Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = 1,4-naphthoquinones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 394
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

16 pages, 8686 KiB  
Article
Potential Natural Inhibitors of MRSA ABC Transporters and MecA Identified Through In Silico Approaches
by Benson Otarigho, Paul M. Duffin and Mofolusho O. Falade
Microorganisms 2025, 13(6), 1431; https://doi.org/10.3390/microorganisms13061431 - 19 Jun 2025
Viewed by 534
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its resistance to multiple antibiotics. The urgent need for new therapeutic approaches has led to the exploration of natural compounds as potential treatments, particularly those targeting the key bacterial proteins involved in antibiotic resistance. This study focused on the multidrug ABC transporter and MecA proteins, which play crucial roles in MRSA′s pathogenicity and resistance mechanisms. Using computational techniques and molecular docking methods, we assessed the interactions of 80 natural compounds with S. aureus multidrug ABC transporter SAV1866 (SAV1866) and MecA proteins. Our analysis revealed 14 compounds with robust binding to SAV1866 and one compound with a strong affinity for MecA. Notably, these compounds showed weaker affinities for the MgrA, MepR, and arlR proteins, suggesting specificity in their interactions. Among the 15 promising compounds identified, 1′,2-Binaphthalen-4-one-2′,3-dimethyl-1,8′-epoxy-1,4′,5,5′,8,8′-hexahydroxy-8-O-β-glucopyranosyl-5′-O-β-xylopyranosyl(1→6)-β-glucopyranoside; Cis-3,4-dihydrohamacanthin b; and Mamegakinone exhibited the highest binding affinities to S. aureus SAV1866. These compounds represent diverse chemical classes, including alkaloids, indole derivatives, naphthalenes, and naphthoquinones, offering a range of structural scaffolds for further drug development. Our findings provide valuable insights into potential new antibacterial agents targeting S. aureus SAV1866 and MecA proteins. These results lay the groundwork for future in vitro and in vivo studies to validate these compounds′ efficacy for combating MRSA infections, potentially leading to the development of novel therapeutic strategies against antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

15 pages, 1157 KiB  
Article
Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99
by Naira Sulany Oliveira de Sousa, Juan Diego Ribeiro de Almeida, Linnek Silva da Rocha, Izabela de Mesquita Bárcia Moreira, Flávia da Silva Fernandes, Ani Beatriz Jackisch Matsuura, Kátia Santana Cruz, Emersom Silva Lima, Érica Simplício de Souza, Hagen Frickmann and João Vicente Braga de Souza
Antibiotics 2025, 14(6), 602; https://doi.org/10.3390/antibiotics14060602 - 13 Jun 2025
Viewed by 866
Abstract
Background/Objectives: Cryptococcosis, caused by Cryptococcus neoformans and Cryptococcus gattii species complexes, remains a significant health concern, particularly among immunocompromised patients. The emergence of antifungal resistance and toxicity of conventional treatment underscore the urgent need for novel therapeutic approaches. Combination therapies represent a promising [...] Read more.
Background/Objectives: Cryptococcosis, caused by Cryptococcus neoformans and Cryptococcus gattii species complexes, remains a significant health concern, particularly among immunocompromised patients. The emergence of antifungal resistance and toxicity of conventional treatment underscore the urgent need for novel therapeutic approaches. Combination therapies represent a promising strategy to enhance efficacy and overcome resistance. This study investigated the antifungal activity of five naphthoquinones against nine isolates of Cryptococcus spp. and assessed their synergistic effects with amphotericin B (AmB). Methods: In this study, five selected naphthoquinones were evaluated for their antifungal activity against Cryptococcus spp. isolates using broth microdilution assays to determine minimum inhibitory concentrations (MICs), according to CLSI guidelines. The potential synergistic effect with AmB was assessed using checkerboard assays, with synergy interpreted based on the fractional inhibitory concentration index (FICI). Cytotoxicity was evaluated in MRC-5 human lung fibroblast cells using the MTT assay. Results: Among the compounds tested, 2-methoxynaphthalene-1,4-dione (2-MNQ) demonstrated antifungal activity, with MIC values ranging from 3.12 to 12.5 µg/mL. Checkerboard assays revealed a synergistic interaction between 2-MNQ and AmB, with a fractional inhibitory concentration index (FICI) of 0.27. The combination reduced the MIC of AmB by 4.17-fold. These findings highlight the potential of synthetic naphthoquinones, particularly 2-MNQ, as effective antifungal agents with synergistic properties when combined with AmB. The observed synergy suggests complementary mechanisms, including increased fungal membrane permeability and oxidative stress induction. Conclusions: This study highlights the potential of 2-MNQ and 2,3-DBNQ as antifungal candidates against Cryptococcus spp., with emphasis on the synergistic interaction observed between 2-MNQ and amphotericin B. The findings reinforce the importance of structural modifications in naphthoquinones to enhance antifungal activity and support the need for further preclinical studies investigating combination therapies aimed at improving treatment efficacy in patients with cryptococcosis. Full article
Show Figures

Figure 1

20 pages, 5338 KiB  
Article
New Insights into the Anticancer Effects and Toxicogenomic Safety of Two β-Lapachone Derivatives
by José Rivaldo De Lima, Alexandre José Da Silva Góes, Elizabeth Fernanda De Oliveira Borba, Meykson Alexandre da Silva, Rodrigo Ribeiro Alves Caiana, Maria do Desterro Rodrigues, Mariza Severina De Lima Silva, Cristiano Aparecido Chagas, Blandine Baratte, Thomas Robert, Stéphane Bach, Isabelle Ourliac-Garnier, Pascal Marchand and Teresinha Gonçalves Da Silva
Pharmaceuticals 2025, 18(6), 837; https://doi.org/10.3390/ph18060837 - 3 Jun 2025
Viewed by 821
Abstract
Background/Objectives: β-Lapachone (β-lap) is an o-naphthoquinone with potent antitumor activity. However, its clinical application is hindered by poor solubility and toxicity. Thiosemicarbazone derivatives of β-lap (BV3 and BV5) have demonstrated enhanced selectivity and anticancer efficacy in leukemia cells. Therefore, this study aimed [...] Read more.
Background/Objectives: β-Lapachone (β-lap) is an o-naphthoquinone with potent antitumor activity. However, its clinical application is hindered by poor solubility and toxicity. Thiosemicarbazone derivatives of β-lap (BV3 and BV5) have demonstrated enhanced selectivity and anticancer efficacy in leukemia cells. Therefore, this study aimed to evaluate the therapeutic potential of these derivatives in solid tumors. Furthermore, the mechanism of tumor cell death, the involvement of protein kinase inhibition, and the toxicogenetic safety of BV3 and BV5 were investigated. Methods: The cytotoxic effects of BV3 and BV5 were assessed in cancer cell lines and a non-cancerous cell line. The compounds were most effective against HeLa (human cervical adenocarcinoma) cells. For that reason, this type of cell was chosen to study how the compounds might cause cell death, using flow cytometry. Kinase inhibition assays were conducted in vitro and in silico, followed by genotoxicity assessments to determine toxicogenetic safety. Results: BV3 and BV5 derivatives significantly inhibited cancer cell proliferation after 72 h, with IC50 values ranging from 2.8 to 36.9 µM. BV3 demonstrated superior selectivity (selectivity index: 15.6) when compared to β-lap (selectivity index: 1.9) in HeLa cells. Morphological changes and flow cytometry analysis revealed features of apoptosis and/or necrosis in HeLa cells treated with the compounds BV3 and BV5. Furthermore, among the kinases tested, BV3 and BV5 were more effective in inhibiting the activity of the protein kinases JAK3 and GSK3β. This result was also confirmed by the in silico studies. Additionally, genotoxicity assays indicated an overall favorable toxicogenetic safety profile; however, BV5 exhibited potential genotoxicity at high concentrations. Conclusions: The findings underscore the anticancer potential of BV3 and BV5 in solid tumors and highlight their mechanism of action, which involves protein kinases. The findings also show that the drugs are selective and relatively safe. Full article
Show Figures

Figure 1

20 pages, 2187 KiB  
Article
The 8-Hydroxyquinoline Derivatives of 1,4-Naphthoquinone: Synthesis, Computational Analysis, and Anticancer Activity
by Arkadiusz Sokal, Roman Wrzalik, Małgorzata Latocha and Monika Kadela-Tomanek
Int. J. Mol. Sci. 2025, 26(11), 5331; https://doi.org/10.3390/ijms26115331 - 1 Jun 2025
Viewed by 1075
Abstract
Anticancer drug design has been reformed by the creation of heterocyclic hybrids. The introduction of a quinoline scaffold affects the activity, toxicity, and bioavailability of new compounds. The aim of this study was to synthesize and evaluate the biological activity of hybrids of [...] Read more.
Anticancer drug design has been reformed by the creation of heterocyclic hybrids. The introduction of a quinoline scaffold affects the activity, toxicity, and bioavailability of new compounds. The aim of this study was to synthesize and evaluate the biological activity of hybrids of 1,4-naphthoquinone with the 8-hydroxyquinoline moiety. The structure of the new compounds was characterized using spectroscopic methods, such as HR-MS, NMR, and IR. The analysis was supplemented by calculated NMR and IR spectra. The physicochemical properties and bioavailability of the compounds were examined using in silico methods. An analysis of reactivity descriptors showed that the compounds are good electron acceptors and exhibit high reactivity. Bioavailability properties confirm that hybrids could be good oral administration drugs. The biological potential of hybrids was examined by designation of the enzymatic conversion rate of the NQO1 protein and in vitro against cancer cell lines with overexpression of the gene encoding the NQO1 protein. The possibility of interaction between the tested ligand and the NQO1 protein was examined by molecular docking methods. Full article
(This article belongs to the Special Issue Cheminformatics in Drug Discovery and Green Synthesis)
Show Figures

Figure 1

25 pages, 2090 KiB  
Article
The Growth, Pathogenesis, and Secondary Metabolism of Fusarium verticillioides Are Epigenetically Modulated by Putative Heterochromatin Protein 1 (FvHP1)
by Andrés G. Jacquat, Natalia S. Podio, María Carmen Cañizares, Pilar A. Velez, Martín G. Theumer, Vanessa A. Areco, María Dolores Garcia-Pedrajas and José S. Dambolena
J. Fungi 2025, 11(6), 424; https://doi.org/10.3390/jof11060424 - 31 May 2025
Viewed by 1677
Abstract
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, [...] Read more.
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, plays a critical role in regulating chromatin structure and gene expression. In fungi, di- and tri-methylation of histone H3 at lysine 9 (H3K9me2/3) serves as a key epigenetic mark associated with heterochromatin formation and transcriptional repression. In this study, we identified and characterized a putative heterochromatin protein 1 (HP1) family member in F. verticillioides, designated FvHP1, based on conserved domain architecture and phylogenetic analyses. FvHP1 retains essential residues required for H3K9me2/3 recognition, supporting its functional conservation within the HP1 protein family. Phenotypic analysis of the ΔFvHP1 mutant revealed impaired vegetative growth, reduced conidiation and virulence, and altered FB1 mycotoxin production. Additionally, the accumulation of red pigment in the mutant was linked to the deregulation of secondary metabolism, specifically the overproduction of fusarubin-type naphthoquinones, such as 8-O-methylnectriafurone. These results support the role of FvHP1 in facultative heterochromatin-mediated repression of sub-telomeric biosynthetic gene clusters, including the pigment-associated PGL1 cluster. Our findings provide new insights into the epigenetic regulation of fungal pathogenicity and metabolite production, as well as the first evidence of a functional HP1 homolog in F. verticillioides. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

21 pages, 3061 KiB  
Article
Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis
by Nathália L. B. Santos, Luana S. Gomes, Ruan C. B. Ribeiro, Alcione S. de Carvalho, Maria Cristina S. Lourenço, Laís Machado Marins, Sandy Polycarpo Valle, Thiago H. Doring, Adriano D. Andricopulo, Aldo S. de Oliveira, Vitor F. Ferreira, Fernando de C. da Silva, Luana da Silva Magalhães Forezi and Vanessa Nascimento
Pharmaceuticals 2025, 18(6), 797; https://doi.org/10.3390/ph18060797 - 26 May 2025
Viewed by 758
Abstract
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized [...] Read more.
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, affording yields ranging from 34% to 93%. All compounds were evaluated in vitro for anti-TB activity against Mycobacterium tuberculosis H37Rv (ATCC 27294), as well as a drug-resistant strain (T113/09). Results: Several selenium-containing derivatives exhibited promising activity. Compounds 9b and 9g were equipotent to the first-line anti-TB drug, and one compound surpassed its activity. Notably, compounds 9a, 9b, 9g, and 9h also showed efficacy against the INH- and RIF-resistant Mtb strain T113/09. Conclusions: The efficacy of selenium-containing triazole-menadione hybrids against both sensitive and resistant Mtb strains highlight their potential as candidates for addressing antimicrobial resistance in TB treatment. Further investigations are required to understand their mechanisms of action and assess their in vivo therapeutic potential.. Full article
Show Figures

Figure 1

27 pages, 2216 KiB  
Review
In Vitro Antiproliferative Activity in Plants of the Genus Tabebuia: A Systematic Review
by Laura Mosquera-Morales, Lina Marcela Orozco, Luz Angela Veloza and Juan Carlos Sepúlveda-Arias
Molecules 2025, 30(11), 2315; https://doi.org/10.3390/molecules30112315 - 25 May 2025
Viewed by 656
Abstract
The use of plant extracts and the compounds isolated from them for the treatment of cancer is an area of active research, given their therapeutic potential. This work focused on evaluating the literature related to the antiproliferative activity of extracts obtained from plants [...] Read more.
The use of plant extracts and the compounds isolated from them for the treatment of cancer is an area of active research, given their therapeutic potential. This work focused on evaluating the literature related to the antiproliferative activity of extracts obtained from plants of the genus Tabebuia and molecules isolated in vitro or in vivo. For the search, MeSH and DECS terms were employed in the PubMed, Scopus, and SciELO databases. Research has shown that plant extracts derived from plants of the genus Tabebuia exhibit potential applications in the search for new molecules with antiproliferative activity. Among the isolated molecules, the most evaluated correspond to β-lapachone (naphthoquinone); however, molecules with antiproliferative potential belonging to groups such as iridoids, flavonoids, quinones, furanonaphthoquinones, triterpenes, and polysaccharides have also been isolated and reported. Additionally, synthesized molecules have been evaluated on the basis of the modifications made to the structures of molecules isolated from the plant extracts to increase their activity, aiming to develop more potent antitumor agents for future clinical use. Full article
Show Figures

Figure 1

20 pages, 2994 KiB  
Article
A Novel and Reliable Analysis Method Utilizing Hennosides to Improve the Quality Assessment of Lawsonia inermis L. Material Used in Cosmetic Formulations
by Nele Dallmann, Volkmar Vill and Fabian Straske
Cosmetics 2025, 12(3), 99; https://doi.org/10.3390/cosmetics12030099 - 14 May 2025
Viewed by 1213
Abstract
Lawsonia inermis L. is renowned for its hair dyeing properties, with henna quality and safety often regulated by restrictions on the lawsone (2-hydroxy-1,4-naphthoquinone) content. In henna leaves, lawsone exists as glycosylated precursors, hennosides A, B, and C. Aqueous maceration revealed the sensitivity of [...] Read more.
Lawsonia inermis L. is renowned for its hair dyeing properties, with henna quality and safety often regulated by restrictions on the lawsone (2-hydroxy-1,4-naphthoquinone) content. In henna leaves, lawsone exists as glycosylated precursors, hennosides A, B, and C. Aqueous maceration revealed the sensitivity of enzymatic lawsone release, while ethanol extraction inhibited β-glucosidase activity, enabling controlled hennoside extraction. Hennoside A was isolated via RP-column chromatography and characterized using ESI-TOF, 1H-/13C-NMR, COSY, NOESY, HSQC, and HMBC. The purified compound proved suitable as an HPLC reference standard. The acidic hydrolysis of hennoside-rich extracts highlighted the limitations of lawsone-based analysis, underscoring glycosylated precursors as more reliable quality markers. Lawsone quantification via enzymatic or acid catalysis demonstrated varying accuracy in quality control. A hennoside-based approach ensures consistency by estimating the maximum releasable lawsone without inducing its formation, providing a more robust metric for a henna quality assessment. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

11 pages, 1782 KiB  
Communication
1-(Pyrrolidin-1-yl)naphtho[1,2-d]isoxazole
by Ioannis E. Gerontitis, Abdul kadar Shaikh, Dimitrios Alivertis, Panteleimon G. Takis, Anastassios N. Troganis, Petros G. Tsoungas and George Varvounis
Molbank 2025, 2025(2), M1999; https://doi.org/10.3390/M1999 - 27 Apr 2025
Viewed by 921
Abstract
In this study, we examined the oxidation of (E)-2-hydroxy-1-naphthaldehyde oxime with lead tetraacetate in tetrahydrofuran that produced novel (E)-7a,8,9,10-tetrahydro-12H-naphtho[1,2-e]pyrrolo[2,1-b][1,3]oxazin-12-one oxime and 1-(pyrrolidin-1-yl)naphtho[1,2-d]isoxazole and known 7a,8,9,10-tetrahydro-12H-naphtho[1,2-e]pyrrolo-[2,1-b][1,3]oxazin-12-one [...] Read more.
In this study, we examined the oxidation of (E)-2-hydroxy-1-naphthaldehyde oxime with lead tetraacetate in tetrahydrofuran that produced novel (E)-7a,8,9,10-tetrahydro-12H-naphtho[1,2-e]pyrrolo[2,1-b][1,3]oxazin-12-one oxime and 1-(pyrrolidin-1-yl)naphtho[1,2-d]isoxazole and known 7a,8,9,10-tetrahydro-12H-naphtho[1,2-e]pyrrolo-[2,1-b][1,3]oxazin-12-one in 15, 18, and 10% yields, respectively. The oxime is partially hydrolyzed to its corresponding ketone. Modifying the oxidants and reaction conditions did not improve the product yields. Based on previous studies in our laboratory, we proposed that the reactions proceed via the formation of an o-naphthoquinone nitrosomethide intermediate; 1D and 2D NMR, HRMS, IR, and UV-VIS spectra provided information that supported the structure of the products. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

18 pages, 1959 KiB  
Article
Design, Synthesis, and Biological Evaluation of Naphthoquinone Salts as Anticancer Agents
by Yao Cheng, Tsz Tin Yu, Ellen M. Olzomer, Kyle L. Hoehn, Frances L. Byrne, Naresh Kumar and David StC Black
Molecules 2025, 30(9), 1938; https://doi.org/10.3390/molecules30091938 - 27 Apr 2025
Cited by 1 | Viewed by 789
Abstract
The Warburg effect, a unique glycolytic phenomenon in cancer cells, presents a promising target for developing selective anticancer agents. Previously, BH10, a hit compound disrupting glycolytic metabolism, was identified via phenotypic screening, with Kelch-like ECH-associated protein 1 (Keap1) proposed as a potential [...] Read more.
The Warburg effect, a unique glycolytic phenomenon in cancer cells, presents a promising target for developing selective anticancer agents. Previously, BH10, a hit compound disrupting glycolytic metabolism, was identified via phenotypic screening, with Kelch-like ECH-associated protein 1 (Keap1) proposed as a potential target. To enhance its potency and selectivity, a library of BH10-derived salt compounds was synthesized. Among these, 7b exhibited nanomolar anticancer activity (IC50 = 22.97 nM) and a high selectivity ratio (IC50 of non-cancerous cells/IC50 of cancer cells = 41.43). Molecular docking revealed that all naphthoimidazole salt analogues (7af) bind to Keap1 via carbonyl-mediated interactions, with variations in hydrogen-bonding residues (e.g., VAL606, ILE559). Full article
Show Figures

Figure 1

19 pages, 3519 KiB  
Review
Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review
by Paulo A. Melo, Pâmella Dourila Nogueira-Souza, Mayara Amorim Romanelli, Marcelo A. Strauch, Marcelo de Oliveira Cesar, Marcos Monteiro-Machado, Fernando Chagas Patrão-Neto, Sabrina R. Gonsalez, Nilton Ghiotti Siqueira, Edgar Schaeffer, Paulo R. R. Costa and Alcides J. M. da Silva
Int. J. Mol. Sci. 2025, 26(9), 3950; https://doi.org/10.3390/ijms26093950 - 22 Apr 2025
Viewed by 660
Abstract
Plant compounds that inhibit snake venom activities are relevant and can provide active molecules to counteract snake venom effects. Numerous studies on snake viperid venoms found that metalloproteinases play a significant role in the pathophysiology of hemorrhage that occurs on envenomation. Preclinical studies [...] Read more.
Plant compounds that inhibit snake venom activities are relevant and can provide active molecules to counteract snake venom effects. Numerous studies on snake viperid venoms found that metalloproteinases play a significant role in the pathophysiology of hemorrhage that occurs on envenomation. Preclinical studies using vitro and in vivo protocols investigated natural compounds and viperid snake venoms, evaluating the enzymatic, procoagulant, hemorrhagic, edematogenic, myotoxic, and lethal activities. Many studies focused on Bothrops venoms and ascribed that angiorrhexis and hemorrhage resulted from the metalloproteinase action on collagen in the basal lamina. This effect resulted in a combined action with phospholipase A2 and hyaluronidase, inducing hemorrhage, edema, and necrosis. Due to the lack of efficient antivenoms in remote areas, traditional native plant treatments remain common, especially in the Amazon. Our group studied plant extracts, isolated compounds, and lapachol synthetic derivative analogs with selective inhibition for Bothrops venom proteolytic and hemorrhagic activity and devoid of phospholipase activity. We highlight those new synthetic naphthoquinones which inhibit snake venom metalloproteinases and that are devoid of other venom enzyme inhibition. This review shows the potential use of snake venom effects, mainly Bothrops venom metalloproteinase activity, as a tool to identify and develop new active molecules against hemorrhagic effects. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Animal Toxins, Venoms and Antivenoms 2.0)
Show Figures

Figure 1

40 pages, 1645 KiB  
Review
The Occurrence, Uses, Biosynthetic Pathway, and Biotechnological Production of Plumbagin, a Potent Antitumor Naphthoquinone
by Polavarapu B. Kavi Kishor, Bangaru Naidu Thaddi, Rajasheker Guddimalli, Tukaram Dayaram Nikam, Krothapalli Raja Surya Sambasiva Rao, Rupasree Mukhopadhyay and Prashant Singam
Molecules 2025, 30(7), 1618; https://doi.org/10.3390/molecules30071618 - 4 Apr 2025
Viewed by 1214
Abstract
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin [...] Read more.
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin synthesis are not completely known, but details of these are being revealed. Several species, including Plumbago, Drosera, and others, are being uprooted for the extraction of plumbagin by pharmaceutical industries, leading to the destruction of natural habitats. The pharmaceutical industry is therefore facing an acute shortage of plant material. This necessitates enhancing the accumulation of plumbagin using suspensions and hairy roots to meet market demands. Many factors, such as the aggregate size of the inoculum, stability of the culture, and the sequential effects of elicitors, immobilization, and permeabilization, have been demonstrated to act synergistically and markedly augment plumbagin accumulation. Hairy root cultures can be used for the large-scale production, growth, and plumbagin accumulation, and the exploration of their efficacy is now imperative. The secretion of compounds into the spent medium and their in situ adsorption via resin has remarkable potential, but this has not been thoroughly exploited. Improvements in the quality of biomass, selection of cell lines, and production of plumbagin in bioreactors have thus far been sporadic, and these parameters need to be further exploited. In this review, we report the advances made relating to the importance of stable cell line selection for the accumulation of compounds in long-term cultures, hairy root cultures for the accumulation of plumbagin, and its semicontinuous production via total cell recycling in different types of bioreactors. Such advances might pave the way for industrial exploitation. The steps in the biosynthetic pathway that are currently understood might also aid us in isolating the relevant genes in order to examine the effects of their overexpression or heterologous downregulation or to edit the genome using CRISPR-Cas9 technology in order to enhance the accumulation of plumbagin. Its potential as an anticancer molecule and its mode of action have been amply demonstrated, but plumbagin has not been exploited in clinics due to its insolubility in water and its highly lipophilic nature. Plumbagin-loaded nanoemulsions, plumbagin–silver, or albumin nanoparticle formulations can overcome these problems relating to its solubility and are currently being tried to improve its bioavailability and antiproliferative activities, as discussed in the current paper. Full article
Show Figures

Graphical abstract

38 pages, 15903 KiB  
Review
Selected Medicinal Plants Used in the Treatment and Management of Tuberculosis and Related Symptoms in South Africa
by Makosha P. Mamabolo, Babalwa Tembeni, Xavier Siwe Noundou and Nontobeko P. Mncwangi
Pharmaceuticals 2025, 18(4), 513; https://doi.org/10.3390/ph18040513 - 31 Mar 2025
Viewed by 696
Abstract
Background/Objectives: Medicinal plants are used around the globe to treat and/or manage various medical conditions, including respiratory diseases such as tuberculosis, which affect the lower respiratory tract, with its related symptoms being treated and/or managed using medicinal plants. This review collates the [...] Read more.
Background/Objectives: Medicinal plants are used around the globe to treat and/or manage various medical conditions, including respiratory diseases such as tuberculosis, which affect the lower respiratory tract, with its related symptoms being treated and/or managed using medicinal plants. This review collates the available literature pertaining to the medicinal uses and phytochemistry of Carpobrotus edulis, Drosera capensis, Pelargonium reniforme, and Tulbaghia violacea used for the treatment and management of tuberculosis in South Africa. The abovementioned plants were selected based on their long history of use, anecdotal evidence, and the scientific data available. Methods: Data to compile this review article were sourced and analyzed from Google Scholar, Pubmed, ScienceDirect, and textbooks published from 2000 to 2022. The search terms included the plant and genus names of each species, tuberculosis, and Mycobacterium tuberculosis. Results: The data obtained indicate that the plants do not only have an effect on Mycobacterium tuberculosis, but also on other conditions, including cough, colds, eczema, infections, and asthma, which are differential diagnoses in suspected tuberculosis cases. The literature indicates that extracts from the four plants under review have antimicrobial activity, with MICs ranging between 0.20 and 50.00 mg/mL. The major classes of phytochemicals identified from the four medicinal plants included flavonoids, naphthoquinone, terpenoids, and sulfur-containing compounds. Conclusions: The literature review on the plants reveals that they are also used to treat other lower-respiratory ailments, including cough and fever, which may be signs and symptoms of TB. The literature review reveals that medicinal plants contain valuable phytochemicals which may be strong drug leads to combat the tuberculosis epidemic. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

30 pages, 7720 KiB  
Article
Juglone-Bearing Thiopyrano[2,3-d]thiazoles Induce Apoptosis in Colorectal Adenocarcinoma Cells
by Yuliia Kozak, Nataliya Finiuk, Robert Czarnomysy, Agnieszka Gornowicz, Roman Pinyazhko, Andrii Lozynskyi, Serhii Holota, Olga Klyuchivska, Andriy Karkhut, Svyatoslav Polovkovych, Mykola Klishch, Rostyslav Stoika, Roman Lesyk, Krzysztof Bielawski and Anna Bielawska
Cells 2025, 14(6), 465; https://doi.org/10.3390/cells14060465 - 20 Mar 2025
Viewed by 939
Abstract
Colorectal cancer is a major global health challenge, with current treatments limited by toxicity and resistance. Thiazole derivatives, known for their bioactivity, are emerging as promising alternatives. Juglone (5-hydroxy-1,4-naphthoquinone) is a naturally occurring compound with known anticancer properties, and its incorporation into thiopyrano[2,3-d]thiazole [...] Read more.
Colorectal cancer is a major global health challenge, with current treatments limited by toxicity and resistance. Thiazole derivatives, known for their bioactivity, are emerging as promising alternatives. Juglone (5-hydroxy-1,4-naphthoquinone) is a naturally occurring compound with known anticancer properties, and its incorporation into thiopyrano[2,3-d]thiazole scaffolds may enhance their therapeutic potential. This study examined the cytotoxicity of thiopyrano[2,3-d]thiazoles and their effects on apoptosis in colorectal cancer cells. Les-6547 and Les-6557 increased the population of ROS-positive HT-29 cancer cells approximately 10-fold compared with control cells (36.3% and 38.5% vs. 3.8%, respectively), potentially contributing to various downstream effects. Elevated ROS levels were associated with cell cycle arrest, inhibition of DNA biosynthesis, and reduced cell proliferation. A significant shift in the cell cycle distribution was observed, with an increase in S-phase (from 17.3% in the control to 34.7% to 51.3% for Les-6547 and Les-6557, respectively) and G2/M phase (from 24.3% to 39.9% and 28.8%). Additionally, Les-6547 and Les-6557 inhibited DNA biosynthesis in HT-29 cells, with IC50 values of 2.21 µM and 2.91 µM, respectively. Additionally, ROS generation may initiate the intrinsic apoptotic pathway. Les-6547 and Les-6557 activated both intrinsic and extrinsic apoptotic pathways, demonstrated by notable increases in the activity of caspase 3/7, 8, 9, and 10. This study provides a robust basis for investigating the detailed molecular mechanisms of action and therapeutic potential of Les-6547 and Les-6557. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

Back to TopTop