Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (87,017)

Search Parameters:
Keywords = 18O

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4475 KiB  
Article
DFT Investigation into Adsorption–Desorption Properties of Mg/Ni-Doped Calcium-Based Materials
by Wei Shi, Renwei Li, Xin Bao, Haifeng Yang and Dehao Kong
Crystals 2025, 15(8), 711; https://doi.org/10.3390/cryst15080711 (registering DOI) - 3 Aug 2025
Abstract
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) [...] Read more.
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) calculations to investigate the mechanism by which Mg and Ni doping improves the adsorption/desorption performance of CaO. The DFT results indicate that Mg and Ni doping can effectively reduce the formation energy of oxygen vacancies on the CaO surface. Mg–Ni co-doping exhibits a significant synergistic effect, with the formation energy of oxygen vacancies reduced to 5.072 eV. Meanwhile, the O2− diffusion energy barrier in the co-doped system was reduced to 2.692 eV, significantly improving the ion transport efficiency. In terms of CO2 adsorption, Mg and Ni co-doping enhances the interaction between surface O atoms and CO2, increasing the adsorption energy to −1.703 eV and forming a more stable CO32− structure. For the desorption process, Mg and Ni co-doping restructured the CaCO3 surface structure, reducing the CO2 desorption energy barrier to 3.922 eV and significantly promoting carbonate decomposition. This work reveals, at the molecular level, how Mg and Ni doping optimizes adsorption–desorption in calcium-based materials, providing theoretical guidance for designing high-performance sorbents. Full article
(This article belongs to the Special Issue Performance and Processing of Metal Materials)
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Phase Transformation Principle and Magnetite Grain Growth Law in the Magnetization Sintering Process of Oolitic Hematite Ore
by Hanquan Zhang, Xunrui Liu, Lei Xie, Tiejun Chen, Fan Yang and Bona Deng
Materials 2025, 18(15), 3649; https://doi.org/10.3390/ma18153649 (registering DOI) - 3 Aug 2025
Abstract
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law [...] Read more.
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law during the magnetization sintering of oolitic hematite ore, aiming to establish optimal conditions for efficient hematite ore to magnetite conversion. The results demonstrated that both elevated temperature and prolonged reduction duration significantly enhanced the reduction efficiency of hematite (Fe2O3) to magnetite. The optimal sintering conditions were determined to be 700 °C for 45 min, under which the magnetite content and Fe/O atomic ratio in the roasted products peaked at approximately 68% and 0.8%, respectively. However, temperatures exceeding 800 °C proved detrimental to magnetite formation, as further reduction to FeXO phases occurred. Notably, appropriate temperature elevation promoted substantial magnetite grain growth. When the sintering temperature increased from 600 °C to 700 °C, both the absolute and relative thickness of the magnetite layer exhibited remarkable enhancement, expanding from 9.52 μm to 76.76 μm and from 5.99% to 50.33%, respectively. Furthermore, comparative analysis revealed that a high sintering temperature for a short time was more effective for magnetite particle growth than a low temperature for a long time in the magnetization process of oolitic hematite ore. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2776 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 (registering DOI) - 3 Aug 2025
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
12 pages, 2862 KiB  
Article
Development of a Three-Dimensional Nanostructure SnO2-Based Gas Sensor for Room-Temperature Hydrogen Detection
by Zhilong Song, Yi Tian, Yue Kang and Jia Yan
Sensors 2025, 25(15), 4784; https://doi.org/10.3390/s25154784 (registering DOI) - 3 Aug 2025
Abstract
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H [...] Read more.
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H2 gas, which presents significant challenges for their performance and application. This study addresses these issues by introducing a novel SnO2-based sensor featuring a three-dimensional (3D) nanostructure, designed to enhance sensitivity and allow for room-temperature operation. This work lies in the use of a 3D anodic aluminum oxide (AAO) template to deposit SnO2 nanoparticles through ultrasonic spray pyrolysis, followed by modification with platinum (Pt) nanoparticles to further enhance the sensor’s response. The as-prepared sensors were extensively characterized, and their H2 sensing performance was evaluated. The results show that the 3D nanostructure provides a uniform and dense distribution of SnO2 nanoparticles, which significantly improves the sensor’s sensitivity and repeatability, especially in H2 detection at room temperature. This work demonstrates the potential of utilizing 3D nanostructures to overcome the traditional limitations of SnO2-based sensors. Full article
13 pages, 956 KiB  
Case Report
Chronic Hyperplastic Candidiasis—An Adverse Event of Secukinumab in the Oral Cavity: A Case Report and Literature Review
by Ana Glavina, Bruno Špiljak, Merica Glavina Durdov, Ivan Milić, Marija Ana Perko, Dora Mešin Delić and Liborija Lugović-Mihić
Diseases 2025, 13(8), 243; https://doi.org/10.3390/diseases13080243 (registering DOI) - 3 Aug 2025
Abstract
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic [...] Read more.
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic hyperplastic candidiasis (CHC) in a patient with psoriasis (PsO) and psoriatic arthritis (PsA) treated with SEC. CHC is a rare and atypical clinical entity. A definitive diagnosis requires biopsy of the oral mucosa for histopathological diagnosis (PHD). The differential diagnosis includes hairy tongue, hairy leukoplakia, oral lichen planus (OLP), oral lichenoid reaction (OLR), leukoplakia, frictional keratosis, morsication, oral psoriasis, syphilis, and oral lesions associated with coronavirus disease (COVID-19). In addition to the usual factors (xerostomia, smoking, antibiotics, vitamin deficiency, immunosuppression, comorbidities), the new biological therapies/immunotherapies are a predisposing factor for oral candidiasis. The therapeutic approach must be multidisciplinary and in consultation with a clinical immunologist. Dentists and specialists (oral medicine, dermatologists, rheumatologists) must be familiar with the oral adverse events of the new biological therapies. Simultaneous monitoring of patients by clinical immunology and oral medicine specialists is crucial for timely diagnosis and therapeutic intervention to avoid possible adverse events and improve quality of life (QoL). Full article
(This article belongs to the Special Issue Oral Health and Care)
27 pages, 1413 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 (registering DOI) - 3 Aug 2025
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
18 pages, 2677 KiB  
Article
Different Light Wavelengths Differentially Influence the Progression of the Hypersensitive Response Induced by Pathogen Infection in Tobacco
by Bao Quoc Tran, Anh Trung Nguyen and Sunyo Jung
Antioxidants 2025, 14(8), 954; https://doi.org/10.3390/antiox14080954 (registering DOI) - 3 Aug 2025
Abstract
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red [...] Read more.
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower H2O2 production, and up to 64% reduction in membrane damage. During the late stage of HR, catalase and ascorbate peroxidase activities peaked under green and blue LEDs, with 5- and 10-fold increases, respectively, while superoxide dismutase activity was higher under white and red LEDs. Defense-related genes CHS1, PALa, PR1, and PR2 were more strongly induced by white and red light. The plants treated with green or blue LEDs during Pst infection prompted faster degradation of phototoxic Mg-porphyrins and exhibited smaller declines in Fv/Fm, electron transport rate, chlorophyll content, and LHCB expression compared to those treated with white or red LEDs. By contrast, the induction of the chlorophyll catabolic gene SGR was 54% and 77% lower in green and blue LEDs, respectively, compared to white LEDs. This study demonstrates that light quality differentially affects Pst-mediated HR, with green and blue light more effectively suppressing HR progression, mainly by reducing oxidative stress through enhanced antioxidative capacity and mitigation of photosynthetic impairments. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 (registering DOI) - 3 Aug 2025
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

23 pages, 1894 KiB  
Article
Study on Flow and Heat Transfer Characteristics of Reheating Furnaces Under Oxygen-Enriched Conditions
by Maolong Zhao, Xuanxuan Li and Xianzhong Hu
Processes 2025, 13(8), 2454; https://doi.org/10.3390/pr13082454 (registering DOI) - 3 Aug 2025
Abstract
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow [...] Read more.
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow and heat transfer characteristics were investigated under both oxygen-enriched combustion and MILD oxy-fuel combustion. The results indicate that MILD oxy-fuel combustion promotes flue gas entrainment via high-velocity oxygen jets, leading to a substantial improvement in the uniformity of the furnace temperature field. The effect is most obvious at O2% = 31%. MILD oxy-fuel combustion significantly reduces NOx emissions, achieving levels that are one to two orders of magnitude lower than those under oxygen-enriched combustion. Under MILD conditions, the oxygen mass fraction in flue gas remains below 0.001 when O2% ≤ 81%, indicating effective dilution. In contrast, oxygen-enriched combustion leads to a sharp rise in flame temperature with an increasing oxygen concentration, resulting in a significant increase in NOx emissions. Elevating the oxygen concentration enhances both thermal efficiency and the energy-saving rate for both combustion modes; however, the rate of improvement diminishes when O2% exceeds 51%. Based on these findings, MILD oxy-fuel combustion using mixed gas or natural gas is recommended for reheating furnaces operating at O2% = 51–71%, while coke oven gas is not. Full article
14 pages, 2852 KiB  
Review
Review of Quasi-Solid Aqueous Zinc Batteries: A Bibliometric Analysis
by Zhongxiu Liu, Xiaoou Zhou, Tongyuan Shen, Miaomiao Yu, Liping Zhu, Guiyin Xu and Meifang Zhu
Batteries 2025, 11(8), 293; https://doi.org/10.3390/batteries11080293 (registering DOI) - 3 Aug 2025
Abstract
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of [...] Read more.
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of global research trends, interdisciplinary connections, or knowledge gaps. Herein, we review the research on QSAZBs via bibliometric analysis using the VOSviewer software (version 1.6.20). First, the data from qualitatively evaluated publications on QSAZBs from 2016 and 2024 are integrated. In addition, the annual trends, leading countries/regions and their international collaborations, institutional research and patent distribution, and important keyword cluster analyses in QSAZB research are evaluated. The results reveal that China dominates in terms of publication output (71.16% of total papers), and Singapore exhibits the highest citation impact (103.2 citations/paper). International collaboration networks indicate the central role of China, with strong ties to Singapore, the USA, and Australia. Keyword clustering indicates core research priorities: cathode materials (MnO2 and V2O5), quasi-solid electrolyte optimization (hydrogels and graphene composites), and interfacial stability mechanisms. By mapping global trends and interdisciplinary linkages, this work provides insights to accelerate QSAZBs’ transition from laboratory breakthroughs to grid-scale and wearable applications. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Graphical abstract

18 pages, 1812 KiB  
Review
Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy
by Manuela Malatesta and Flavia Carton
Nanomaterials 2025, 15(15), 1188; https://doi.org/10.3390/nano15151188 (registering DOI) - 3 Aug 2025
Abstract
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century [...] Read more.
Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms. It is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O3 dates back to the beginning of the 20th century and is currently based on the application of low doses, inducing a moderate oxidative stress that stimulates the antioxidant cellular defenses without causing cell damage. Low O3 doses also induce anti-inflammatory and regenerative effects, and their anticancer potential is under investigation. In addition, the oxidative properties of O3 make it an excellent antibacterial, antimycotic, and antiviral agent. Thanks to these properties, O3 is currently widely used in several medical fields. However, its chemical instability represents an application limit, and ozonated oil is the only stabilized form of medical O3. In recent years, novel O3 formulations have been proposed for their sustained and more efficient administration, based on nanotechnology. This review offers an overview of the nanocarriers designed for the delivery of medical O3, and of their therapeutic applications. The reviewed articles demonstrate that research is active and productive, though it is a rather new entry in the nanotechnological field. Liposomes, nanobubbles, nanoconstructed hydrogels, polymeric nanoparticles, and niosomes were designed to deliver O3 and have been proven to exert antiseptic, anticancer, and pro-regenerative effects when administered in vitro and in vivo. Improving the therapeutic administration of O3 through nanocarriers is a just-started challenge, and multiple prospects may be foreseen. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

18 pages, 1143 KiB  
Article
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 (registering DOI) - 3 Aug 2025
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, [...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
20 pages, 2618 KiB  
Article
Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
by Liina Onga, Niina Dulova and Eneliis Kattel-Salusoo
Water 2025, 17(15), 2303; https://doi.org/10.3390/w17152303 (registering DOI) - 3 Aug 2025
Abstract
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, [...] Read more.
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, Fe2+ and UVA-light activated peroxo compounds were applied for the degradation and mineralization of a glucocorticoid, 25.5 µM DXM, in ultrapure water (UPW). The treatment efficacies were validated in real spring water (SW). A 120 min target pollutant degradation followed pseudo first-order reaction kinetics when an oxidant/Fe2+ dose 10/1 or/and UVA irradiation were applied. Acidic conditions (a pH of 3) were found to be more favorable for DXM oxidation (≥99%) regardless of the activated peroxo compound. Full conversion of DXM was not achieved, as the maximum TOC removal reached 70% in UPW by the UVA/H2O2/Fe2+ system (molar ratio of 10/1) at a pH of 3. The higher efficacy of peroxymonosulfate-based oxidation in SW could be induced by chlorine, bicarbonate, and carbonate ions; however, it is not applicable for peroxydisulfate and hydrogen peroxide. Overall, consistently higher efficacies for HO-dominated oxidation systems were observed. The findings from the current paper could complement the knowledge of oxidative removal of low-level DXM in real water matrices. Full article
Show Figures

Figure 1

16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Figure 1

26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

Back to TopTop