Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (860)

Search Parameters:
Keywords = 1,2-Diols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 149
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Phytoconstituent Detection, Antioxidant, and Antimicrobial Potentials of Moringa oleifera Lam. Hexane Extract Against Selected WHO ESKAPE Pathogens
by Kokoette Bassey and Malebelo Mabowe
Horticulturae 2025, 11(8), 869; https://doi.org/10.3390/horticulturae11080869 - 23 Jul 2025
Viewed by 408
Abstract
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin [...] Read more.
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin layer chromatography bioautography and dot blot assays, because fewer studies have been conducted using seed samples from this country. The results obtained indicated that the best oil extract yield (24.04%) was obtained for hexane from 60.10 g of powdered seeds. The yield of the other extracts ranged from 6.2 to 9.5%. Positive test results were obtained for terpenoids, steroids, alkaloids, flavonoids, phenols, and tannins, with potentially good antioxidant properties for scavenging free radicals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) and good antimicrobial activity against Acinetobacter baumannii (BAA 747), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 27853), and Pseudomonas aeruginosa (ATCC 27853), with the best zone of inhibition of 314.2 mm2 obtained for oil extracted with hexane, followed by dichloromethane, methanol, and acetone oil extracts, respectively. The best minimum inhibitory concentration (MIC) of 0.032 mg/mL against P. aeruginosa was recorded for the hexane oil, compared with ciprofloxacin, which had an MIC of 0.0039 mg/mL against the same pathogen. The identification of the in-oil compounds proposed to mitigate inhibitory activity against the test microbes was carried out through GC-MS analysis matching our results with the GC-MS library. These compounds included ursane-3,16-diol, azetidin-2-one, 1-benzyl-4à-methyl, dibutyl phthalate, 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl, octopamine rhodoxanthin, 29,30-dinorgammacerane-3,22-diol, 21,21-dimethy, cholan-24-oic acid, 3,7-dioxo, and benzyl alcohol. These are in addition to the stability-indicating marker compounds like oleic acid (54.9%), 9-Octadecenoic acid (z)-, methyl ester (23.3%), n-hexadecanoic acid (9.68%), among others observed over a five year period. Full article
Show Figures

Figure 1

23 pages, 1109 KiB  
Article
Synthesis of Novel Bioactive Lipophilic Hydroxyalkyl Esters and Diesters Based on Hydroxyphenylacetic Acids
by Andrea Fochetti, Noemi Villanova, Andrea Lombardi, Veronica Lelli, Yuri Gazzilli, Anna Maria Timperio, Giancarlo Fabrizi and Roberta Bernini
Molecules 2025, 30(15), 3087; https://doi.org/10.3390/molecules30153087 - 23 Jul 2025
Viewed by 291
Abstract
Novel lipophilic hydroxyalkyl esters were synthetized by Fischer esterification in good to excellent yields (60–96%) from a panel of hydroxyphenylacetic acids and increasing chain length (2 to 8 carbon atoms) α,ω-diols. The in vitro antioxidant activity of these compounds was evaluated by DPPH [...] Read more.
Novel lipophilic hydroxyalkyl esters were synthetized by Fischer esterification in good to excellent yields (60–96%) from a panel of hydroxyphenylacetic acids and increasing chain length (2 to 8 carbon atoms) α,ω-diols. The in vitro antioxidant activity of these compounds was evaluated by DPPH and ABTS assays. Hydroxybutyl esters and hydroxyphenylacetic acids were used as starting materials for the synthesis of novel lipophilic diesters (butyl diarylacetates) using Mitsunobu reaction. The final products were isolated in moderate to good yields (40–78%), and their structure–antioxidant activity relationships are discussed. Compounds bearing the catechol moiety on one of the two aromatic rings and high lipophilicity proved to be the strongest antioxidants and were selected for testing as antibacterials against Staphylococcus aureus and Escherichia coli, obtaining preliminary and promising results. Full article
Show Figures

Graphical abstract

14 pages, 2041 KiB  
Article
Carbohydrate-Based Chiral Ligands for the Enantioselective Addition of Diethylzinc to Aldehydes
by F. Javier López-Delgado, Daniele Lo Re, F. Franco and J. A. Tamayo
Pharmaceuticals 2025, 18(8), 1088; https://doi.org/10.3390/ph18081088 - 23 Jul 2025
Viewed by 397
Abstract
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series [...] Read more.
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series of chiral diols and β-amino alcohols was synthesized from methyl D-glucopyranoside, methyl D-galactopyranoside, and D-fructose. These ligands were tested in the titanium tetraisopropoxide-promoted enantioselective addition of diethylzinc to aromatic and aliphatic aldehydes. Results: Several ligands, particularly those with a D-fructopyranose backbone, exhibited excellent catalytic activity, with conversion rates up to 100% and enantioselectivities up to 96% ee. Notably, this study reports for the first time the use of β-amino alcohols derived from fructose and sorbose in this transformation. Conclusions: Carbohydrate-based ligands represent effective, inexpensive, and structurally versatile scaffolds for developing highly enantioselective catalysts, expanding the utility of sugars in asymmetric organometallic reactions. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 2607 KiB  
Article
One-Pot Synthesis of Phenylboronic Acid-Based Microgels for Tunable Gate of Glucose-Responsive Insulin Release at Physiological pH
by Prashun G. Roy, Jiangtao Zhang, Koushik Bhattacharya, Probal Banerjee, Jing Shen and Shuiqin Zhou
Molecules 2025, 30(15), 3059; https://doi.org/10.3390/molecules30153059 - 22 Jul 2025
Viewed by 284
Abstract
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple [...] Read more.
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple one-pot precipitation copolymerization of 4-vinylphenylboronic acid (VPBA), 2-(dimethylamino) ethyl acrylate (DMAEA), and oligo(ethylene glycol) methyl ether methacrylate (Mw = 300, MEO5MA), for gated glucose-responsive insulin release within the physiologically desirable glucose level range. The composition of the p(VPBA-DMAEA-MEO5MA) copolymer microgels were analyzed using NMR and FTIR spectra. The cis-diols of glucose can reversibly bind with the −B(OH)2 groups of the VPBA component in the microgels, resulting in the formation of negatively charged boronate esters that induce the volume phase transition of the microgels. The DMAEA component is incorporated to reduce the pKa of VPBA, thus improving the glucose sensitivity of the microgels at physiological pH. The neutral hydrophilic MEO5MA component is used to tune the onset of the glucose responsiveness of the microgels to the physiologically desirable levels. The more the MEO5MA component copolymerized in the microgels, the greater the glucose concentration required to initiate the swelling of the microgels to trigger the release of insulin. When the onset of the glucose response was tuned to 4−5 mM, the copolymer microgels retained insulin effectively in the hypo-/normo-glycemic range but also released insulin efficiently in response to the elevation of glucose levels in the hyperglycemic range, which is essential for diabetes management. The copolymer microgels display no cytotoxicity in vitro. Full article
Show Figures

Figure 1

19 pages, 3578 KiB  
Article
Internal Dynamics of Pyrene-Labeled Polyols Studied Through the Lens of Pyrene Excimer Formation
by Franklin Frasca and Jean Duhamel
Polymers 2025, 17(14), 1979; https://doi.org/10.3390/polym17141979 - 18 Jul 2025
Viewed by 307
Abstract
Series of pyrene-labeled diols (Py2-DOs) and polyols (Py-POs) were synthesized by coupling a number (nPyBA) of 1-pyrenebutyric acids to diols and polyols to yield series of end-labeled linear (nPyBA = 2) and branched (nPyBA [...] Read more.
Series of pyrene-labeled diols (Py2-DOs) and polyols (Py-POs) were synthesized by coupling a number (nPyBA) of 1-pyrenebutyric acids to diols and polyols to yield series of end-labeled linear (nPyBA = 2) and branched (nPyBA > 2) oligomers, respectively. Pyrene excimer formation (PEF) between an excited and a ground-state pyrene was studied for the Py2-DO and Py-PO samples by analyzing their fluorescence spectra and decays in tetrahydrofuran, dioxane, N,N-dimethylformamide, and dimethyl sulfoxide. Global model-free analysis (MFA) of the pyrene monomer and excimer fluorescence decays yielded the average rate constant (<k>) for PEF. After the calculation of the local pyrene concentration ([Py]loc) for the Py2-DO and Py-PO samples, the <k>-vs.-[Py]loc plots were linear in each solvent, with larger and smaller slopes for the Py2-DO and Py-PO samples, respectively, resulting in a clear kink in the middle of the plot. The difference in slope was attributed to a bias for PEF between pyrenes close to one another on the densely branched Py-PO constructs resulting in lower apparent [Py]loc and <k> values. This study illustrated the ability of PEF to probe how steric hindrance along a main chain affects the dynamic encounters between substituents in multifunctional oligomers such as diols and polyols. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

8 pages, 660 KiB  
Communication
Very-Long-Chain Resorcinolic Lipids of Ailanthus altissima Samaras
by Elżbieta G. Magnucka, Robert Zarnowski and Przemysław Bąbelewski
Molecules 2025, 30(14), 2970; https://doi.org/10.3390/molecules30142970 - 15 Jul 2025
Viewed by 229
Abstract
Two new very-long-chain 5-n-alkylresorcinol (AR) homologues, that is, 5-n-nonacosylbenzene-1,3-diol and 5-n-hentriacontylbenzene-1,3-diol, were isolated from acetone extracts of Ailanthus altissima samaras. These phenolic compounds were detected in nearly equal proportions, although their total content varied considerably between samples [...] Read more.
Two new very-long-chain 5-n-alkylresorcinol (AR) homologues, that is, 5-n-nonacosylbenzene-1,3-diol and 5-n-hentriacontylbenzene-1,3-diol, were isolated from acetone extracts of Ailanthus altissima samaras. These phenolic compounds were detected in nearly equal proportions, although their total content varied considerably between samples from urban-grown trees. No correlation was observed between AR levels and the physiological state of the tree, suggesting that environmental conditions may strongly influence AR biosynthesis in A. altissima. Furthermore, the isolated AR mixture exhibited antifungal activity against soil-borne phytopathogens of the genera Fusarium and Rhizoctonia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

23 pages, 3606 KiB  
Article
Complementary Synthesis of Anti- and Syn-Hydroxymethyl 1,3-Diols via Regioselective Ring Opening of TIPS-Protected 2,3-Epoxy Alcohols: Toward Polypropionate Fragments
by Raúl R. Rodríguez-Berríos and José A. Prieto
Organics 2025, 6(3), 29; https://doi.org/10.3390/org6030029 - 10 Jul 2025
Viewed by 666
Abstract
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage [...] Read more.
Hydroxymethyl 1,3-diol motifs are common structural motifs in natural products, particularly in polypropionates with important therapeutic potential. However, general and complementary methods for their regio- and diastereoselective synthesis remain limited. In this study, we expanded a second-generation epoxide-based methodology involving the regioselective cleavage of TIPS-monoprotected cis- and trans-2,3-epoxy alcohols using alkenyl Grignard reagents. Regioselective ring opening of cis-epoxides provided anti-1,3-diols, while trans-epoxides afforded the corresponding syn-1,3-diols. The use of cis-propenylmagnesium bromide and vinyl Grignard reagents enabled direct access to cis- and terminal homoallylic 1,3-diols, respectively, with moderate to good yields (46–88%) and excellent regioselectivities (95:5). In contrast, reactions with trans-propenyl Grignard reagent led to partial alkene isomerization, limiting their synthetic utility. To address this, a complementary two-step approach employing propynyl alanate addition followed by sodium/ammonia reduction was incorporated, providing access to trans-homoallylic 1,3-diols with high diastereoselectivity. All 1,3-diols were characterized by NMR spectroscopy, confirming regioselective epoxide opening. These combined strategies offer a practical and modular platform for the synthesis of syn- and anti-hydroxymethylated 1,3-diols and their application to the construction of polypropionate-type fragments, supporting future efforts in the total synthesis of polyketide natural products. Full article
Show Figures

Figure 1

11 pages, 548 KiB  
Article
Synthesis of Heterocyclic Compounds with a Cineole Fragment in Reactions of α-Pinene-Derived Diol and Monoterpenoid Aldehydes
by Oksana S. Patrusheva, Irina V. Ilyina, Nariman F. Salakhutdinov, Stela T. Dragomanova and Konstantin P. Volcho
Compounds 2025, 5(3), 25; https://doi.org/10.3390/compounds5030025 - 7 Jul 2025
Viewed by 283
Abstract
Monoterpenes and their derivatives are important starting compounds in the design of new biologically active substances. In particular, cineole, isolated from eucalyptus essential oil, exhibits a wide range of biological activities. Here, the synthesis of new heterocyclic compounds containing a cineole fragment by [...] Read more.
Monoterpenes and their derivatives are important starting compounds in the design of new biologically active substances. In particular, cineole, isolated from eucalyptus essential oil, exhibits a wide range of biological activities. Here, the synthesis of new heterocyclic compounds containing a cineole fragment by the acid-catalyzed condensation of α-pinene-derived 8-hydroxy-6-hydroxymethyllimonene with monoterpene aldehydes was carried out for the first time. The reactions of 8-hydroxy-6-hydroxymethyllimonene with cuminaldehyde, perillylaldehyde, myrtenal, citral, and geranial were studied in the presence of heterogeneous K10 clay or Lewis acid BF3·Et2O. The main products of these reactions were compounds with the methanopyrano[4,3-b]pyran scaffold having a 1,8-cineole fragment. As a result of this work, five new compounds with the methanopyrano[4,3-b]pyran scaffold were synthesized. The use of BF3·Et2O led to an increase in the yields of target products, compared with the results obtained on K10 clay. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

19 pages, 2735 KiB  
Article
Urethane Macromonomers: Key Components for the Development of Light-Cured High-Impact Denture Bases
by Benjamin Grob, Pascal Fässler, Iris Lamparth, Sadini Omeragic, Kai Rist, Loïc Vidal, Jacques Lalevée and Yohann Catel
Polymers 2025, 17(13), 1761; https://doi.org/10.3390/polym17131761 - 26 Jun 2025
Viewed by 310
Abstract
The development of high-impact denture base formulations that are suitable for digital light processing (DLP) 3D printing is demanding. Indeed, a combination of high flexural strength/modulus and high fracture toughness is required. In this contribution, eight urethane macromonomers (UMs1-8) were synthesized [...] Read more.
The development of high-impact denture base formulations that are suitable for digital light processing (DLP) 3D printing is demanding. Indeed, a combination of high flexural strength/modulus and high fracture toughness is required. In this contribution, eight urethane macromonomers (UMs1-8) were synthesized in a one-pot, two-step procedure. Several rigid diols were first reacted with two equivalents of trimethylhexamethylene diisocyanate. The resulting diisocyanates were subsequently end-capped with a free-radically polymerizable monomer bearing a hydroxy group. UMs1-8 were combined with the monofunctional monomer (octahydro-4,7-methano-1H-indenyl)methyl acrylate and a poly(ε-caprolactone)-polydimethylsiloxane-poly(ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer (BCP1) as a toughening agent. The double-bond conversion, glass transition temperature (Tg), and mechanical properties (flexural strength/modulus, fracture toughness) of corresponding light-cured materials were measured (cured in a mold using a light-curing unit). The results showed that the incorporation of BCP1 was highly efficient at significantly increasing the fracture toughness, as long as the obtained networks exhibited a low crosslink density. The structure of the urethane macromonomer (nature of the rigid group in the spacer; nature and number of polymerizable groups) was demonstrated to be crucial to reach the desired properties (balance between flexural strength/modulus and fracture toughness). Amongst the evaluated macromonomers, UM1 and UM2 were particularly promising. By correctly adjusting the BCP1 content, light-cured formulations based on those two urethane dimethacrylates were able to fulfill ISO20795-1:2013 standard requirements regarding high-impact materials. These formulations are therefore suitable for the development of 3D printable high-impact denture bases. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Polymer Materials in Dentistry)
Show Figures

Figure 1

16 pages, 7517 KiB  
Article
The Development and Toxicological Evaluation of Novel Polyurethane Materials
by Maolan Zhang, Xuanran Luo, Maocai Jiang, Yu Wen, Peng Wang, Peixing Chen and Da Sun
Toxics 2025, 13(6), 512; https://doi.org/10.3390/toxics13060512 - 18 Jun 2025
Viewed by 943
Abstract
Polyurethane (PU) is widely employed in the biomedical field. As application scenarios become increasingly complex, it is essential to modify PU to meet diverse requirements. Additionally, the degradation of PU is closely linked to the sustainability of its function, with degradation products having [...] Read more.
Polyurethane (PU) is widely employed in the biomedical field. As application scenarios become increasingly complex, it is essential to modify PU to meet diverse requirements. Additionally, the degradation of PU is closely linked to the sustainability of its function, with degradation products having a direct impact on adjacent tissues. In this study, a novel PU containing double bonds in its main chain was developed. We investigated the influence of various ratios of soft segment composition on the degradation performance of PU, maintaining a fixed ratio of soft to hard segments and utilizing specific synthesis methods. The structure and molecular weight of the PU were analyzed using FTIR, NMR, and GPC techniques. The results of physical and chemical performance tests indicated that an increase in polycaprolactone diol (PCL diol) content within the soft segment enhanced the mechanical properties, hydrophobicity, and degradation performance of the PU. A further assessment of the degradation toxicity of PU was carried out using zebrafish as a model organism. The findings indicated that the degradation solution of PU exhibited slight toxicity to zebrafish embryonic development over prolonged degradation periods. However, it also significantly enhanced the hatching of zebrafish embryos. In summary, the novel PU developed in this study demonstrates favorable biocompatibility, and the approach of introducing reaction sites or modifying the composition of its soft segments within the molecular structure offers a promising and effective strategy to address specific application requirements. Full article
Show Figures

Graphical abstract

15 pages, 5199 KiB  
Article
Biodegradable, Wear-Resistant and Resilient Thermoplastic Polycarbonate-Based Polyurethane with Nanoscale Microphase Structure
by Shuang Su, Jintao Wang, Qi Yan, Anqi Li, Chuang Liu, Xianli Wu and Yuezhong Meng
Polymers 2025, 17(12), 1665; https://doi.org/10.3390/polym17121665 - 16 Jun 2025
Viewed by 498
Abstract
A series of PPCDL-PEG1000-TPU were prepared by melting method using CO2 based biodegradable polycarbonate diol (PPCDL) and polyethylene glycol (PEG1000) as soft segments, and hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) as hard segments. Their structure and properties were characterized to [...] Read more.
A series of PPCDL-PEG1000-TPU were prepared by melting method using CO2 based biodegradable polycarbonate diol (PPCDL) and polyethylene glycol (PEG1000) as soft segments, and hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) as hard segments. Their structure and properties were characterized to show that the products have nanoscale microphase separation, excellent wear-resistance and high resilience. PPCDL-PEG1000-TPUs have high tensile strength, high elongation at break, controllable hardness and excellent wear resistance when the content of hard segment is about 20%. Compared to PPCDL-TPU with only PPCDL as soft segment, the mechanical properties of TPU increase rather than decrease after the addition of PEG due to the crystallization behavior of PEG units in block copolymers. When the ratios of nPPCDL:nPEG are 10:1 and 4:1, the tensile strength of PPCDL-PEG1000-TPU reaches 27.5 MPa and 16.5 MPa (an increase of nearly 200% and 20% than PPCDL-TPU). The elongation at break reaches 1995% and 2485% (an increase of nearly 40% and 75% than PPCDL-TPU). Hardness of the prepared PPCDL-PEG1000-TPUs’ Shore A can be controlled in range of 70~85 by regulating the addition of PEG and their glass transition temperature (Tg) decreases with the increase of the amount of PEG incorporated. All PPCDL-PEG1000-TPUs exhibit good wear resistance with the average Akron wear volume of 12 mm3 after 4000 cycles of experiments according to national standards. PPCDL-PEG1000-TPUs show a high resilience performance with a negligible change in the hysteresis loop area after six cycles of tensile stretching. Furthermore, all PPCDL-PEG1000-TPUs possess high thermal stability, strong hydrophobicity, and low water absorption. This material has excellent application prospects and competitiveness in footwear and shock-absorbing materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 1315 KiB  
Article
Functionalisation of Lignin-Derived Diols for the Synthesis of Thermoplastic Polyurethanes and Polyester Resins
by Rachele N. Carafa, Justin J. S. Kosalka, Brigida V. Fernandes, Unnati Desai, Daniel A. Foucher and Guerino G. Sacripante
Molecules 2025, 30(12), 2604; https://doi.org/10.3390/molecules30122604 - 16 Jun 2025
Viewed by 449
Abstract
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol [...] Read more.
The functionalisation of lignin-derived phenolics (guaiacol, 4-propylguaiacol, eugenol, isoeugenol, phenol, m-cresol, catechol, syringol, syringaldehyde, and vanillin) for the synthesis of thermoplastic polyurethanes (PUs) and polyester (PE) resins is herein described. Diols were synthesised from phenolics in a one-step reaction using either glycerol carbonate or ethylene carbonate as a greener, solvent-free synthetic route. Nine of the diols were selected for the synthesis of Pus, and two of the diols were used for the synthesis of PE resins, with their physical and thermal properties characterised. Analysis of the PUs by differential scanning calorimetry (DSC) confirmed their amorphous nature, while thermogravimetric analysis (TGA) suggested improved thermal stability for all PUs with the addition of an alkyl or aldehyde substituent on the benzene ring regardless of the diisocyanate used. However, lower PU thermal stabilities were observed with the use of an aliphatic diisocyanate over an aromatic diisocyanate in the absence of an additional substituent. Analysis of the PEs by DSC also confirmed that the clear resins were all amorphous, and gel permeation chromatography (GPC) revealed significantly higher molecular weights and dispersities when an aliphatic diacid was utilised over an aromatic diacid. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Graphical abstract

18 pages, 1544 KiB  
Article
Associations Between Individual Health Risk Perceptions and Biomarkers of PAH Exposure Before and After PM2.5 Pollution in the Suburbs of Chiang Mai Province
by Sobia Kausar, Xianfeng Cao, Sumed Yadoung, Anurak Wongta, Kai Zhou, Natthapol Kosashunhanan and Surat Hongsibsong
Toxics 2025, 13(6), 491; https://doi.org/10.3390/toxics13060491 - 11 Jun 2025
Cited by 1 | Viewed by 604
Abstract
This study examines how seasonal air pollution affects health perceptions, risk awareness, and preventive behaviors among a sample of 150 individuals, particularly within vulnerable people living in Thailand. Many participants were older adults (54.7% aged ≥ 60), female (76.7%), and had a low [...] Read more.
This study examines how seasonal air pollution affects health perceptions, risk awareness, and preventive behaviors among a sample of 150 individuals, particularly within vulnerable people living in Thailand. Many participants were older adults (54.7% aged ≥ 60), female (76.7%), and had a low income (less than 10,000 THB/month (USD 295), 92.6%). Polycyclic Aromatic Hydrocarbon (PAH) exposure, as indicated by urinary 1-Hydroxypyrene (1-OHP), significantly increased during high-pollution periods (p < 0.001), while benzo[a]pyrene diol epoxide (BPDE) levels did not show significant changes. Farmers exhibited the highest PAH exposure (p = 0.018). Risk perception and preventive behavior scores rose from 0.711 to 0.748 and from 0.505 to 0.707, respectively. Notable items with high factor loadings included “burning pollutes the air and spreads pollution” (Q2.1 = 0.998) and “avoid burning of any kind” (Q4.2 = 1.007). Neurological symptoms, such as loss of consciousness, increased from 0.956 to 1.049, while respiratory problems like pneumonia went up from 0.673 to 1.07. Environmental risk knowledge-related perceptions experienced a slight decline (from 0.609 to 0.576). These results highlight the need for targeted education through community workshops and strategies like mask distribution, indoor air filtration, and early warning systems for vulnerable populations. Full article
Show Figures

Graphical abstract

21 pages, 5296 KiB  
Article
Exploring the Inhibitory Effects of Fucosylated Chondroitin Sulfate (FCS) Oligosaccharide Isolated from Stichopus horrens and the Derivatives on P-Selectin
by Caiyi Li, Huifang Sun, Xi Gu, Wen Long, Guangyu Zhu, Xiaolu Wu, Yu Wang, Pengfei Li, Le Sha, Jiali Zhang, Wenwu Sun, Na Gao, Zhili Zuo and Jinhua Zhao
Mar. Drugs 2025, 23(6), 236; https://doi.org/10.3390/md23060236 - 30 May 2025
Viewed by 639
Abstract
Unique fucosylated chondroitin sulfate (FCS) extracted from the sea cucumber Stichopus horrens was subjected to deacetylation and deaminative depolymerization to generate oligosaccharide fragments containing anTal-diol, which were further purified to obtain the trisaccharide ShFCS-3. Subsequently, the coupling of ShFCS-3 and 4-azidoaniline was achieved [...] Read more.
Unique fucosylated chondroitin sulfate (FCS) extracted from the sea cucumber Stichopus horrens was subjected to deacetylation and deaminative depolymerization to generate oligosaccharide fragments containing anTal-diol, which were further purified to obtain the trisaccharide ShFCS-3. Subsequently, the coupling of ShFCS-3 and 4-azidoaniline was achieved by reductive amination. After purification, the main product ShFCS-A1 and by-product ShFCS-A2 were obtained, which were identified as (N-(L-Fuc2S4S-α1,3-D-GlcA-β1,3-D-anTalA4S6S-1-)-4-azidoaniline) and (4S)-[2-(3-L-Fuc2S4S-α1)-D-GlcA-β1]-2,4,5-trihydroxy-5-sulfated-pent-2-enoic-acid) by 1D/2D NMR spectroscopy, respectively. ELISA experiments revealed that ShFCS-A1 exhibited P-selectin inhibition rates of 19.73% ± 9.60% at 1 μM, 96.28% ± 2.37% at 10 μM, and near-complete inhibition (99.92% ± 0.84%) at 100 μM. ShFCS-A2 demonstrated inhibition rates of 8.29% ± 3.00% at 1 μM, 74.02% ± 8.80% at 10 μM, and maximal inhibition approaching 100% at 100 μM. Cellular-level experiments revealed that ShFCS-A1 and ShFCS-A2 inhibited P-selectin binding to HL-60 cells by 92.72% ± 0.85% and 96.97% ± 1.16% at 100 μM, respectively. Molecular docking analysis indicated binding energies of −5.954 kcal/mol for ShFCS-A1 and −6.140 kcal/mol for ShFCS-A2 with P-selectin, confirming their potent inhibitory effects. These findings highlight the therapeutic potential of FCS oligosaccharides as pharmacophores and provide an important foundation for developing novel small-molecule P-selectin inhibitors. Full article
Show Figures

Figure 1

Back to TopTop