Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = 16-DPA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3418 KiB  
Article
Forces and Moments Generated by Direct Printed Aligners During Bodily Movement of a Maxillary Central Incisor
by Michael Lee, Gabriel Miranda, Julie McCray, Mitchell Levine and Ki Beom Kim
Appl. Sci. 2025, 15(15), 8554; https://doi.org/10.3390/app15158554 (registering DOI) - 1 Aug 2025
Viewed by 152
Abstract
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An [...] Read more.
The aim of this study was to compare the forces and moments exerted by thermoformed aligners (TFMs) and direct printed aligners (DPAs) on the maxillary left central incisor (21) and adjacent teeth (11, 22) during lingual bodily movement of tooth 21. Methods: An in vitro setup was used to quantify forces and moments on three incisors, which were segmented and fixed onto multi-axis force/moment transducers. TFM were fabricated using 0.76 mm-thick single-layer PET-G foils (ATMOS; American Orthodontics, Sheboygan, WI, USA) and multi-layer TPU foils (Zendura FLX; Bay Materials LLC, Fremont, CA, USA). DPAs were fabricated using TC-85 photopolymer resin (Graphy Inc., Seoul, Republic of Korea). Tooth 21 was planned for bodily displacement by 0.25 mm and 0.50 mm, and six force and moment components were measured on it and the adjacent teeth. Results: TC-85 generated lower forces and moments with fewer unintended forces and moments on the three teeth. TC-85 exerted 0.99 N and 1.53 N of mean lingual force on tooth 21 for 0.25 mm and 0.50 mm activations, respectively; ATMOS produced 3.82 N and 7.70 N, and Zendura FLX produced 3.00 N and 8.23 N of mean lingual force for the same activations, respectively. Bodily movement could not be achieved. Conclusions: The force systems generated by clear aligners are complex and unpredictable. DPA using TC-85 produced lower, more physiological force levels with fewer side effects, which may increase the predictability of tooth movement and enhance treatment outcome. The force levels generated by TFM were considered excessive and not physiologically compatible. Full article
(This article belongs to the Special Issue Advances in Orthodontics and Dentofacial Orthopedics)
Show Figures

Figure 1

29 pages, 9521 KiB  
Article
The Chemical Fingerprint of Smokeless Powders: Insights from Headspace Odor Volatiles
by Miller N. Rangel, Andrea Celeste Medrano, Haylie Browning, Shawna F. Gallegos, Sarah A. Kane, Nathaniel J. Hall and Paola A. Prada-Tiedemann
Powders 2025, 4(3), 21; https://doi.org/10.3390/powders4030021 - 29 Jul 2025
Viewed by 700
Abstract
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, [...] Read more.
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, one of the most difficult challenges for canine handlers is the optimal selection of training aids to choose as odor targets to allow for broad generalization. Several studies have been underway to understand the chemical odor characterization of smokeless powders, which can help provide canine teams with essential information to understand odor signatures from powder varieties. In this study, a SPME method optimization was conducted using unburned smokeless powders to provide a chemical odor profile assessment. Concurrently, statistical analysis using PCA and Spearman’s rank correlations was performed to explore whether odor volatile composition depicted associations between and within powder brands. The results showed that a longer extraction time (24 h) was optimal across all powders, as this yielded higher compound abundance and number of extracted odor volatiles. The optimal SPME fiber varied per powder, depicting the complexity of powder composition. There were 66 highly frequent compounds among the 18 powders, including 2-ethyl-1-hexanol, diphenylamine (DPA), and dibutyl phthalate. Principal component analysis (PCA) showed that while powders may be of the same type (single/double base), they can still portray clustering differences across and within brands. The Spearman’s rank correlation within powder type suggested that the double-base powders had a slightly higher similarity index when compared with the single-base powder types. Understanding the volatile odor profiles of various smokeless powders can enhance canine training by informing the selection of effective training aids and supporting odor generalization. Full article
Show Figures

Figure 1

33 pages, 10985 KiB  
Article
Integrating AHP-Entropy and IPA Models for Strategic Rural Revitalization: A Case Study of Traditional Villages in Northeast China
by Chenghao Wang, Guangping Zhang and Yunying Zhai
Buildings 2025, 15(14), 2475; https://doi.org/10.3390/buildings15142475 - 15 Jul 2025
Viewed by 307
Abstract
Traditional villages are critical to preserving cultural heritage and promoting sustainable rural development. This study evaluates the development potential of 47 traditional villages in Jilin Province from the perspectives of spatial planning, architectural conservation, and rural real estate revitalization. A Development Potential Assessment [...] Read more.
Traditional villages are critical to preserving cultural heritage and promoting sustainable rural development. This study evaluates the development potential of 47 traditional villages in Jilin Province from the perspectives of spatial planning, architectural conservation, and rural real estate revitalization. A Development Potential Assessment (DPA) framework is constructed based on five dimensions: geographical position, cultural resources, socio-economic factors, natural ecology, and living environment. The AHP-entropy weighting method is applied to ensure objectivity in scoring, while kernel density analysis and coefficient of variation techniques identify spatial patterns and internal disparities. To further inform strategic planning and targeted investment, an Importance–Performance Analysis (IPA) model is introduced, aligning resource advantages with development performance. Key findings include the following: (1) significant spatial heterogeneity, with higher potential concentrated in the southeast and lower levels in the northwest; (2) cultural and socio-economic dimensions are the most influential factors in differentiating development types; and (3) a subset of villages shows a disconnect between resource endowment and realized potential, indicating the need for tailored design interventions and investment strategies. This research offers a visual and data-driven basis for differentiated revitalization strategies, integrating urban science methods, architectural thinking, and real estate development logic. It supports refined policy implementation, spatial design decisions, and the activation of underutilized rural assets through context-sensitive planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

9 pages, 2619 KiB  
Communication
Irradiation Effects of As-Fabricated and Recrystallized 12Cr ODS Steel Under Dual-Ion Beam at 973 K
by Jingjie Shen and Kiyohiro Yabuuchi
Materials 2025, 18(14), 3246; https://doi.org/10.3390/ma18143246 - 10 Jul 2025
Viewed by 295
Abstract
The microstructure evolution and hardness variations of as-fabricated and recrystallized 12Cr oxide dispersion strengthened (ODS) steel after dual-ion (6.4 MeV Fe3+ and energy-degraded 1 MeV He+) irradiation at 973 K up to 10.6 displacements per atom (dpa) at peak damage [...] Read more.
The microstructure evolution and hardness variations of as-fabricated and recrystallized 12Cr oxide dispersion strengthened (ODS) steel after dual-ion (6.4 MeV Fe3+ and energy-degraded 1 MeV He+) irradiation at 973 K up to 10.6 displacements per atom (dpa) at peak damage and 8900 appm He are investigated. Results show that the oxide particles slightly shrink in the as-fabricated specimen, while they are stable in the recrystallized specimen. Furthermore, larger helium bubbles are trapped at the grain boundaries in the as-fabricated specimen, and the size of helium bubbles in the grains is almost the same for both as-fabricated and recrystallized specimens, indicating that reduction of grain boundaries would reduce the potential nucleation sites and suppress the helium segregation. Moreover, no obvious hardening occurs in the as-fabricated specimen, whereas the hardness increases a little in the recrystallized specimen. Based on the barrier model, the barrier strength factor of helium bubbles is calculated. The value is 0.077, which is much smaller and suggests that helium bubbles seem not to significantly induce irradiation hardening. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

15 pages, 1205 KiB  
Article
Omega-3 Polyunsaturated Fatty Acids (PUFAs) and Diabetic Peripheral Neuropathy: A Pre-Clinical Study Examining the Effect of Omega-3 PUFAs from Fish Oil, Krill Oil, Algae or Pharmaceutical-Derived Ethyl Esters Using Type 2 Diabetic Rats
by Eric Davidson, Oleksandr Obrosov, Lawrence Coppey and Mark Yorek
Biomedicines 2025, 13(7), 1607; https://doi.org/10.3390/biomedicines13071607 - 30 Jun 2025
Viewed by 486
Abstract
Background and Objectives: We have previously reported that omega-3 polyunsaturated fatty acids (PUFAs) derived from fish oil (FO) is an effective treatment for type 1 and type 2 diabetes neural and vascular complications. As omega-3 PUFAs become more widely used as a [...] Read more.
Background and Objectives: We have previously reported that omega-3 polyunsaturated fatty acids (PUFAs) derived from fish oil (FO) is an effective treatment for type 1 and type 2 diabetes neural and vascular complications. As omega-3 PUFAs become more widely used as a nutritional and disease modifying supplement an important question to be addressed is what is the preferred source of omega-3 PUFAs? Methods: Using a type 2 diabetic rat model and early and late intervention protocols we examined the effect of dietary treatment with omega-3 PUFAs derived from menhaden (fish) oil (MO), krill oil (KO), algal oils consisting primarily of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or combination of EPA + DHA, or pharmaceutical-derived ethyl esters of EPA, DHA or combination of EPA + DHA. Nerve related endpoints included motor and sensory nerve conduction velocity, heat sensitivity of the hind paw, intraepidermal nerve density, cornea nerve fiber length, and cornea sensitivity. Vascular reactivity to acetylcholine and calcitonin gene-related peptide by epineurial arterioles that provide blood to the sciatic nerve was also examined. Results: The dose of each omega-3 PUFA supplement increased the content of EPA, docosapentaenoic acid (DPA), and/or DHA in red blood cell membranes, serum and liver. Diabetes caused a significant decrease of 30–50% of neural function and fiber occupancy of the skin and cornea and vascular reactivity. Treatment with MO, KO or the combination of EPA + DHA provided through algal oil or ethyl esters provided significant improvement of each neural endpoint and vascular function. Algal oil or ethyl ester of EPA alone was the least effective with algal oil or ethyl ester of DHA alone providing benefit that approached combination therapies for some endpoints. Conclusions: We confirm that omega-3 PUFAs are an effective treatment for DPN and sources other than fish oil are similarly effective. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

20 pages, 10315 KiB  
Article
Atomistic Observation of Defect Generation and Microstructural Evolution in Polycrystalline FeCrAl Alloys Under Different Irradiation Conditions
by Huan Yao, Changwei Wu, Tianzhou Ye, Pengfei Wang, Junmei Wu, Yingwei Wu and Ping Chen
Nanomaterials 2025, 15(13), 988; https://doi.org/10.3390/nano15130988 - 26 Jun 2025
Viewed by 286
Abstract
FeCrAl alloys have garnered considerable attention as candidate cladding materials for light water reactors due to their promising mechanical stability and irradiation resistance. However, the response characteristics of these alloys to irradiation and the associated mechanisms remain poorly understood. This study provides atomistic [...] Read more.
FeCrAl alloys have garnered considerable attention as candidate cladding materials for light water reactors due to their promising mechanical stability and irradiation resistance. However, the response characteristics of these alloys to irradiation and the associated mechanisms remain poorly understood. This study provides atomistic insights into irradiation-induced defect formation and microstructural evolution in polycrystalline FeCrAl. Using the LAMMPS molecular dynamics code, displacement cascades were simulated under irradiation doses ranging from 0.05 dpa to 0.5 dpa while evaluating the dependencies on temperature and grain size. The interaction between pre-existing defects and irradiation-induced microstructures (point defects, dislocations, clusters, etc.) was visualized and analyzed visually and quantitatively. The results indicate that the irradiation dose increases the number of surviving Frenkel pairs, whereas elevated temperatures reduce their stability. The cluster fraction of interstitials increases with both irradiation dose and temperature, while that of vacancies decreases at higher temperatures due to their lower stability. In the initial phase of the displacement cascade, the density and distribution of dislocations evolve continuously until the annealing stage. The dislocation density at the end of the annealing phase decreases with increasing dose and temperature. The thickness of grain boundaries increases with the irradiation dose, and the regions adjacent to grain boundaries transform into an amorphous state at higher dose levels. As both the irradiation dose and temperature increase, the amorphization process accelerates, and smaller grain size leads to a greater degree of amorphization. Full article
(This article belongs to the Special Issue Theoretical and Computational Studies of Nanocrystals)
Show Figures

Graphical abstract

9 pages, 1664 KiB  
Communication
Molecular Diagnosis in Hymenoptera Allergy: Comparison of Euroline DPA-Dx and ImmunoCAP
by Lluís Marquès, Arantza Vega, Federico de la Roca, Carmen Domínguez, Víctor Soriano-Gomis, Teresa Alfaya, Laia Ferré-Ybarz, José-María Vega, Mario Tubella and Berta Ruiz-León
Toxins 2025, 17(6), 310; https://doi.org/10.3390/toxins17060310 - 19 Jun 2025
Viewed by 656
Abstract
The efficacy of Hymenoptera venom immunotherapy is contingent upon the accurate identification of the insect responsible for the allergic reaction. The techniques used to detect specific IgE suffer from difficulties due to the cross-reactivity between Hymenoptera venoms (false positives), diagnostic ability, and the [...] Read more.
The efficacy of Hymenoptera venom immunotherapy is contingent upon the accurate identification of the insect responsible for the allergic reaction. The techniques used to detect specific IgE suffer from difficulties due to the cross-reactivity between Hymenoptera venoms (false positives), diagnostic ability, and the limited availability of allergenic components (false negatives). In this study, we analyzed the discrepancies in the results obtained with Euroline® DPA-Dx and ImmunoCAP® in the diagnosis of allergic reactions due to Hymenoptera stings in 151 patients. The results (positive/negative) of ImmunoCAP® and Euroline® agreed in 77/151 (50.99%) cases; with 15/151 (9.93%) cases positive for the same insect, and 61/151 (40.4%) cases positive for multiple insects. When the results were used to decide which venom to use for immunotherapy, there was a statistically significant discrepancy for Polistes dominula (21.8% of cases with ImmunoCAP® compared to only 8.4% with Euroline®). The presence of Polistes venom phospholipase (Pol d 1) in Euroline® did not increase its ability to differentiate double sensitization to wasps. ImmunoCAP® and Euroline® exhibited comparable diagnostic performance in bee venom allergy. For vespid venom allergy—particularly involving Polistes species—ImmunoCAP® appeared to show a slight diagnostic advantage, although this finding should be interpreted with caution. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Numerical Investigation and Optimization of Transpiration Cooling Plate Structures with Combined Particle Diameter
by Dan Wang, Yaxin Liu, Xiang Zhang, Mingliang Kong and Hanchao Liu
Energies 2025, 18(11), 2950; https://doi.org/10.3390/en18112950 - 4 Jun 2025
Viewed by 400
Abstract
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection [...] Read more.
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection pressure (p). To enhance the overall cooling effect and reduce the maximum surface temperature and coolant injection pressure, the combined particle diameter plate structure (CPD−PS) is proposed. Numerical simulations show that compared with the single-particle diameter plate structure (SPD−PS), the CPD−PS with a larger upstream particle diameter (dp) than that of the downstream (dpA > dpB) can effectively reduce the upstream temperature and improve average cooling efficiency (ηave). Meanwhile, gradually increasing dp will increase the permeability of porous media, reduce coolant flow resistance, and thus lower coolant injection pressure. An optimization analysis of CPD−PS is conducted using response surface methodology (RSM), and the influence of design variables on the objective function (ηave and p) is analyzed. Further optimization with the multi-objective genetic algorithm (MOGA) determines the optimal structural parameters. The results suggest that porosity (ε) and dp are the most crucial parameters affecting ηave and p of CPD−PS. After optimization, the maximum temperature of the porous plate is significantly reduced by 8.40%, and the average temperature of the hot end surface is also reduced. The overall cooling performance is effectively improved, ηave is increased by 6.02%, and p is significantly reduced. Additionally, the upstream surface velocity of the optimized structure changes and the boundary layer thickens, which enhances the thermal insulation effect. Full article
Show Figures

Figure 1

15 pages, 4089 KiB  
Article
Increased [18F]DPA-714 Uptake in the Skeletal Muscle of SOD1G93A Mice: A New Potential of Translocator Protein 18 kDa Imaging in Amyotrophic Lateral Sclerosis
by Cecilia Marini, Mattia Riondato, Edoardo Dighero, Alessia Democrito, Serena Losacco, Laura Emionite, Lucilla Nobbio, Irene Di Patrizi, Mattia Camera, Chiara Ghersi, Maddalena Ghelardoni, Francesco Lanfranchi, Francesca Vitale, Sonia Carta, Sabrina Chiesa, Carola Torazza, Marco Milanese, Matteo Bauckneht, Mehrnaz Hamedani, Federico Zaottini, Angelo Schenone, Carlo Martinoli, Federica Grillo and Gianmario Sambucetiadd Show full author list remove Hide full author list
Biomolecules 2025, 15(6), 799; https://doi.org/10.3390/biom15060799 - 31 May 2025
Viewed by 575
Abstract
Purpose: The skeletal muscle has been proposed to contribute to the progressive loss of motor neurons typical of amyotrophic lateral sclerosis (ALS). However, this mechanism has not yet been clarified due to the lack of suitable imaging tools. Here, we aimed to verify [...] Read more.
Purpose: The skeletal muscle has been proposed to contribute to the progressive loss of motor neurons typical of amyotrophic lateral sclerosis (ALS). However, this mechanism has not yet been clarified due to the lack of suitable imaging tools. Here, we aimed to verify whether PET imaging of the translocator protein 18 kDa (TSPO) can detect a muscular abnormality in an experimental model of ALS. Methods: In vivo biodistribution and kinetics of [18F]DPA-714 were analyzed in skeletal muscle and brain of SOD1G93A transgenic mice and in wildtype (WT) littermates. Both cohorts were divided into three groups (n = 6 each) to be studied at 60, 90 and 120 days. After microPET imaging, animals were sacrificed to evaluate inflammatory infiltrates by hematoxylin/eosin staining and TSPO expression by immunohistochemistry and Western blot in both quadriceps and brain. Results: [18F]DPA-714 uptake was higher in the skeletal muscles of SOD1G93A than in WT mice in the preclinical phase (60 and 90 days) and further increased up to the symptomatic late stage (120 days). Inflammatory cells were absent in the quadriceps of SOD1G93A mice whose myocytes, instead, showed a progressive increase in TSPO expression with advancing age. By contrast, brain tracer uptake and TSPO expression were comparably low in both groups, regardless of age and genotype. Conclusion: Upregulation of TSPO expression is characteristic of skeletal muscle, but not the brain, in the experimental SOD1G93A mouse model of ALS. Tracers targeting this pathway have been mostly proposed for the evaluation of inflammatory processes within the central nervous system. Nevertheless, the ubiquitous nature of TSPO expression and its responsiveness to various signals may broaden the diagnostic potential of these tracers to include disease conditions beyond inflammation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

21 pages, 3538 KiB  
Article
MFFP-Net: Building Segmentation in Remote Sensing Images via Multi-Scale Feature Fusion and Foreground Perception Enhancement
by Huajie Xu, Qiukai Huang, Haikun Liao, Ganxiao Nong and Wei Wei
Remote Sens. 2025, 17(11), 1875; https://doi.org/10.3390/rs17111875 - 28 May 2025
Viewed by 536
Abstract
The accurate segmentation of small target buildings in high-resolution remote sensing images remains challenging due to two critical issues: (1) small target buildings often occupy few pixels in complex backgrounds, leading to frequent background confusion, and (2) significant intra-class variance complicates feature representation [...] Read more.
The accurate segmentation of small target buildings in high-resolution remote sensing images remains challenging due to two critical issues: (1) small target buildings often occupy few pixels in complex backgrounds, leading to frequent background confusion, and (2) significant intra-class variance complicates feature representation compared to conventional semantic segmentation tasks. To address these challenges, we propose a novel Multi-Scale Feature Fusion and Foreground Perception Enhancement Network (MFFP-Net). This framework introduces three key innovations: (1) a Multi-Scale Feature Fusion (MFF) module that hierarchically aggregates shallow features through cross-level connections to enhance fine-grained detail preservation, (2) a Foreground Perception Enhancement (FPE) module that establishes pixel-wise affinity relationships within foreground regions to mitigate intra-class variance effects, and (3) a Dual-Path Attention (DPA) mechanism combining parallel global and local attention pathways to jointly capture structural details and long-range contextual dependencies. Experimental results demonstrate that the IoU of the proposed method achieves improvements of 0.44%, 0.98% and 0.61% compared to mainstream state-of-the-art methods on the WHU Building, Massachusetts Building, and Inria Aerial Image Labeling datasets, respectively, validating its effectiveness in handling small targets and intra-class variance while maintaining robustness in complex scenarios. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

12 pages, 4469 KiB  
Article
A Triple-Band Doherty Amplifier for Mobile Applications
by Ishath Harshika Hewa Maddumage, Gwanghyeon Jeong, Jusung Kim and Dong-Ho Lee
Electronics 2025, 14(11), 2167; https://doi.org/10.3390/electronics14112167 - 27 May 2025
Viewed by 433
Abstract
In this article, we present a triple-band Doherty power amplifier (DPA) with a Schiffman phase shifter, which achieved a 90-degree phase shift to facilitate broad frequency range operations. As the cornerstone of the triple-band DPA, the Schiffman phase shifter enabled simultaneous triple-band operations. [...] Read more.
In this article, we present a triple-band Doherty power amplifier (DPA) with a Schiffman phase shifter, which achieved a 90-degree phase shift to facilitate broad frequency range operations. As the cornerstone of the triple-band DPA, the Schiffman phase shifter enabled simultaneous triple-band operations. Furthermore, the entire triple-band Doherty amplifier was designed and fabricated using GaN on SiC HEMT devices, confirming its practical applicability and robust performance. It achieved an output power of 34 dBm at the low-band (LB) frequency of 0.8 GHz, accompanied by a peak drain efficiency (DE) of 53%. Similarly, at the mid-band (MB) frequency of 1.6 GHz, the amplifier maintained an output power of 32 dBm with an identical peak DE of 45%. At the high-band (HB) frequency of 2.2 GHz, the DPA continued to deliver an output power of 33 dBm, again with a peak DE of 50%. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances)
Show Figures

Graphical abstract

20 pages, 970 KiB  
Article
Design of Dual-Mode Multi-Band Doherty Power Amplifier Employing Impedance-and-Phase Constrained Optimization
by Meiyu Tao, Yunqin Chen, Wa Kong, Shaohua Ni, Zhaowen Zheng and Jing Xia
Electronics 2025, 14(10), 2078; https://doi.org/10.3390/electronics14102078 - 21 May 2025
Viewed by 457
Abstract
To expand the operating frequency bands of the Doherty power amplifier (DPA), this paper proposes a dual-mode multi-band DPA design method employing impedance-and-phase constrained optimization based on reciprocal gate bias. By introducing the concept of reciprocal gate bias, the operating mode is switched [...] Read more.
To expand the operating frequency bands of the Doherty power amplifier (DPA), this paper proposes a dual-mode multi-band DPA design method employing impedance-and-phase constrained optimization based on reciprocal gate bias. By introducing the concept of reciprocal gate bias, the operating mode is switched by swapping the gate biases of the carrier and peaking amplifiers of the DPA, which effectively extend the operating frequency band without modifying the load modulation network. Furthermore, multiple impedance constraint circles are used to cover the optimum load impedance region obtained from the load-pull simulation. And, the phases required for impedance transformation network (ITN) across the multi-band are determined based on the impedance transformation requirements when the DPA operates in power back-off (PBO) state and saturation state. Then, the ITNs that satisfy the impedance and phase constraints can be optimized and designed. For verification, a dual-mode multi-band DPA, operating in Mode I at 1.96–2.10 GHz and 2.75–2.86 GHz, and in Mode II at 2.49–2.61 GHz and 3.20–3.36 GHz, is designed and fabricated. Measured results show that the output power of the DPA exceeds 43 dBm with corresponding saturated drain efficiencies (DEs) higher than 50% in both modes. For 6 dB PBO, the DEs are 49.4–55.7% and 49.8–51.7% in Mode I, whereas in Mode II, they range from 51.2% to 52.4% and from 50.4% to 53.5%. Moreover, good linearity can be achieved after linearization for 20 MHz modulated signals. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

11 pages, 883 KiB  
Article
Rate Equation Analysis of the Effect of Damage Distribution on Defect Evolution in Self-Ion Irradiated Fe
by Toshimasa Yoshiie
Metals 2025, 15(5), 555; https://doi.org/10.3390/met15050555 - 17 May 2025
Viewed by 340
Abstract
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized [...] Read more.
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized damage irradiation by ions (the damage peak near the specimen surface) and homogeneous damage irradiation (the flat damage rate across the specimen) such as those caused by neutron irradiation. The irradiation conditions were as follows: the accelerating voltage was 2 MeV and 100 MeV, the irradiation temperatures was 273 K and 573 K, the damage rate was 1 × 10−5 dpa/s, and the total damage was 1 dpa. The distribution of residual point defects in clusters is complex due to the influence of the surface and the sharp distribution of the damage peak. The effects of the damage distributions on defect production were obtained, revealing a dependence on irradiation temperatures. At 573 K irradiation, localized damage irradiation produced higher residual interstitials than homogeneous damage irradiation when using the peak damage rate. The 100 MeV irradiation was more prominent than 2 MeV irradiation. However, the remaining vacancies were almost identical. At 273 K irradiation, the residual point defects, interstitials, and vacancies, were nearly identical in both the localized and homogeneous damage irradiations, even if the accelerating voltage was different. Full article
Show Figures

Graphical abstract

13 pages, 6174 KiB  
Article
Dynamic Pollen–Stigma Coordination in Dendrobium Hybridization: A Strategy to Maximize Fruit Set and Hybrid Seed Viability
by Qian Wu, Yanbing Qian, Ao Guan, Yan Yue, Zongyan Li, Bruce Dunn, Jianwei Yang, Shuangshuang Yi, Yi Liao and Junmei Yin
Horticulturae 2025, 11(5), 544; https://doi.org/10.3390/horticulturae11050544 - 17 May 2025
Viewed by 540
Abstract
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging [...] Read more.
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging papillae), histochemical benzidine-H2O2 staining, and enzymatic activity profiling (esterase and superoxide dismutase). Concurrently, pollen viability was assessed through TTC testing coupled with ultrastructural observations. Results identified a critical synchronization window: pollen viability peaked at 1–3 days post anthesis (DPA) or during the mid-anthesis phase, while stigmas exhibited maximal receptivity when secretory activity and antioxidant enzyme levels significantly increased. Using stage-specific pollination criteria, 8.4% of crosses (8/95) produced viable fruits, outperforming empirical methods by 2.8-fold. D. ‘Burana Jade’ showed cross-compatibility with four Dendrobium species (D. aphyllum, D. chrysotoxum, D. hercoglossum, D. thyrsiflorum), with D. thyrsiflorum hybrids achieving 54.81% embryogenesis and 22.38% germination. Three compatible combinations germinated successfully in vitro within 45–55 days on 1/4 MS medium supplemented with 20 g/L sucrose, 1 g/L tryptone, 180 mL/L coconut water, and 2.2 g/L Phytagel. Our findings establish that synchronizing pollen viability windows with stigma receptivity phases significantly enhances fruit set and hybrid seed viability, providing a phenology-driven strategy to overcome reproductive barriers in orchid breeding programs. This study provides key physiological criteria for Dendrobium hybridization, though their applicability to other orchids needs validation. Future multi-omics studies should explore cross-species compatibility mechanisms. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

24 pages, 880 KiB  
Article
Growth Performance, Carcass Traits and Meat Quality in Rabbits Fed with Two Different Percentages of Extruded Linseed
by Imen Daboussi, Nour Elhouda Fehri, Michela Contò, Marta Castrica, Safa Bejaoui, Alda Quattrone, Mohamed Amine Ferchichi, Marouen Amraoui, Souha Tibaoui, Giulio Curone, Daniele Vigo, Laura Menchetti, Alessandro Dal Bosco, Egon Andoni, Gabriele Brecchia, Sebastiana Failla and Bayrem Jemmali
Foods 2025, 14(10), 1778; https://doi.org/10.3390/foods14101778 - 16 May 2025
Viewed by 575
Abstract
This study evaluated the effect of two levels of extruded linseed (EL) in the diet on growth performance, carcass yield, and meat quality of growing rabbits. Sixty-nine New Zealand White male rabbits (Oryctolagus cuniculus) were assigned after weaning to three dietary [...] Read more.
This study evaluated the effect of two levels of extruded linseed (EL) in the diet on growth performance, carcass yield, and meat quality of growing rabbits. Sixty-nine New Zealand White male rabbits (Oryctolagus cuniculus) were assigned after weaning to three dietary groups: control (C), 2.5% EL (L2.5%), and 5% EL (L5%). At the end of the fattening period (from 37 to 93 days of age), rabbits were slaughtered. EL supplementation significantly reduced average daily weight gain (ADG) in the L5% group (p < 0.05), while other performance parameters were not significantly affected. Meat from the L5% group exhibited a higher fat content (p < 0.001) and lower water-holding capacity (p < 0.05) compared to the others. The fatty acid profile showed a significant increase in n-3 polyunsaturated fatty acids (PUFAs) and a decrease in n-6 PUFA (p < 0.05), resulting in a markedly reduced n-6/n-3 ratio (p < 0.001) in supplemented groups. EL supplementation also enhanced long-chain n-3 PUFA levels, particularly docosapentaenoic acid (DPA). Although lipid oxidation was slightly increased (p < 0.05), sensory attributes remained unaffected. These findings support EL supplementation as a nutritional strategy to increase the n-3 fatty acids in rabbit meat without compromising physical and sensory quality. Full article
(This article belongs to the Special Issue Trends and Prospects in Novel Meat Products with Healthier Properties)
Show Figures

Figure 1

Back to TopTop