Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99
Abstract
:1. Introduction
2. Results
2.1. Antifungal Activity
2.2. Interaction Studies
2.2.1. Naphthoquinones That Enhance the Antifungal Activity of Amphotericin B
2.2.2. Interaction Profiles from the Checkerboard Assay
2.3. Toxicity Assays
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Naphthoquinones and Drugs
4.3. Antifungal Activity Assay
4.4. Screening and Interaction Studies
4.4.1. Growth Curve Assessment with Cryptococcus neoformans
4.4.2. Identification of the Subinhibitory Concentration of Amphotericin B
4.4.3. Screening of Naphthoquinones That Enhance the Antifungal Activity of Amphotericin B
4.4.4. Checkerboard Assay
4.4.5. Cytotoxicity Assay
4.4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-ClNQ | 2-chloro-3-(2-fluoroanilino) naphthoquinone |
2-MNQ | 2-methoxynaphthalene-1,4-dione |
2,3-DBNQ | 2,3-dibromonaphthalene-1,4-dione |
ATCC | American Type Culture Collection |
AmB | amphotericin B |
ATVQ | atovaquone |
ERY | erythromycin |
FLC | fluconazole |
FICI | fractional inhibitory concentration index |
HIV/AIDS | human immunodeficiency virus/acquired immunodeficiency syndrome |
IVS320 | 3a,10b-Dihydro-1H-cyclopenta[b]naphtho [2,3-d]furan-5,10-dione |
Lapachol | 4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione |
MIC | minimum inhibitory concentration |
MOPS | 3-(N-morpholino)propanesulfonic acid |
RPMI | Roswell Park Memorial Institute medium |
ROS | reactive oxygen species |
References
- Bermas, A.; Geddes-McAlister, J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 2020, 114, 721–734. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Diagnosing, Preventing and Managing Cryptococcal Disease among Adults, Adolescents and Children Living with HIV; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-005217-8/978-92-4-005218-5. [Google Scholar]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet. Infect. Dis. 2017, 17, 30243–30248. [Google Scholar] [CrossRef] [PubMed]
- Zavala, S.; Baddley, J.W. Cryptococcosis. Semin. Respir. Crit. Care Med. 2020, 41, 69–79. [Google Scholar] [CrossRef]
- Melhem, M.S.C.; Leite Júnior, D.P.; Takahashi, J.P.F.; Macioni, M.; Oliveira, L.; de Araújo, L.S.; Fava, W.S.; Bonfietti, L.X.; Paniago, A.M.M.; Venturini, J.; et al. Antifungal resistance in cryptococcal infections. Pathogens 2024, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.D.P.S.B.C.; Cardoso, M.F.D.C.; de Carvalho da Silva, F.; Ferreira, V.F.; Lima, E.S.; Souza, J.V.B. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: Preliminary mechanism-of-action tests. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 26. [Google Scholar] [CrossRef]
- Pavela, R. Efficacy of naphthoquinones as insecticides against the house fly, Musca domestica L. Ind. Crops Prod. 2013, 43, 745–750. [Google Scholar] [CrossRef]
- Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones: A review. RSC Adv. 2015, 5, 20309–20338. [Google Scholar] [CrossRef]
- Gonçalves, J.C.R.; Coulidiati, T.H.; Monteiro, A.L.; de Carvalho-Gonçalves, L.C.T.; de Oliveira Valença, W.; de Oliveira, R.N.; de Amorim Câmara, C.; de Araújo, D.A.M. Antitumoral activity of novel 1,4-naphthoquinone derivative involves l-type calcium channel activation in human colorectal cancer cell line. J. Appl. Biomed. 2016, 14, 229–234. [Google Scholar] [CrossRef]
- Nair, S.V.; Baranwal, G.; Chatterjee, M.; Sachu, A.; Vasudevan, A.K.; Bose, C.; Banerji, A.; Biswas, R. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from plumbago rosea, against Staphylococcus aureus and Candida albicans. Int. J. Med. Microbiol. 2016, 306, 237–248. [Google Scholar] [CrossRef]
- Dantas, E.D.; Souza, F.J.J.d.e.; Nogueira, W.N.L.; Silva, C.C.; de Azevedo, P.H.A.; Aragão, C.F.S.; de Almeida, P.D.O.; Cardoso, M.F.D.C.; de Carvalho da Silva, F.; de Azevedo, E.P.; et al. Characterization and trypanocidal activity of a novel pyranaphthoquinone. Molecules 2017, 22, 1631. [Google Scholar] [CrossRef]
- Almeida, J.D.R.; Fonseca, R.S.K.; Sousa, N.S.O.; Cortez, A.C.A.; Lima, E.S.; Oliveira, J.G.S.; Souza, É.S.; Frickmann, H.; Souza, J.V.B. Antifungal potential, mechanism of action, and toxicity of 1,4-naphthoquinone derivatives. Eur. J. Microbiol. Immunol. 2024, 14, 289–295. [Google Scholar] [CrossRef]
- Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Da Silva, F.C.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. Acad. Bras. Cienc. 2018, 90, 1187–1214. [Google Scholar] [CrossRef]
- Mone, N.S.; Bhagwat, S.A.; Sharma, D.; Chaskar, M.; Patil, R.H.; Zamboni, P.; Nawani, N.N.; Satpute, S.K. Naphthoquinones and their derivatives: Emerging trends in combating microbial pathogens. Coatings 2021, 11, 434. [Google Scholar] [CrossRef]
- Dromer, F.; Bernede-Bauduin, C.; Guillemot, D.; Lortholary, O. major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS ONE 2008, 3, e2870. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, N.S.O.; de Almeida, J.D.R.; Frickmann, H.; Lacerda, M.V.G.; de Souza, J.V.B. Searching for new antifungals for the treatment of cryptococcosis. Rev. Soc. Bras. Med. Trop. 2023, 56, e01212023. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Chang, Y.C.; Garraffo, H.M.; Kwon-Chung, K.J. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob. Agents Chemother. 2009, 53, 2804–2815. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.; Janbon, G.; Idnurm, A.; Bahn, Y.S. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb. Perspect. Med. 2014, 4, a019760. [Google Scholar] [CrossRef]
- Yang, L.; Tian, Z.; Zhao, W.; Zhang, J.; Tian, C.; Zhou, L.; Jiao, Z.; Peng, J.; Guo, G. Novel antimicrobial peptide DvAMP serves as a promising antifungal agent against Cryptococcus neoformans. Bioorg. Chem. 2023, 138, 106679. [Google Scholar] [CrossRef]
- Stover, K.R.; Hawkins, B.K.; Keck, J.M.; Barber, K.E.; Cretella, D.A. Antifungal resistance, combinations and pipeline: Oh my! Drugs Context 2023, 12, 2023-7-1. [Google Scholar] [CrossRef]
- Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G.; Durán, A.G.; Macías, M.; Rodríguez-Iglesias, M.A.; Molinillo, J.M.G.; Macías, F.A. Synthesis, antibacterial and anti-fungal activities of naphthoquinone derivatives: A structure–activity relationship study. Med. Chem. Res. 2016, 25, 1274–1285. [Google Scholar] [CrossRef]
- Navarro-Tovar, G.; Vega-Rodríguez, S.; Leyva, E.; Loredo-Carrillo, S.; de Loera, D.; López-López, L.I. The relevance and insights on 1,4-naphthoquinones as antimicrobial and antitumoral molecules: A systematic review. Pharmaceuticals 2023, 16, 496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.M.; Wang, C.Y.; Wang, B.G. A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chin. Chem. Lett. 2007, 18, 951–953. [Google Scholar] [CrossRef]
- De Jesus, D.F.F.; De Freitas, A.L.D.; De Oliveira, I.M.; De Almeida, L.C.; Bastos, R.W.; Spadari, C.C.; de Azevedo Melo, A.S.; de Assis Santos, D.; Costa-Lotufo, L.V.; Reis, F.C.G.; et al. Organoselenium has a potent fungicidal effect on Cryptococcus neoformans and inhibits the virulence factors. Antimicrob. Agents Chemother. 2023, 67, e0075922. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.C.; Le, M.T.; Nguyen, D.N.; Tran, T.D. Synthesis and biological evaluation of halo-gen-substituted 1,4-naphthoquinones as potent antifungal agents. In Proceedings of the 13th International Electronic Conference on Synthetic Organic Chemistry, Hue, Vietnam, 1–30 November 2009. [Google Scholar]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Odds, F.C. Fluconazole plus amphotericin B combinations are not contraindicated and may add benefit for the treatment of can-didemia. Clin. Infect. Dis. 2003, 36, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.C.; Palacios, D.S.; Dailey, I.; Endo, M.M.; Uno, B.E.; Wilcock, B.C.; Burke, M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 2012, 109, 2234–2239. [Google Scholar] [CrossRef]
- Ribeiro, N.Q.; Costa, M.C.; Magalhães, T.F.F.; Carneiro, H.C.S.; Oliveira, L.V.; Fontes, A.C.L.; Santos, J.R.A.; Ferreira, G.F.; Araujo, G.R.S.; Alves, V.; et al. Atorvastatin as a promising anticryptococcal agent. Int. J. Antimicrob. Agents 2017, 49, 695–702. [Google Scholar] [CrossRef]
- Rossi, S.A.; De Oliveira, H.C.; Agreda-Mellon, D.; Lucio, J.; Soares Mendes-Giannini, M.J.; Gar-cía-Cambero, J.P.; Zaragoza, O. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob. Agents Chemother. 2020, 64, e01921–19. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Leocádio, V.A.T.; Miranda, I.L.; Magalhães, M.H.C.; Dos Santos Júnior, V.S.; Goncalves, J.E.; Oliveira, R.B.; Maltarollo, V.G.; Bastos, R.W.; Goldman, G.; Johann, S.; et al. Thiazole derivatives as promising candidates for cryptococcosis therapy. ACS Infect. Dis. 2025, 11, 639–652. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Krishtopina, A.S.; Makarov, V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Mar. Drugs 2018, 17, 509–534. [Google Scholar] [CrossRef]
- Raghuveer, D.; Pai, V.V.; Murali, T.S.; Nayak, R. Exploring anthraquinones as antibacterial and antifungal agents. ChemistrySelect 2023, 8, e202204537. [Google Scholar] [CrossRef]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef]
- Meyer, W.; Trilles, L. Genotyping of the Cryptococcus neoformans/gattii species complex. Aust. Biochem. 2010, 41, 14–17. [Google Scholar]
- Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An atlas of the molecular types. Scientifica 2013, 2013, 675213. [Google Scholar] [CrossRef]
- Firacative, C.; Trilles, L.; Meyer, W. Recent Advances in Cryptococcus and Cryptococcosis. Microorganisms 2021, 10, 13. [Google Scholar] [CrossRef]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; Clin Lab Stand Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Freire, C.P.V.; Ferreira, S.B.; De Oliveira, N.S.M.; Matsuura, A.B.J.; Gama, I.L.; Da Silva, F.D.C.; de Souza, M.C.B.V.; Limaa, E.S.; Ferreira, V.F. Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. Medchemcomm 2010, 1, 29–32. [Google Scholar] [CrossRef]
- Rossi, S.A.; Trevijano-Contador, N.; Scorzoni, L.; Mesa-Arango, A.C.; de Oliveira, H.C.; Werther, K.; de Freitas Raso, T.; Mendes-Giannini, M.J.S.; Zaragoza, O.; Fusco-Almeida, A.M. Impact of resistance to fluconazole on virulence and morphological aspects of Cryptococcus neoformans and Cryp-tococcus gattii isolates. Front. Microbiol. 2016, 7, 153. [Google Scholar] [CrossRef]
- de Oliveira, H.C.; Monteiro, M.C.; Rossi, S.A.; Pemán, J.; Ruiz-Gaitán, A.; Mendes-Giannini, M.J.S.; Mellado, E.; Zaragoza, O. Identification of off-patent compounds that present antifungal activity against the emerging fungal pathogen Candida auris. Front. Cell. Infect. Microbiol. 2019, 9, 83. [Google Scholar] [CrossRef]
- Martinez-Irujo, J.J.; Villahermosa, M.L.; Alberdi, E.; Santiago, E. A checkerboard method to evaluate interactions between drugs. Biochem. Pharmacol. 1996, 51, 635–644. [Google Scholar] [CrossRef]
- Khalil, M.A.; El-Shanshoury, A.E.-R.R.; Alghamdi, M.A.; Sun, J.; Ali, S.S. Streptomyces catenulae as a novel marine actinobacterium mediated silver nanoparticles: Characterization, biological activities, and proposed mechanism of antibacterial action. Front. Microbiol. 2022, 13, 833154. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.F.; Baltazar, L.M.; Santos, J.R.A.; Monteiro, A.S.; Fraga, L.A.O.; Resende-Stoianoff, M.A.; Santos, D.A. The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J. Antimicrob. Chemother. 2013, 68, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Gogal, R.M.; Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 1994, 170, 211–224. [Google Scholar] [CrossRef] [PubMed]
Microorganisms | Minimum Inhibitory Concentration—MIC100 (µg/mL) 1 | |||||
---|---|---|---|---|---|---|
Lapachol | 2,3-DBNQ | 2-MNQ | 2-ClFN | ATVQ | AmB | |
C. neoformans H99 | 1.000 | 0.19 | 6.25 | 100 | 400 | 0.5 |
C. neoformans (VNI) | 1.000 | 0.19 | 3.12 | 100 | 400 | 0.5 |
C. neoformans (VNII) | 1.000 | 0.19 | 6.25 | 200 | 400 | 0.5 |
C. neoformans (VNIII) | 1.000 | 0.19 | 12.5 | 100 | 400 | 0.5 |
C. neoformans (VNIV) | 800 | 0.19 | 6.25 | 100 | 400 | 0.5 |
C. gatti (VGI) | 800 | 0.19 | 6.25 | 100 | 400 | 0.5 |
C. gatti (VGII) | 800 | 0.19 | 12.5 | 100 | 400 | 0.5 |
C. gatti (VGIII) | 800 | 0.19 | 6.25 | 200 | 400 | 0.5 |
C. gatti (VGIV) | 800 | 0.19 | 6.25 | 100 | 400 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, N.S.O.d.; Almeida, J.D.R.d.; Rocha, L.S.d.; Moreira, I.d.M.B.; Fernandes, F.d.S.; Matsuura, A.B.J.; Cruz, K.S.; Lima, E.S.; Souza, É.S.d.; Frickmann, H.; et al. Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99. Antibiotics 2025, 14, 602. https://doi.org/10.3390/antibiotics14060602
Sousa NSOd, Almeida JDRd, Rocha LSd, Moreira IdMB, Fernandes FdS, Matsuura ABJ, Cruz KS, Lima ES, Souza ÉSd, Frickmann H, et al. Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99. Antibiotics. 2025; 14(6):602. https://doi.org/10.3390/antibiotics14060602
Chicago/Turabian StyleSousa, Naira Sulany Oliveira de, Juan Diego Ribeiro de Almeida, Linnek Silva da Rocha, Izabela de Mesquita Bárcia Moreira, Flávia da Silva Fernandes, Ani Beatriz Jackisch Matsuura, Kátia Santana Cruz, Emersom Silva Lima, Érica Simplício de Souza, Hagen Frickmann, and et al. 2025. "Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99" Antibiotics 14, no. 6: 602. https://doi.org/10.3390/antibiotics14060602
APA StyleSousa, N. S. O. d., Almeida, J. D. R. d., Rocha, L. S. d., Moreira, I. d. M. B., Fernandes, F. d. S., Matsuura, A. B. J., Cruz, K. S., Lima, E. S., Souza, É. S. d., Frickmann, H., & Souza, J. V. B. d. (2025). Antifungal Activity of Selected Naphthoquinones and Their Synergistic Combination with Amphotericin B Against Cryptococcus neoformans H99. Antibiotics, 14(6), 602. https://doi.org/10.3390/antibiotics14060602