Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (410,572)

Search Parameters:
Keywords = 12S

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 314 KiB  
Article
The Economic Contributions of the Virginia Seafood Industry and the Effects of Virginia Seafood Products in Retail Stores and Restaurants in 2023
by Fernando H. Gonçalves, Jonathan van Senten and Michael H. Schwarz
Fishes 2025, 10(8), 373; https://doi.org/10.3390/fishes10080373 (registering DOI) - 2 Aug 2025
Abstract
Virginia’s coastal location and abundant marine resources make its seafood industry a vital contributor to the state’s economy, supporting both local communities and tourism. This study applied input–output models and updates the economic contributions of the Virginia seafood industry using 2023 data, building [...] Read more.
Virginia’s coastal location and abundant marine resources make its seafood industry a vital contributor to the state’s economy, supporting both local communities and tourism. This study applied input–output models and updates the economic contributions of the Virginia seafood industry using 2023 data, building on models developed for 2019 that capture both direct effects and broader economic ripple effects. In 2023, the industry generated USD 1.27 billion in total economic output and supported over 6500 jobs—including watermen, aquaculture farmers, processors, and distributors—resulting in USD 238.3 million in labor income. Contributions to state GDP totaled USD 976.7 million, and tax revenues exceeded USD 390.4 million. The study also evaluates the economic role of Virginia seafood products sold in retail stores and restaurants, based on secondary data sources. In 2023, these sectors generated USD 458 million in economic output, supported more than 3600 jobs, produced USD 136.7 million in labor income, and USD 280.8 million in value-added. Combined tax contributions surpassed USD 74 million. Importantly, the analysis results for the Virginia seafood products from retail and restaurant should not be summed to the seafood industry totals to avoid double-counting, as seafood products move as output from one sector as an input to another. These results provide evidence-based insights to guide decision-making, inform stakeholders, and support continued investment in Virginia’s seafood supply chain and related economic activities. Full article
(This article belongs to the Section Fishery Economics, Policy, and Management)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

24 pages, 4301 KiB  
Article
Estimation of the Kinetic Coefficient of Friction of Asphalt Pavements Using the Top Topography Surface Roughness Power Spectrum
by Bo Sun, Haoyuan Luo, Yibo Rong and Yanqin Yang
Materials 2025, 18(15), 3643; https://doi.org/10.3390/ma18153643 (registering DOI) - 2 Aug 2025
Abstract
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better [...] Read more.
This study proposes a method for estimating the kinetic coefficient of friction (COF) for asphalt pavements by improving and applying Persson’s friction theory. The method utilizes the power spectral density (PSD) of the top surface topography instead of the full PSD to better reflect the actual contact conditions. This approach avoids including deeper roughness components that do not contribute to real rubber–pavement contact due to surface skewness. The key aspect of the method is determining an appropriate cutting plane to isolate the top surface. Four cutting strategies were evaluated. Results show that the cutting plane defined at 0.5 times the root mean square (RMS) height exhibits the highest robustness across all pavement types, with the estimated COF closely matching the measured values for all four tested surfaces. This study presents an improved method for estimating the kinetic coefficient of friction (COF) of asphalt pavements by employing the power spectral density (PSD) of the top surface roughness, rather than the total surface profile. This refinement is based on Persson’s friction theory and aims to exclude the influence of deep surface irregularities that do not make actual contact with the rubber interface. The core of the method lies in defining an appropriate cutting plane to isolate the topographical features that contribute most to frictional interactions. Four cutting strategies were investigated. Among them, the cutting plane positioned at 0.5 times the root mean square (RMS) height demonstrated the best overall applicability. COF estimates derived from this method showed strong consistency with experimentally measured values across all four tested asphalt pavement surfaces, indicating its robustness and practical potential. Full article
(This article belongs to the Section Construction and Building Materials)
22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

17 pages, 745 KiB  
Article
The Relationship Between Parental Phubbing and Preschoolers’ Behavioral Problems: The Mediation Role of Mindful Attention Awareness
by Antonio Puligheddu, Annamaria Porru, Andrea Spano, Stefania Cataudella, Maria Lidia Mascia, Dolores Rollo, Cristina Cabras, Maria Pietronilla Penna and Daniela Lucangeli
Children 2025, 12(8), 1022; https://doi.org/10.3390/children12081022 (registering DOI) - 2 Aug 2025
Abstract
Phubbing, a relatively new phenomenon in the field of digital risks, refers to the act of ignoring someone in favor of focusing on a smartphone during face-to-face interactions. Parental phubbing, a specific form of this behavior, is a prevalent negative parenting practice that [...] Read more.
Phubbing, a relatively new phenomenon in the field of digital risks, refers to the act of ignoring someone in favor of focusing on a smartphone during face-to-face interactions. Parental phubbing, a specific form of this behavior, is a prevalent negative parenting practice that can affect parent–child relationships and child development. However, the impact of parental phubbing on the emotional and behavioral development of preschool children remains unclear. This study aims to explore the relationship between parental phubbing and preschoolers’ behavioral problems, as well as test whether parents’ mindful attention awareness (MAA) acts as a mediator between them. Method: A questionnaire was administered to 138 Italian parents (mean age = 38.5, SD = 6.2) of 138 kindergarten preschoolers (mean age = 3.9, SD = 1.03). Questionnaires included the Generic Scale of Phubbing (GSP), the Mindful Attention Awareness Scale (MAAS), and the Strengths and Difficulties Questionnaire (SDQ). Results: Analyses revealed a significant negative correlation between the MAAS and SDQ total scores, a positive correlation between the GSP total score and the SDQ total score, and a negative correlation between the GSP total score and the MAAS total score. The mediation analysis did not show a direct effect of GSP on SDQ, suggesting that parental phubbing did not directly predict children’s behavioral difficulties. Nevertheless, the indirect effect measured by bootstrapping was significant, indicating that parental MAA fully mediated the relationship between parental phubbing and preschoolers’ problematic behaviors. Conclusions: Although further research is needed, parental mindfulness may influence phubbing behaviors in parents providing valuable insights for early interventions aimed at reducing problem behaviors in young children. Full article
(This article belongs to the Section Pediatric Mental Health)
18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 (registering DOI) - 2 Aug 2025
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 (registering DOI) - 2 Aug 2025
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

23 pages, 2091 KiB  
Article
Exploring the Impact of Bioactive Compounds Found in Extra Virgin Olive Oil on NRF2 Modulation in Alzheimer’s Disease
by Marilena M. Bourdakou, Eleni M. Loizidou and George M. Spyrou
Antioxidants 2025, 14(8), 952; https://doi.org/10.3390/antiox14080952 (registering DOI) - 2 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis by promoting Aβ accumulation. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the antioxidant response, influencing genes involved in OS mitigation, mitochondrial function, and inflammation. Dysregulation of NRF2 is implicated in AD, making it a promising therapeutic target. Emerging evidence suggests that adherence to a Mediterranean diet (MD), which is particularly rich in polyphenols from extra virgin olive oil (EVOO), is associated with improved cognitive function and a reduced risk of mild cognitive impairment. Polyphenols can activate NRF2, enhancing endogenous antioxidant defenses. This study employs a computational approach to explore the potential of bioactive compounds in EVOO to modulate NRF2-related pathways in AD. We analyzed transcriptomic data from AD and EVOO-treated samples to identify NRF2-associated genes, and used chemical structure-based analysis to compare EVOO’s bioactive compounds with known NRF2 activators. Enrichment analysis was performed to identify common biological functions between NRF2-, EVOO-, and AD-related pathways. Our findings highlight important factors and biological functions that provide new insight into the molecular mechanisms through which EVOO consumption might influence cellular pathways associated with AD via modulation of the NRF2 pathway. The presented approach provides a different perspective in the discovery of compounds that may contribute to neuroprotective mechanisms in the context of AD. Full article
22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 (registering DOI) - 2 Aug 2025
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 8522 KiB  
Article
Plant Extracts as Modulators of the Wound Healing Process—Preliminary Study
by Anna Herman, Aleksandra Leska, Patrycja Wińska and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2025, 26(15), 7490; https://doi.org/10.3390/ijms26157490 (registering DOI) - 2 Aug 2025
Abstract
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological [...] Read more.
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological properties and multidirectional effects on the wound healing phases. The study aims to determine the ability of selected plant extracts to modulate the processes involved in wound healing. The antimicrobial (MIC, MBC, MFC) and antioxidant (ABTS, DPPH) activities, cytotoxicity (MTT test), scratch wound test, and collagen assay were tested. R. canina (MBC 0.39 mg/mL) and V. venifera (MBC 3.13 mg/mL) extracts had bactericidal activities against P. aeruginosa and S. aureus, respectively. The V. vinifera extract showed the highest antioxidant activity in both ABTS (EC50 0.078 mg/mL) and DPPH (EC50 0.005 mg/mL) methods. The percentage of wound closure observed for C. cardunculus, R. rosea, and R. canina extracts with HaCaT, and V. vinifera extract with Hs27 cells was set as 100%. V. vinifera extract (50 μg/mL) stimulated collagen synthesis 5.16 times more strongly than ascorbic acid. Our preliminary study showed that some plant extracts may be promising modulators of the wound healing process, although further in-depth studies are necessary to determine their effectiveness in the in vivo model. Full article
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

17 pages, 4983 KiB  
Article
Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
by Václav Zumr, Oto Nakládal and Jiří Remeš
Fire 2025, 8(8), 305; https://doi.org/10.3390/fire8080305 (registering DOI) - 2 Aug 2025
Abstract
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire [...] Read more.
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire across different forest types in Central Europe. The research was conducted following a large forest fire (ca. 1200 ha) that occurred in 2022. Data were collected over two years (2023 and 2024), from April to September. The research was conducted in coniferous forests and included six pairwise study types: burnt and unburnt dead spruce (bark beetle affected), burnt and unburnt clear-cuts, and burnt and unburnt healthy stands. In total, 96 traps were deployed each year. Across both years, 220,348 invertebrates were recorded (1.Y: 128,323; 2.Y: 92,025), representing 24 taxonomic groups. A general negative trend in abundance following forest fire was observed in the groups Acari, Auchenorhyncha, Blattodea, Dermaptera, Formicidae, Chilopoda, Isopoda, Opiliones, and Pseudoscorionida. Groups showing a neutral response included Araneae, Coleoptera, Collembola, Diplopoda, Heteroptera, Psocoptera, Raphidioptera, Thysanoptera, and Trichoptera. Positive responses, indicated by an increase in abundance, were recorded in Hymenoptera, Orthoptera, Lepidoptera, and Diptera. However, considerable differences among management types (clear-cut, dead spruce, and healthy) were evident, as their distinct characteristics largely influenced invertebrate abundance in both unburnt and burnt variants of the types across all groups studied. Forest fire primarily creates favorable conditions for heliophilous, open-landscape, and floricolous invertebrate groups, while less mobile epigeic groups are strongly negatively affected. In the second year post-fire, the total invertebrate abundance in burnt sites decreased to 59% of the first year’s levels. Conclusion: Forest fire generates a highly heterogeneous landscape from a regional perspective, creating unique ecological niches that persist more than two years after fire. For many invertebrates, successional return toward pre-fire conditions is delayed or incomplete. Full article
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 (registering DOI) - 2 Aug 2025
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

14 pages, 9090 KiB  
Article
Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)
by Huafeng Liu, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Aimin Shi, Ding Yang and Zhonghua Wei
Insects 2025, 16(8), 802; https://doi.org/10.3390/insects16080802 (registering DOI) - 2 Aug 2025
Abstract
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats [...] Read more.
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats using climatic factors, global land use type, and global vegetation from different periods, in combination with the maximum entropy (MaxEnt) model. The results indicate that the annual mean temperature (Bio01), mean temperature of the coldest quarter (Bio11), precipitation of the coldest quarter (Bio19), and isothermality (Bio03) are the four most important climate variables determining the distribution of T. picta. Under the current climate conditions, the highly suitable areas are primarily located in southern Europe, covering an area of 2.22 × 106 km2. Under future climate scenarios, the suitable habitat for T. picta is expected to expand and shift towards higher latitudes. In the 2050s, the SSP5-8.5 scenario has the largest suitable area compared to other scenarios, while the SSP2-4.5 scenario has the largest suitable area in the 2090s. In addition, the centroids of the total suitable areas are expected to shift toward higher latitudes under future climate conditions. The results of this study provide valuable data for the monitoring, control, and management of this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop