Ofilius Ianuarius, discovered within the burial complex of Via Appia Antica 39, and explores its digital stratigraphic recontextualisation through two 3D semantic workflows. The research aims to evaluate the potential of [...] Read more.
This paper presents the integrated study of the funerary ara of Ofilius Ianuarius, discovered within the burial complex of Via Appia Antica 39, and explores its digital stratigraphic recontextualisation through two 3D semantic workflows. The research aims to evaluate the potential of stratigraphic 3D modelling as a tool for post-excavation analysis and transparent archaeological interpretation. Starting from a set of georeferenced photogrammetric models acquired between 2023 and 2025, the study tests two workflows: (1) an EMF-based approach using the Extended Matrix, Blender, and EMviq for stratigraphic relationship modelling and online visualisation; (2) a semantic integration method using the .gltf format and the CRMArcheo Annotation Tool developed in Blender, exported to the ATON platform. While both workflows enable accurate 3D documentation, they differ in their capacity for structured semantic enrichment and interoperability. The results highlight the value of combining reality-based models with semantically linked stratigraphic proxies and suggest future directions for linking archaeological datasets, ontologies, and interactive digital platforms. This work contributes to the ongoing effort to foster transparency, reproducibility, and accessibility in virtual archaeological reconstruction. Full article
(This article belongs to the Section Digital Heritage)
Show Figures

Figure 1

25 pages, 7677 KiB  
Article
Seismic Assessment and Strengthening of a Load-Bearing Masonry Structure Considering SSI Effects
by Kyriaki G. Amarantidou, Panagiota S. Katsimpini, George Papagiannopoulos and George Hatzigeorgiou
Appl. Sci. 2025, 15(15), 8135; https://doi.org/10.3390/app15158135 - 22 Jul 2025
Viewed by 341
Abstract
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a [...] Read more.
This article examines the seismic assessment and strengthening of a traditional load-bearing masonry structure subjected to strong motion data, with particular emphasis on the effects of soil–structure interaction (SSI). The case study is the Archaeological Museum of Lemnos (AML)—a three-storey building with a composite load-bearing system of timber-framed stone masonry. Over time, the structure has undergone irreversible modifications, primarily involving reinforced concrete (RC) interventions. The building’s seismic performance was evaluated using two finite element models developed in the SAP2000 software (v. 25.3.00). The first model simulates the original structure, strengthened by grout injections, while the second represents the current condition of the structural system following RC additions. Soil–structure interaction was also investigated, given that the local soil is classified as Category D according to Eurocode 8 (EC8). Each model was analyzed under two different support conditions: fixed-base and SSI-inclusive. A suite of appropriate accelerograms was applied to both models, in compliance with Eurocode 8 using the SeismoMatch software, and linear time-history analyses were conducted. The results underscore the significant impact of SSI on the increase of peak tensile stress and interstorey drift ratios (IDRs), and highlight the influence of different strengthening techniques on the seismic response of historic load-bearing masonry structures. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

22 pages, 3348 KiB  
Article
Comparison of NeRF- and SfM-Based Methods for Point Cloud Reconstruction for Small-Sized Archaeological Artifacts
by Miguel Ángel Maté-González, Roy Yali, Jesús Rodríguez-Hernández, Enrique González-González and Julián Aguirre de Mata
Remote Sens. 2025, 17(14), 2535; https://doi.org/10.3390/rs17142535 - 21 Jul 2025
Viewed by 322
Abstract
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 [...] Read more.
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 cm, characterized by complex geometries and reflective surfaces that pose challenges for conventional recording methods. To address the limitations of traditional methods without resorting to the high costs associated with laser scanning, this study explores NeRF and GS as cost-effective and efficient alternatives. A comprehensive experimental framework was established, incorporating ground-truth data obtained using a metrological articulated arm and a rigorous quantitative evaluation based on root mean square (RMS) error, Chamfer distance, and point cloud density. The results indicate that while NeRF outperforms GS in terms of geometric fidelity, both techniques still exhibit lower accuracy compared to SfM, particularly in preserving fine geometric details. Nonetheless, NeRF demonstrates strong potential for rapid, high-quality 3D documentation suitable for visualization and dissemination purposes in cultural heritage. These findings highlight both the current capabilities and limitations of neural rendering techniques for archaeological documentation and suggest promising future research directions combining AI-based models with traditional photogrammetric pipelines. Full article
Show Figures

Figure 1

25 pages, 4179 KiB  
Article
A Reflection on the Conservation of Waterlogged Wood: Do Original Artefacts Truly Belong in Public Museum Collections?
by Miran Erič, David Stopar, Enej Guček Puhar, Lidija Korat Bensa, Nuša Saje, Aleš Jaklič and Franc Solina
Heritage 2025, 8(7), 273; https://doi.org/10.3390/heritage8070273 - 9 Jul 2025
Viewed by 371
Abstract
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be [...] Read more.
The last decade has seen a transformative advancement in computational technologies, enabling the precise creation, evaluation, visualization, and reproduction of high-fidelity three-dimensional (3D) models of archaeological sites and artefacts. With the advent of 3D printing, both small- and large-scale objects can now be reproduced with remarkable accuracy and at customizable scales. Artefacts composed of organic materials—such as wood—are inherently susceptible to biological degradation and thus require extensive, long-term conservation employing costly methodologies. These procedures often raise environmental concerns and lead to irreversible alterations in the wood’s chemical composition, dimensional properties, and the intangible essence of the original artefact. In the context of public education and the dissemination of knowledge about historical technologies and objects, 3D replicas can effectively fulfill the same purpose as original artefacts, without compromising interpretative value or cultural significance. Furthermore, the digital data embedded in 3D surface and object models provides a wealth of supplementary information that cannot be captured, preserved, or documented through conventional techniques. Waterlogged wooden objects can now be thoroughly documented in 3D, enabling ongoing, non-invasive scientific analysis. Given these capabilities, it is imperative to revisit the philosophical and ethical foundations of preserving waterlogged wood and to adopt innovative strategies for the conservation and presentation of wooden artefacts. These new paradigms can serve educational, research, and outreach purposes—core functions of contemporary museums. Full article
Show Figures

Figure 1

20 pages, 28340 KiB  
Article
Rockfall Hazard Assessment for Natural and Cultural Heritage Site: Close Vicinity of Rumkale (Gaziantep, Türkiye) Using Digital Twins
by Ugur Mursal, Abdullah Onur Ustaoglu, Yasin Baskose, Ilyas Yalcin, Sultan Kocaman and Candan Gokceoglu
Heritage 2025, 8(7), 270; https://doi.org/10.3390/heritage8070270 - 8 Jul 2025
Viewed by 416
Abstract
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is [...] Read more.
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is a protected heritage site that attracts increasing numbers of visitors. Here, high-resolution photogrammetric models were generated using imagery acquired from a remotely piloted aircraft system and post-processed with ground control points to produce a spatially accurate 3D digital twin. Field-based geomechanical measurements including discontinuity orientations, joint classifications, and strength parameters were integrated with digital analyses to identify and evaluate hazardous rock blocks. Kinematic assessments conducted in the study revealed susceptibility to planar, wedge, and toppling failures. The results showed the role of lithological structure, active tectonics, and environmental factors in driving slope instability. The proposed methodology demonstrates effective use of digital twin technologies in conjunction with traditional geotechnical techniques, offering a replicable and non-invasive approach for site-scale hazard evaluation and conservation planning in heritage contexts. This work contributes to the advancement of interdisciplinary methods for geohazard-informed management of cultural landscapes. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

27 pages, 6659 KiB  
Article
Structural Failures in an Architectural Heritage Site: Case Study of the Blagoveštenje Monastery Church, Kablar, Serbia
by Jelena Ivanović-Šekularac, Neda Sokolović, Nikola Macut, Tijana Žišić and Nenad Šekularac
Buildings 2025, 15(13), 2328; https://doi.org/10.3390/buildings15132328 - 2 Jul 2025
Viewed by 394
Abstract
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built [...] Read more.
Authenticity is a core principle in conservation guidelines and a key goal of heritage preservation, especially in Serbia, where many aging objects face ongoing deterioration. The subject of this study is the church within the Blagoveštenje Monastery complex in the Ovčar-Kablar gorge, built using stone from a local quarry at the beginning of the 17th century. The inclination of the structure, observed as progressively increasing over the centuries, raises important concerns regarding its stability. This research focuses on identifying the underlying causes of this phenomenon in order to support its long-term preservation. The methods used the study are long-term in situ observations including analysis, geodetic research, 3D laser imaging, geophysical, geological, archaeological research, evaluation of current condition, determination of structural failures and their cause and monitoring the structural behavior of elements. All methods were carried out in accordance with the definition of rehabilitation measures and the protection of masonry buildings. The main contribution of this study is identifying that the church’s inclination and deviation result from the northern foundation resting on weaker soil and a deeper rock mass compared to the southern side. The research approach and findings presented in this paper can serve as a guide for future endeavors aimed at identifying the causes of deformations and the restoration and structural rehabilitation of masonry buildings as cultural heritage. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage)
Show Figures

Figure 1

16 pages, 16513 KiB  
Article
Off-Line Stacking for Multichannel GPR Processing in Clay-Rich Archaeological Sites: The Case Study of Tindari (Sicily)
by Cesare Comina, Rosina Leone, Ivan Palmisano and Andrea Vergnano
Appl. Sci. 2025, 15(13), 7157; https://doi.org/10.3390/app15137157 - 25 Jun 2025
Viewed by 251
Abstract
For archaeological studies, the expected outcome of a Ground Penetrating Radar (GPR) survey is a series of time-slices (or depth-slices) that mark the position of buried structures at different depths. The clarity of these time-slices is strongly site-dependent and is particularly worsened in [...] Read more.
For archaeological studies, the expected outcome of a Ground Penetrating Radar (GPR) survey is a series of time-slices (or depth-slices) that mark the position of buried structures at different depths. The clarity of these time-slices is strongly site-dependent and is particularly worsened in the presence of even small percentages of clay, which strongly attenuates the GPR signal. This is the condition affecting the Greek–Roman archaeological site of Tindari (Sicily, Italy). Here, we performed a multichannel GPR survey particularly focusing on a residential insula. In order to increase the signal-to-noise ratio, we tested two processing strategies: a conventional in-line stacking and a new concept of off-line stacking. This last was performed dividing spatially adjacent channels of the GPR multichannel system into groups and stacking the signals of each group at each specific location. We observed that off-line stacking improves the signal-to-noise ratio in 2D sections and time-slices quality. Comparisons showed that off-line stacking has a clear advantage over traditional in-line stacking, at least for the specific application reported in this paper. Off-line stacking of GPR multichannel systems is, therefore, simple but very effective in increasing the investigation depth, especially in challenging environments. Full article
(This article belongs to the Special Issue Ground Penetrating Radar: Data, Imaging, and Signal Analysis)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)
by Kouakou Modeste Koffi, Philippe Colomban, Christophe Petit and Kouakou Siméon Kouassi
Ceramics 2025, 8(2), 71; https://doi.org/10.3390/ceramics8020071 - 11 Jun 2025
Viewed by 1310
Abstract
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a [...] Read more.
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a soda–potash–lime flux (three compositional groups). The remaining beads are typical lead-based glass. The Raman spectra of the alumina-rich beads are quite complex due to their glass–ceramic nature, combining features similar to the vitreous phase of porcelain glaze with the presence of various crystalline phases (quartz, wollastonite, calcium phosphate, calcite). Organic residues are also observed. Colors are primarily produced by transition metal ions, although some specific pigments have also been identified. These characteristics suggest that the alumina-rich beads were manufactured by pressing followed by sintering, as described in patents by Richard Prosser (1840, UK) and Jean Félix Bapterosse (1844, France). A comparison is made with beads from scrap piles at the site of the former Bapterosse factory in Briare, France. This process represents one of the earliest examples of replacing traditional glassmaking with a ceramic process to enhance productivity and reduce costs. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

14 pages, 17880 KiB  
Proceeding Paper
Beyond the Museum: Virtual and Physical Replicas of Pompeii’s Siege Marks
by Filippo Fantini and Silvia Bertacchi
Eng. Proc. 2025, 96(1), 11; https://doi.org/10.3390/engproc2025096011 - 10 Jun 2025
Viewed by 321
Abstract
This study investigates the potential of reality-based 3D digital modeling, acquired for scientific purposes, to enhance the understanding and accessibility of ballistic imprints on Pompeii’s city walls. These impact marks, attributed to the Sullan siege of 89 BC, were caused by projectiles launched [...] Read more.
This study investigates the potential of reality-based 3D digital modeling, acquired for scientific purposes, to enhance the understanding and accessibility of ballistic imprints on Pompeii’s city walls. These impact marks, attributed to the Sullan siege of 89 BC, were caused by projectiles launched by Roman elastic torsion weapons. High-resolution models were acquired through integrated 3D survey techniques to create both virtual and physical replicas. These assets enhance museum accessibility, offering interactive digital content and tactile 3D-printed replicas for visually impaired and mobility-restricted visitors. The findings highlight the role of digital heritage in archaeological research, conservation, and public engagement, bridging the gap between academic study and inclusive cultural dissemination. Full article
Show Figures

Figure 1

20 pages, 8651 KiB  
Article
Hierarchical Modeling of Archaeological and Modern Flax Fiber: From Micro- to Macroscale
by Vasuki Rajakumaran, Johnny Beaugrand, Alessia Melelli, Mario Scheel, Timm Weitkamp, Jonathan Perrin, Alain Bourmaud, Henry Proudhon and Sofiane Guessasma
Fibers 2025, 13(6), 76; https://doi.org/10.3390/fib13060076 - 9 Jun 2025
Viewed by 913
Abstract
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a [...] Read more.
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a novel investigation into the tensile stress distribution behavior of archaeological and modern flax yarns. The finite element (FE) model is derived from 3D volumes obtained via X-ray microtomography and tensile testing in the elastic domain. At the microscale, fibers exhibit higher axial stress concentrations around surface defects and pores, particularly in regions with kink bands and lumens. At the mesoscale, fiber bundles show increased stress concentrations at inter-fiber voids and lumen, with larger bundles exhibiting greater stress heterogeneity, especially around pores and surface roughness. At the macroscale, yarns display significant stress heterogeneity, especially around microstructural defects like pores and fiber–fiber cohesion points. Aged fibers from ancient Egyptian cultural heritage in particular demonstrate large fiber discontinuities due to long-term degradation or aging. These numerical observations highlight how porosity, surface imperfections, and structural degradation increase stress concentration, leading to fiber rupture and mechanical failure. This insight reveals how aging and defects impact flax fiber performance and durability. Full article
Show Figures

Figure 1

16 pages, 5918 KiB  
Proceeding Paper
Tracing Metal Dart Impacts Through 3D Reverse Modeling on the Northern Walls of Pompeii
by Adriana Rossi and Silvia Bertacchi
Eng. Proc. 2025, 96(1), 4; https://doi.org/10.3390/engproc2025096004 - 4 Jun 2025
Viewed by 337
Abstract
This study examines the first systematic documentation of a series of small impact marks on the northern walls of Pompeii, interpreted as the result of Roman metal dart projectiles launched during the Sullan siege in 89 BC. Using high-resolution, reality-based 3D models, comparative [...] Read more.
This study examines the first systematic documentation of a series of small impact marks on the northern walls of Pompeii, interpreted as the result of Roman metal dart projectiles launched during the Sullan siege in 89 BC. Using high-resolution, reality-based 3D models, comparative analysis, and reverse modeling techniques, the research explores the hypothesis that a distinctive fan-shaped configuration of quadrangular indentations may have been produced by a repeating catapult, known as the polybolos. The integration of close-range photogrammetry, laser scanning, and digital reconstruction tools demonstrates how virtual casts and comparative modeling can contribute to archaeological interpretations of ancient projectile weaponry. Full article
Show Figures

Figure 1

11 pages, 5381 KiB  
Proceeding Paper
Primitive Shape Fitting of Stone Projectiles in Siege Weapons: Geometric Analysis of Roman Artillery Ammunition
by Silvia Bertacchi
Eng. Proc. 2025, 96(1), 3; https://doi.org/10.3390/engproc2025096003 - 3 Jun 2025
Viewed by 277
Abstract
This paper presents the documentation, study activities, and possible applications of 3D digital models for the analysis and reconstruction of some examples of spheroidal stone projectiles—launched during the Sullan siege in 89 BC—now preserved in the Archaeological Park of Pompeii. The research proposes [...] Read more.
This paper presents the documentation, study activities, and possible applications of 3D digital models for the analysis and reconstruction of some examples of spheroidal stone projectiles—launched during the Sullan siege in 89 BC—now preserved in the Archaeological Park of Pompeii. The research proposes a methodology to derive best-fitting shapes that most closely adhere to the partially reconstructed image-based geometries. This allows a comparison with the circular ballistic impact traces still present on the ashlars of the northern city walls, as discovered by archaeologists about a hundred years ago. The results facilitate more precise ballistic calculations for the reconstruction of the elastic torsion weapons and their launching power. Full article
Show Figures

Figure 1

15 pages, 53844 KiB  
Article
Disseminating the Past in 3D: O Corro dos Mouros and Its Ritual Landscape (Galicia, Spain)
by Mariluz Gil-Docampo, Rocío López-Juanes, Simón Peña-Villasenín, Pablo López-Fernández, Juan Ortiz-Sanz and María Pilar Prieto-Martinez
Appl. Sci. 2025, 15(11), 6025; https://doi.org/10.3390/app15116025 - 27 May 2025
Viewed by 417
Abstract
This research presents a methodological approach combining UAV-LiDAR technology and SfM photogrammetry for the comprehensive documentation and analysis of O Corro dos Mouros, a Bronze-to-Iron Age archaeological site in the northwest of the Iberian Peninsula. The study evaluates both the capabilities and limitations [...] Read more.
This research presents a methodological approach combining UAV-LiDAR technology and SfM photogrammetry for the comprehensive documentation and analysis of O Corro dos Mouros, a Bronze-to-Iron Age archaeological site in the northwest of the Iberian Peninsula. The study evaluates both the capabilities and limitations of this integrated approach, focusing on a recently identified Roda-type structure, characterised by circular stone architecture and funerary-ritual functionality, dating between the 15th and 3rd centuries BC. The methodology combines RTK-corrected LiDAR (150 pts/m2, ±5 cm accuracy) with 20.4 MP RGB imaging, overcoming vegetation cover while capturing surface details. The results demonstrate the superior performance of the proposed methodology compared to public LiDAR (1 m resolution), offering more detailed and precise microtopographic data of the circular structure. The approach successfully addresses three key challenges: (1) dense vegetation penetration, (2) multi-phase stratigraphic documentation, and (3) non-invasive monitoring of sensitive sites. The centimetre-accurate 3D models (publicly available via Sketchfab) provide both research-grade data for analysing construction phases and contextual relationships with nearby rock art/megaliths, and engaging visualisations for heritage interpretation. This work establishes a replicable technical framework optimised for high-resolution archaeological documentation, with direct applicability to similar ritual landscapes (hillforts, burial mounds) across the region. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
Show Figures

Figure 1

20 pages, 7933 KiB  
Article
Three-Dimensional Stability of Rocky Slopes and Identification of Hazard Zones in Monuments of Archaeological Interest: Case Study of Ancient Corinth, Greece
by Emmanouil Chatziangelis, Maria Michalopoulou, Nikolaos Depountis, Panagiotis Pelekis and Maria Agrevi
Geosciences 2025, 15(6), 199; https://doi.org/10.3390/geosciences15060199 - 26 May 2025
Viewed by 456
Abstract
The integration of new technologies across scientific disciplines, including rock slope engineering, is increasingly essential. The use of drones and advanced software tools for mapping and analyzing large rocky slopes in detail has become indispensable and highly beneficial. In this context, this paper [...] Read more.
The integration of new technologies across scientific disciplines, including rock slope engineering, is increasingly essential. The use of drones and advanced software tools for mapping and analyzing large rocky slopes in detail has become indispensable and highly beneficial. In this context, this paper examines the process and key parameters involved in generating a high-resolution 3D terrain model and evaluating rock-mass stability using advanced software tools (UgCS version 5.5.0, ArcGIS version 3.4.3, Drone2Map version 2024.2.1, DSE version 3.02, and Rocfall3D version 1.014). These technologies facilitate the identification of hazard zones on rocky slopes in monuments of archaeological interest. The evaluation of this modeling approach is conducted at the monolithic rock of Ancient Corinth (Acrocorinth), one of Greece’s most significant archaeological sites. This study focuses on assessing its vulnerability to rockfalls and identifying hazard zones. This methodology involves the development of a 3D rockfall analysis system and the implementation of a specialized hazard matrix for the quantitative assessment of rockfall risk. This approach enables the development of a decisive model for mitigating rockfall hazards, ensuring the safety of visitors in high-traffic areas such as major archaeological sites. Full article
(This article belongs to the Special Issue Sustainable Development of Rock and Geotechnical Engineering)
Show Figures

Figure 1

27 pages, 8766 KiB  
Article
Heritage in Danger: Digital Conservation and a Reserve for the Future of the Benzú Rock Shelter and Cave (Ceuta, Spain)
by Alejandro Muñoz-Muñoz, José Ramos-Muñoz, Eduardo Vijande-Vila, Juan Jesús Cantillo-Duarte, José Luis Ramírez-Amador, Salvador Domínguez-Bella, Serafín Becerra-Martín, Eduardo Molina-Piernas and Diego Fernández-Sánchez
Appl. Sci. 2025, 15(11), 5893; https://doi.org/10.3390/app15115893 - 23 May 2025
Viewed by 574
Abstract
The archaeological complex of the Benzú rock shelter and cave, located in Ceuta (Spain), represents a heritage site of significant scientific and historical value that is currently at risk due to natural processes and, in particular, the activity of a nearby quarry. This [...] Read more.
The archaeological complex of the Benzú rock shelter and cave, located in Ceuta (Spain), represents a heritage site of significant scientific and historical value that is currently at risk due to natural processes and, in particular, the activity of a nearby quarry. This site has been occupied from the Palaeolithic to the Bronze Age and consequently has been the subject of systematic research since 2002, focusing on its stratigraphic sequence, lithic technology, exploitation of marine resources, and the connection between both shores of the Strait of Gibraltar. With the aim of preserving this endangered heritage, a methodology based on advanced digital technologies such as photogrammetry, 3D laser scanning, and GNSS georeferencing has been implemented. These tools have enabled the creation of high-precision, three-dimensional models of the rock shelter and the cave, which are useful for both documentation and monitoring of their structural condition. In addition, fracture networks have been identified, revealing a high degree of geotechnical vulnerability, exacerbated by blasting activities at the nearby quarry. The project has produced a digital twin of the site in an open access format, serving not only for preventive conservation but also for its enhancement through virtual tours, augmented reality, and accessible outreach activities. This digitalization has been essential to facilitate the access to heritage, particularly in areas that are physically difficult to access. Finally, the integration of these digital resources into institutional policies for the sustainable management of heritage is proposed, highlighting the importance of interdisciplinary approaches that combine archaeology, geotechnology, and scientific communication. The experience at Benzú is presented as a replicable model for the protection, interpretation, and dissemination of heritage sites located in fragile and threatened environments. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
Show Figures

Figure 1

Back to TopTop