Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = 2D/3D perovskites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 462 KiB  
Article
Electron and Hole Doping Effects on the Magnetic Properties and Band Gap Energy of Ba2FeMoO6 and Sr2FeMoO6
by Angel T. Apostolov, Iliana N. Apostolova and Julia M. Wesselinowa
Molecules 2025, 30(14), 2987; https://doi.org/10.3390/molecules30142987 - 16 Jul 2025
Viewed by 244
Abstract
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim [...] Read more.
Using the s-d model and Green’s function theory, we investigated for the first time the electron and hole doping effects on the magnetic and optical properties of the double perovskites Ba2FeMoO6 (BFMO) and Sr2FeMoO6 (SFMO). Our aim was to find the doping ions that lead to an increase in Curie temperature TC. On the basis of a competition mechanism between spin exchange and s-d interactions, we explain at a microscopic level the decrease in magnetization M and band gap energy Eg, as well as the increase in TC of BFMO and SFMO through substitution with rare earth ions at the Ba(Sr) sites. The influence of doping with K at the Ba(Sr) and Co at the Fe sites on the magnetic properties and the band gap is also discussed. A very good qualitative coincidence with the existing experimental data was observed. Moreover, we found that both M and TC decrease with decreasing the size of BFMO and SFMO nanoparticles. Full article
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 339
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 270
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 578
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

40 pages, 4499 KiB  
Review
Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials
by Jixiang Cai, Feixing Li, Xueshuai Zhang, Jianguo Wang, Zecong Yu, Bo Feng and Youwen Li
Materials 2025, 18(13), 2999; https://doi.org/10.3390/ma18132999 - 24 Jun 2025
Viewed by 524
Abstract
Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and [...] Read more.
Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and green preparation of high-quality, complex structured 2D film materials due to its features such as maintaining the excellent stoichiometric ratio of the target, strong process flexibility, and non-polluting environment. Therefore, this paper discusses the exciting topic of PLD technology in the preparation and application of 2D film materials. Based on a systematic exposition of its basic principles and influencing factors, it provides a detailed overview of the current application status of PLD technology in the preparation of various 2D film materials such as carbides, sulfides, oxides, nitrides, and perovskites. Meanwhile, the advantages and disadvantages of PLD technology in the preparation of 2D film materials were also positively summarized, and the challenges and emerging strategies it faces in the future preparation of 2D film materials were cautiously discussed. This provides practical suggestions and reflections for the sustainable development of PLD technology in the fields of basic research, performance regulation, device development, and application of 2D film materials preparation. Full article
(This article belongs to the Special Issue Rising Stars in Additive Manufacturing)
Show Figures

Graphical abstract

13 pages, 1863 KiB  
Article
Photoluminescence and Stability of 2D Ruddlesden–Popper Halide Perovskites
by Zhilin Ren, Zhengtian Yuan, Aleksandr A. Sergeev, Ivor Lončarić, Muhammad Umair Ali, Atta Ur Rehman, Kam Sing Wong, Yanling He, Juraj Ovčar, Jasminka Popović and Aleksandra B. Djurišić
Molecules 2025, 30(13), 2716; https://doi.org/10.3390/molecules30132716 - 24 Jun 2025
Viewed by 402
Abstract
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their [...] Read more.
Two-dimensional lead halide perovskites are of significant interest for a variety of practical applications. However, the relationships between their composition and properties are not fully clear. Here we investigated photoluminescence from 2D Ruddlesden–Popper perovskites with different bulky spacer cations. Significant differences in their optical properties and stability are observed, and perovskites with benzylammonium (BZA) and phenethylammonium (PEA) were selected for more detailed investigation of the observed stability differences due to their similar structure. We find that PEA2PbI4 exhibits more narrow emission and increased stability compared to BZA2PbI4. In addition, PEA2PbI4 exhibits self-healing of defects evident from PL enhancement, which is absent for BZA2PbI4. The observed differences between perovskites with BZA and PEA spacer cations can be attributed to differences in the formation of spacer cation vacancies. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 2266 KiB  
Article
SCAPS-1D Simulation of Various Hole Transport Layers’ Impact on CsPbI2Br Perovskite Solar Cells Under Indoor Low-Light Conditions
by Chih-Hsi Peng and Yi-Cheng Lin
Solids 2025, 6(3), 31; https://doi.org/10.3390/solids6030031 - 21 Jun 2025
Viewed by 558
Abstract
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, [...] Read more.
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, our work establishes fundamental design principles for indoor photovoltaics through rigorous material property correlations. The investigation explores the influence of layer thickness and defect concentration on performance to identify optimal parameters. Through detailed energy band alignment analysis, we demonstrate that CuI achieves superior performance (PCE: 23.66%) over materials with significantly higher mobility, revealing that optimal band alignment supersedes carrier mobility under low-light conditions. Analysis of HTL and absorber layer thickness, bulk defect concentration, interface defect density, and an HTL-free scenario showed that interface defect concentration and absorber layer parameters have greater influence than HTL thickness. Remarkably, ultra-thin HTL layers (0.04 μm) maintain >99% efficiency, offering substantial cost reduction potential for large-scale manufacturing. Under optimized conditions of a 0.87 μm absorber layer thickness, defect concentration of 1015 cm−3, interface defect concentration of 109 cm−3, and CuI doping concentration of 1017 cm−3, PCE reached 28.57%, while the HTL-free structure achieved 17.6%. This study establishes new theoretical foundations for indoor photovoltaics, demonstrating that material selection criteria differ fundamentally from outdoor applications. Full article
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 361
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

14 pages, 9951 KiB  
Article
Magnetocaloric Effect of Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1) Polycrystalline Compounds
by Yuwei Li, Xiukun Hu, Qiong Wu, Yi Zhao, Hangfu Yang, Minxiang Pan and Hongliang Ge
Materials 2025, 18(12), 2884; https://doi.org/10.3390/ma18122884 - 18 Jun 2025
Viewed by 330
Abstract
This study systematically investigates the magnetic ordering and magnetocaloric properties of a series of polycrystalline compounds, Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1). X-ray powder diffraction (XRD) analysis confirms that all samples exhibit an orthorhombic perovskite structure [...] Read more.
This study systematically investigates the magnetic ordering and magnetocaloric properties of a series of polycrystalline compounds, Gd1-xDyxScO3 (x = 0, 0.1, 0.2 and 1). X-ray powder diffraction (XRD) analysis confirms that all samples exhibit an orthorhombic perovskite structure with a space group of Pbnm. The zero-field cooling and field cooling magnetization curves demonstrate a transition from antiferromagnetic to paramagnetic phases, with Néel temperatures of about 3 K for GdScO3 and 4 K for DyScO3. The doping of Dy3+ weakened long-range antiferromagnetic order and enhanced short-range magnetic disorder in GdScO3, leading to vanished antiferromagnetic transition between 2 and 100 K for the sample of x = 0.2. Using the Arrott–Noakes equation, we constructed Arrott plots to analyze the system’s critical behavior. Both the compounds with x = 0.1 and x = 0.2 conform to the 3D-Heisenberg model. These results indicate the weakened long-range antiferromagnetic order induced by Dy3+ doping. Significant maximal magnetic entropy change (−ΔSMMax) of 36.03 J/kg K at 3 K for the sample Gd0.9Dy0.1ScO3 is achieved as the magnetic field changes from 0 to 50 kOe, which is higher than that of GdScO3 (−ΔSMMax = 34.32 J/kg K) and DyScO3 (−ΔSMMax = 15.63 J/kg K). The considerable magnetocaloric effects (MCEs) suggest that these compounds can be used in the development of low-temperature magnetic refrigeration materials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

20 pages, 6010 KiB  
Article
Modulating D-Band Center of SrTiO3 by Co Doping for Boosted Peroxymonosulfate (PMS) Activation Under Visible Light
by Kaining Sun, Xinyi Yang, Fei Qi, Yingjie Liu, Lijing Wang, Bo Feng, Jiankang Yu and Guangbo Che
Molecules 2025, 30(12), 2618; https://doi.org/10.3390/molecules30122618 - 17 Jun 2025
Viewed by 320
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal [...] Read more.
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal oxide, holds potential in the field of the photocatalytic degradation of pollutants, yet its application is limited by the wide bandgap and fast carrier recombination rates. This study optimized the photocatalytic performance of SrTiO3 by regulating its electronic structure and optical properties through cobalt (Co) doping. Experimental results (TRPL, TPV, UV–Vis DRS, ESR, etc.) and DFT calculations (GGA-PBE) demonstrated that Co doping shifted the d-band center of SrTiO3 upwards, optimized the adsorption energy of SO4, enhanced the sunlight response range, and significantly improved carrier extraction efficiency. Under visible light irradiation, 2,4-dichlorophenol (2,4-DCP) could be effectively degraded within 60 min in a wide pH range. Through Fukui function calculation (B3LYP/6-31G*) and experimental characterization analysis (HPLC-MS and IC), the possible degradation pathways of 2,4-DCP and the mechanism for photocatalysis were investigated. The toxicity analysis (T.E.S.T) confirmed the reduced toxicity of the degradation products of 2,4-DCPs. This study provides a reference for the catalyst design and optimization strategy of PMS-based advanced oxidation technology. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

26 pages, 6034 KiB  
Review
Progress and Challenges of Three-Dimensional/Two-Dimensional Bilayered Perovskite Solar Cells: A Critical Review
by Ashraful Hossain Howlader and Ashraf Uddin
Nanomaterials 2025, 15(12), 876; https://doi.org/10.3390/nano15120876 - 6 Jun 2025
Viewed by 676
Abstract
Three-dimensional/two-dimensional bilayered perovskite solar cells have recently become popular for ensuring high efficiency and promising long-term stability. The 3D/2D bilayered perovskite thin film is mainly used in regular (n-i-p)-type perovskite solar cells. In this review, our discussion also focuses on the regular kind [...] Read more.
Three-dimensional/two-dimensional bilayered perovskite solar cells have recently become popular for ensuring high efficiency and promising long-term stability. The 3D/2D bilayered perovskite thin film is mainly used in regular (n-i-p)-type perovskite solar cells. In this review, our discussion also focuses on the regular kind of perovskite solar cells. In a 3D/2D bilayered perovskite thin film, the 2D perovskite layer works as a capping layer on top of the 3D perovskite thin film. The 2D capping layer heals the surface and bulk defects of the 3D perovskite thin film. The 2D layer interfaces between the 3D perovskite and hole transport layers. The 2D layer also acts as a shield against moisture and heat. This layer also inhibits ion migration between layers (3D perovskite and back contact). This review lists and investigates different organic precursors deposited as a 2D capping layer on top of the 3D perovskite thin film to explore their impact on the solar cell’s efficiency and stability. The possible challenges and remedies in growing a 2D capping layer on top of the 3D perovskite thin film are also discussed. Full article
(This article belongs to the Special Issue Metal Halide Perovskites-Based Optoelectronics: From Lab to Fab)
Show Figures

Figure 1

15 pages, 3356 KiB  
Article
Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites
by Victor C. Sousa, Bruno Dival and Willian X. C. Oliveira
Compounds 2025, 5(2), 20; https://doi.org/10.3390/compounds5020020 - 4 Jun 2025
Viewed by 782
Abstract
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr [...] Read more.
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr6] (1), (H3DETA)2[AgBr4]Br3 (2), and (H3PMDTA)[BiBr6] (3), as well as the 1D/2D mixed perovskite with minimum formula (H3PMDTA)[Ag3Br6] (4), being the last three novel materials. Compounds 1 and 3 crystallize in the orthorhombic P212121 space group and are discrete [BiBr6]3− units with the cation surrounding them. In both compounds, the bismuth(III) metal ion is found in a distorted octahedral coordination geometry. Compound 2 crystallizes in the monoclinic P21/c space group, and it is a mixed salt consisting of (H3DETA)[AgBr4] and (H3DETA)Br3, whereas the silver(I) complexes are also isolated. Finally, compound 4, which crystallizes in the orthorhombic space group Pbcn, is a combination of a 2D and 1D silver–bromide perovskite, with the cations filling the voids. The 2D structure has the minimal formula [Ag4Br7]3−, with the 1D coordination polymer [Ag2Br5]3− being both built up by a combination of bromide ions acting as tetrahedra corner and edge-sharing bridging ligands. The silver(I) in 2 and 4 is found in a tetrahedral coordination geometry. All compounds were deposited on pristine FTO glass, resulting in an increase in the contact angle from 22° to 44°, 36°, 62°, and 54° for films of 1, 2, 3, and 4, respectively. Compounds 1 and 3 were also deposited onto Cs2AgBiBr6 film, and the contact angles were observed to be the same as when deposited directly onto the FTO cover glass. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

14 pages, 2098 KiB  
Article
Surface In Situ Growth of Two-Dimensional/Three-Dimensional Heterojunction Perovskite Film for Achieving High-Performance Flexible Perovskite Solar Cells
by Zhiyu Zhang, Huijing Liu, Jing Liu, Jia Xu, Zhan’ao Tan and Jianxi Yao
Nanomaterials 2025, 15(11), 798; https://doi.org/10.3390/nano15110798 - 26 May 2025
Viewed by 438
Abstract
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to [...] Read more.
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to grow in situ two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films. Through comprehensive physicochemical characterization, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) mapping, we demonstrated that CMBACl treatment enabled the in situ growth of two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films via chemical interactions between CMBA+ cations and undercoordinated Pb2+ sites. The organic cation (CMBA+) bound to uncoordinated Pb2+ ions and residual PbI2, while the chlorine anion (Cl) filled iodine vacancies in the perovskite lattice, thereby forming a high-quality 2D/3D heterojunction structure. The CMBACl treatment effectively passivated surface defects in the perovskite films, prolonged charge carrier lifetimes, and enhanced the operational stability of the photovoltaic devices. Additionally, the hybrid 2D/3D architecture also improved energy band matching, thereby boosting charge transfer performance. The optimized flexible devices demonstrated a PCE of 23.15%, while retaining over 82% of their initial efficiency after enduring 5000 bending cycles under a 5 mm curvature radius (R = 5 mm). The unpackaged devices retained 94% of their initial efficiency after 1000 h under ambient conditions with a relative humidity (RH) of 45 ± 5%. This strategy offers practical guidelines for selecting interface passivation materials to enhance the efficiency and stability of F-PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

16 pages, 4820 KiB  
Article
Triple-Band Warm White-Light Emission from Type II Band-Aligned Aggregation-Induced Enhanced Emission Organic Cation-Incorporated Two-Dimensional Lead Iodide Perovskite
by Almaz R. Beisenbayev, Igor Ivanov-Prianichnikov, Anatoly Peshkov, Tangsulu Adil, Davit Hayrapetyan and Chang-Keun Lim
Int. J. Mol. Sci. 2025, 26(11), 5054; https://doi.org/10.3390/ijms26115054 - 24 May 2025
Viewed by 389
Abstract
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics [...] Read more.
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics poorly, restricting their efficiency as white-light emitters. This study presents a 2D lead iodide perovskite that incorporates a fluorinated π-conjugated aggregation-induced enhanced emission luminophore, FPCSA, as a bulky organic cation to create a quasi-2D perovskite. The FPCSA cation establishes a Type II energy level alignment with the lead iodide layer in the 2D perovskite, and a significant energy offset effectively suppresses charge transfer, enabling independent emission from both the organic and inorganic layers while facilitating self-trapped exciton formation. Under 315 nm UV excitation, this material demonstrates warm white-light emission with RGB triple-band photoluminescence stemming from the electronically decoupled FPCSA and perovskite layers. These findings provide a promising new method for designing efficient single-phase white-light-emitting materials for optoelectronic applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

19 pages, 4494 KiB  
Article
Spacer Loss upon 2D Ruddlesden–Popper Halide Perovskite Annealing Raises Film Properties and Solar Cell Performances
by Tao Zhu, Min Liu, Marie Cresp, Daming Zheng, Karol Vegso, Peter Siffalovic and Thierry Pauporté
Nanomaterials 2025, 15(10), 750; https://doi.org/10.3390/nano15100750 - 16 May 2025
Viewed by 512
Abstract
Using reduced-dimensional halide perovskites is emerging as a promising strategy for enhancing the stability of optoelectronic devices such as solar cells, even if their performances remain a step below those of the 3D halide perovskites. Two-dimensional Ruddlesden–Popper (2D-RP) structures are characterized by the [...] Read more.
Using reduced-dimensional halide perovskites is emerging as a promising strategy for enhancing the stability of optoelectronic devices such as solar cells, even if their performances remain a step below those of the 3D halide perovskites. Two-dimensional Ruddlesden–Popper (2D-RP) structures are characterized by the n parameter that represents the number of PbI6 layers in the spacer-separated perovskite slabs. The present study focuses on formamidinium (FA)-based 2D-RP type perovskites denoted as PMA2FAn−1PbnI3n+1 (PMA = Phenylmethylammonium or benzylammonium). We investigate the effect of n on the one step growth mechanism and the film morphology, microstructure, phase purity, and optoelectronic properties. Our findings demonstrate that the average n is not only determined by the initial spacer content in the precursor solution but also by the thermal annealing process that leads to a partial spacer loss. Depending on n, perovskite solar cells achieving a power conversion efficiency up to 21%, coupled with enhanced film stability compared to 3D perovskites have been prepared. By using MACl additive and an excess of PbI2 in the perovskite precursor solution, we have been able to achieve high efficiency and to stabilize the n = 5 perovskite solar cells. This research represents a significant stride in comprehending the formation of FA-based layered perovskites through one-step sequential deposition, enabling control over their phase distribution, composition, and orientation. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Graphical abstract

Back to TopTop