Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = (hetero) aromatics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1069 KiB  
Article
Pd/Ligand-Free Synthesis of 2-Alkynylated Pyrano[4,3-d]imidazol-4-ones via One-Pot Cu-Mediated Tandem Sonogashira Coupling/Regioselective 6-endo-dig Oxacyclization Reaction
by Abir Ayachi, Abdellatif Tikad, Vincent Lazeran, Hassan Allouchi, Marc Bletry, Rafâa Besbes, Mohamed Abarbri and Badr Jismy
Molecules 2025, 30(14), 3045; https://doi.org/10.3390/molecules30143045 - 21 Jul 2025
Viewed by 378
Abstract
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one [...] Read more.
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one in moderate to good yields with an exclusive 6-endo-dig oxacyclization. Notably, this cost-effective methodology demonstrates broad substrate compatibility with various commercially available aliphatic and (hetero)aromatic terminal alkynes. Furthermore, DFT studies were performed to elucidate the origin of this regioselective 6-endo-dig oxacyclization reaction. Full article
Show Figures

Graphical abstract

15 pages, 5221 KiB  
Article
Efficient Hydrogenolysis of Lignin into Aromatic Monomers over N-Doped Carbon Supported Co and Dual-Phase MoxC Nanoparticles
by Lei Chen, Chuanxin Cao, Kai Chang, Yuying Zhao, Dongliang Hua, Laizhi Sun, Shuangxia Yang, Zhiguo Dong and Tianjin Li
Catalysts 2025, 15(4), 297; https://doi.org/10.3390/catal15040297 - 21 Mar 2025
Viewed by 652
Abstract
The key to selectively cleaving C–O bonds in lignin to produce high-value aromatic chemicals lies in the development of efficient and stable catalysts. In this study, a heterostructured catalyst with N-doped carbon-supported Co and dual-phase MoxC nanoparticles was prepared via the [...] Read more.
The key to selectively cleaving C–O bonds in lignin to produce high-value aromatic chemicals lies in the development of efficient and stable catalysts. In this study, a heterostructured catalyst with N-doped carbon-supported Co and dual-phase MoxC nanoparticles was prepared via the in situ pyrolysis of a Co–Mo–N precursor. The dual-phase α-MoC/β-Mo2C heterostructure is adjusted by varying the Co:Mo ratio to affect the structure and electronic properties of the catalyst. The heterostructures bring about enhanced electron transfer from Co to Mo, which promotes hydrogen dissociation over the Co sites, significantly improving the catalyst’s hydrogenolysis activity and stability. The optimal catalyst with Co1MoxC@NC exhibits excellent hydrogenolysis activity; under the optimal reaction conditions (260 °C, 1 MPa H2, 3 h), the yield of aromatic monomers reaches 28.5%. Such prominent performance not only benefits from the numerous α-MoC/β-Mo2C hetero-interfaces that offer abundant active sites for hydrogen dissociation, but also should be ascribed to the strong synergistic effect between Co and Mo. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Graphical abstract

23 pages, 8553 KiB  
Article
Tripeptides Featuring Dehydrophenylalanine and Homophenylalanine: Homo- Versus Hetero-Chirality and Sequence Effects on Self-Assembly and Gelation
by André F. Carvalho, Teresa Pereira, Carlos Oliveira, Pedro Figueiredo, Alexandra Carvalho, David M. Pereira, Loic Hilliou, Manuel Bañobre-López, Bing Xu, Paula M. T. Ferreira and José A. Martins
Gels 2025, 11(3), 164; https://doi.org/10.3390/gels11030164 - 24 Feb 2025
Viewed by 1118
Abstract
Over the years, our research group developed dehydrodipeptides N-capped with aromatic moieties as protease-resistant efficacious hydrogelators, affording self-assembled hydrogels at low (critical) concentrations. Dehydrotripeptides, with different dipeptide sequences and (D,L) stereochemistry, open a wider chemical space for the [...] Read more.
Over the years, our research group developed dehydrodipeptides N-capped with aromatic moieties as protease-resistant efficacious hydrogelators, affording self-assembled hydrogels at low (critical) concentrations. Dehydrotripeptides, with different dipeptide sequences and (D,L) stereochemistry, open a wider chemical space for the development of self-assembled soft nanomaterials. In this work, a small library of N-succinylated dehydrotripeptides containing a C-terminal dehydrophenylalanine (∆Phe) residue and a scrambled dipeptide sequence with phenylalanine (Phe) and homophenylalanine (Hph) (L-Phe-L,D-Hph and L,D-Hph-L-Phe) was synthesized and characterized as a potential hydrogelator. Two pairs of diastereomeric tripeptides were synthesized, both as C-protected methyl esters and as deprotected dicarboxylic acids. Peptides with the sequence Hph-Phe-ΔPhe were obtained as a pair (D,L,Z)/(L,L,Z) of diastereomers. Their scrambled sequence analogues Phe-Hph-ΔPhe were obtained also as a diastereomeric (L,D,Z)/(L,L,Z) pair. The effect of stereochemistry (homo- vs. hetero-chirality) and sequence (Phe-∆Phe vs. Hph-∆Phe motif) on the self-assembly, biocompatibility, gelation and rheological properties of the hydrogels was studied in this work. Accessible, both as C-protected methyl esters and as dicarboxylic acids, N-succinylated dehydrotripeptides are interesting molecular architectures for the development of supramolecular nanomaterials. Interestingly, our results do not comply with the well-documented proposition that heterochiral peptides display much higher self-assembly propensity and gelation ability than their homochiral counterparts. Further studies will be necessary to fully understand the interplay between peptide sequence and homo- and hetero-chirality on peptide self-assembly and on the properties of their supramolecular materials. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

13 pages, 6433 KiB  
Article
A Theoretical Study of Positively Curved Circulenes Embedded with Five-Membered Heterocycles: Structures and Inversions
by Yijian Ma, Tianle Dai and Chengshuo Shen
Molecules 2024, 29(22), 5335; https://doi.org/10.3390/molecules29225335 - 13 Nov 2024
Viewed by 1069
Abstract
Recently, polycyclic arenes with positive curvature have gained increasing significance in the field of material chemistry. This study specifically explores the inversion barriers of a series of positively curved circulenes by using five-membered heterocycles integrated into the backbone of primitive [5]circulenes and [6]circulenes. [...] Read more.
Recently, polycyclic arenes with positive curvature have gained increasing significance in the field of material chemistry. This study specifically explores the inversion barriers of a series of positively curved circulenes by using five-membered heterocycles integrated into the backbone of primitive [5]circulenes and [6]circulenes. For hetero[5]circulenes, where one benzenoid ring is replaced by a heterocycle, the inversion barriers exhibit a strong correlation with the rotary angles of the heterocycles, and larger rotary angles result in lower inversion barriers. Additionally, the aromaticity of the circulene undergoes a significant reduction during the inversion process. As the number n of replaced rings increases, the inversion barriers can be adjusted, demonstrating an almost linear relationship with n. In the case of hetero[6]circulenes, molecules bearing heterocycles with small rotary angles also show positive curvatures. Furthermore, we examine the relationship between the radii of the fitted sphere for the circulenes and the inversion barriers, revealing an intriguing inverse proportionality between the fourth power of the radius and the inversion barrier. We anticipate that this research will offer a fresh perspective on studies related to positively curved polycyclic arenes. Full article
Show Figures

Figure 1

15 pages, 5934 KiB  
Article
Copper-Catalyzed Sonogashira-Type Coupling Reaction of Vinylacetylene ortho-Carborane with Boronic Acid in the Synthesis of Luminophores with Phosphorescent Emission
by Timofey D. Moseev, Tair A. Idrisov, Mikhail V. Varaksin, Anton N. Tsmokaluk, Valery N. Charushin and Oleg N. Chupakhin
Reactions 2024, 5(4), 868-882; https://doi.org/10.3390/reactions5040046 - 7 Nov 2024
Cited by 1 | Viewed by 1376
Abstract
A synthetic approach to prepare boron-enriched π-conjugated photoactive molecular systems based on ortho-carborane using the Cu(I)-catalyzed Sonogashira-type coupling reaction has been developed. The obtained luminophores have been found to possess absorption in the range of 300 to 400 nm, emission of up [...] Read more.
A synthetic approach to prepare boron-enriched π-conjugated photoactive molecular systems based on ortho-carborane using the Cu(I)-catalyzed Sonogashira-type coupling reaction has been developed. The obtained luminophores have been found to possess absorption in the range of 300 to 400 nm, emission of up to 700 nm, and photoluminescence quantum yields of up to 99% in non-polar solvents. TD-DFT calculations have demonstrated that the luminophores are characterized by phosphorescent emission behavior with a lifetime of about 7 μs. In addition, the rigidochromism for the synthesized compounds has been revealed; particularly, the transition electronic state and bathochromic shift have been elucidated in the emission spectra. The exhibited luminescent characteristics indicate that the elaborated vinylcarborane fluorophores could be considered as promising building blocks in the design of advanced photofunctional materials for molecular electronics. Full article
Show Figures

Graphical abstract

32 pages, 9337 KiB  
Review
Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review
by Lamia Zuniga Linan, Farayde Matta Fakhouri, Gislaine Ferreira Nogueira, Justin Zoppe and José Ignacio Velasco
Polymers 2024, 16(16), 2285; https://doi.org/10.3390/polym16162285 - 13 Aug 2024
Cited by 10 | Viewed by 2816
Abstract
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be [...] Read more.
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be explored in the preparation of food packaging; however, due to their high hydrophilic nature, packaging films produced from starch possess poor protective moisture barriers and low mechanical properties. This scenario limits their applications, especially in humid conditions. In contrast, lignin’s highly complex aromatic hetero-polymer network of phenylpropane units is known to play a filler role in polysaccharide films. Moreover, lignin can limit the biodegradability of polysaccharides films by a physical barrier, mainly, and by non-productive bindings. The main interactions affecting lignin non-productive bindings are hydrophobic interactions, electrostatic interactions, and hydrogen-bonding interactions, which are dependent on the total phenolic –OH and –COOH content in its chemical structure. In this review, the use of lignin as a reinforcement to improve the biodegradability of starch-based films in wet environments is presented. Moreover, the characteristics of the used lignins, the mechanisms of molecular interaction among these materials, and the sensitive physicochemical parameters for biodegradability detection are related. Full article
(This article belongs to the Collection Lignin)
Show Figures

Figure 1

8 pages, 1244 KiB  
Communication
Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination
by Nikolay A. Korinskiy, Anton S. Abel, Violetta A. Ionova, Stanislav I. Bezzubov, Alexei D. Averin and Irina P. Beletskaya
Molbank 2024, 2024(2), M1831; https://doi.org/10.3390/M1831 - 4 Jun 2024
Viewed by 2509
Abstract
We report a one-step synthesis of trifluoromethyl-substituted di(pyridin-2-yl)amine-based ligands. N-(hetero)aryl-substituted bis(5-(trifluoromethyl)pyridin-2-yl)amines were obtained from 2-bromo-5-(trifluoromethyl)pyridine and corresponding aromatic amines via Pd-catalyzed amination reaction in the presence of a Pd(dba)2/BINAP catalytic system. Four new ligands were prepared in good to high [...] Read more.
We report a one-step synthesis of trifluoromethyl-substituted di(pyridin-2-yl)amine-based ligands. N-(hetero)aryl-substituted bis(5-(trifluoromethyl)pyridin-2-yl)amines were obtained from 2-bromo-5-(trifluoromethyl)pyridine and corresponding aromatic amines via Pd-catalyzed amination reaction in the presence of a Pd(dba)2/BINAP catalytic system. Four new ligands were prepared in good to high yields and characterized by NMR, IR spectroscopies and mass spectrometry. The structure of one of the products was additionally supported by X-ray analysis. Full article
Show Figures

Figure 1

18 pages, 4121 KiB  
Article
1-Hydroxyalkylphosphonium Salts—Synthesis and Properties
by Jakub Adamek, Anna Kuźnik, Agnieszka Październiok-Holewa, Mirosława Grymel, Dominika Kozicka, Dominika Mierzwa and Karol Erfurt
Molecules 2024, 29(1), 18; https://doi.org/10.3390/molecules29010018 - 19 Dec 2023
Cited by 3 | Viewed by 1984
Abstract
An efficient and convenient method for the synthesis of 1-hydroxyalkylphosphonium salts is described. Reactions were carried out at room temperature, in a short time, and without chromatography for product isolation. The properties of the obtained phosphonium salts were examined and discussed. In this [...] Read more.
An efficient and convenient method for the synthesis of 1-hydroxyalkylphosphonium salts is described. Reactions were carried out at room temperature, in a short time, and without chromatography for product isolation. The properties of the obtained phosphonium salts were examined and discussed. In this paper, primary attention was paid to the stability of phosphonium salts, depending on the structure of the aldehydes used as substrates in their preparation. Other conditions such as the type of solvent, temperature, and molar ratio of the substrates were also investigated. Finally, the high reactivity of 1-hydroxyalkylphosphonium salts was demonstrated in reactions with amide-type substrates and (hetero)aromatic compounds. The developed step-by-step procedure (with the isolation of 1-hydroxyphosphonium salts) was compared to the one-pot protocol (in situ formation of such phosphonium salts). Full article
(This article belongs to the Special Issue Organophosphorus Chemistry: A New Perspective, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2232 KiB  
Article
Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity
by Raquel C. R. Gonçalves, Pablo Peñalver, Susana P. G. Costa, Juan C. Morales and Maria Manuela M. Raposo
Molecules 2023, 28(23), 7728; https://doi.org/10.3390/molecules28237728 - 23 Nov 2023
Cited by 7 | Viewed by 2006
Abstract
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized [...] Read more.
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 μM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell’s mitochondria and in the parasite’s nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series. Full article
(This article belongs to the Special Issue Design and Synthesis of Bioactive Organic Molecules)
Show Figures

Graphical abstract

22 pages, 4152 KiB  
Review
Some Aspects of α-(Acyloxy)alkyl Radicals in Organic Synthesis
by Béatrice Quiclet-Sire and Samir Z. Zard
Molecules 2023, 28(22), 7561; https://doi.org/10.3390/molecules28227561 - 13 Nov 2023
Cited by 1 | Viewed by 2138
Abstract
The preparation and use of α-(acyloxy)alkyl xanthates to generate and capture α-(acyloxy)alkyl radicals is briefly reviewed. Their inter- and intramolecular additions to both activated and unactivated, electronically unbiased, alkenes, and to (hetero)aromatic rings, as well as their radical allylation and vinylation reactions are [...] Read more.
The preparation and use of α-(acyloxy)alkyl xanthates to generate and capture α-(acyloxy)alkyl radicals is briefly reviewed. Their inter- and intramolecular additions to both activated and unactivated, electronically unbiased, alkenes, and to (hetero)aromatic rings, as well as their radical allylation and vinylation reactions are described. Application to the total synthesis of two 4-hydroxytetralone natural products is also presented. Full article
Show Figures

Graphical abstract

16 pages, 3916 KiB  
Article
Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films
by Bernard Marciniak, Sylwester Kania, Piotr Bałczewski, Ewa Różycka-Sokołowska, Joanna Wilk, Marek Koprowski, Jacek Stańdo and Janusz Kuliński
Molecules 2023, 28(17), 6422; https://doi.org/10.3390/molecules28176422 - 3 Sep 2023
Viewed by 1734
Abstract
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five [...] Read more.
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five highly substituted 10-RO-acenes of various electronic properties, i.e., two extreme electron-donor (1,3-dioxa-cyclopenta[b]) anthracenes with all RO substituents, two anthracene carbaldehydes and one benzo[b]carbazole carbaldehyde possessing both electron-donor and acceptor substituents. The hole mobility data were obtained using subsequent steady state space charge limited currents (SCLC) and Time of Flight (TOF) measurements, performed on the same sample and these were then compared with the results of theoretical hole mobility calculations obtained using the Density Functional Theory (DFT) quantum—chemical calculations using the Marcus–Hush theory. The study shows a good agreement between the theoretical and experimental values which allows for the quick and quantitative estimation of Einstein’s mobility values for highly substituted 10-RO anthracene and benzo[b]carbazole based on chemical calculations. This agreement also proves that the transport of holes follows the hopping mechanism. The theoretical calculations indicate that the reorganization energy plays a decisive role in the transport of holes in the amorphous layers of highly substituted hetero(acenes). Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Figure 1

29 pages, 9995 KiB  
Review
Application of Olefin Metathesis in the Synthesis of Carbo- and Heteroaromatic Compounds—Recent Advances
by Szymon Rogalski and Cezary Pietraszuk
Molecules 2023, 28(4), 1680; https://doi.org/10.3390/molecules28041680 - 9 Feb 2023
Cited by 5 | Viewed by 4836
Abstract
The olefin metathesis reaction has found numerous applications in organic synthesis. This is due to a number of advantages, such as the tolerance of most functional groups and sterically demanding olefins. This article reviews recent advances in the application of the metathesis reaction, [...] Read more.
The olefin metathesis reaction has found numerous applications in organic synthesis. This is due to a number of advantages, such as the tolerance of most functional groups and sterically demanding olefins. This article reviews recent advances in the application of the metathesis reaction, particularly the metathetic cyclization of dienes and enynes, in synthesis protocols leading to (hetero)aromatic compounds. Full article
(This article belongs to the Special Issue Synthesis of Heteroaromatic Compounds)
Show Figures

Figure 1

12 pages, 2640 KiB  
Article
Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene
by Mohamed S. H. Salem, Ahmed Sabri, Md. Imrul Khalid, Hiroaki Sasai and Shinobu Takizawa
Molecules 2022, 27(24), 9068; https://doi.org/10.3390/molecules27249068 - 19 Dec 2022
Cited by 13 | Viewed by 4798
Abstract
A novel double aza-oxa[7]helicene was synthesized from the commercially available N1,N4-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural [...] Read more.
A novel double aza-oxa[7]helicene was synthesized from the commercially available N1,N4-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural and optical features of this molecule have been studied using X-ray crystallographic analysis, and the absorption and emission behaviors were rationalized based on DFT calculations. Full article
(This article belongs to the Special Issue New Approaches to Synthetic Organic Chemistry)
Show Figures

Figure 1

21 pages, 2017 KiB  
Article
Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines
by Maksim A. Boichenko, Andrey Yu. Plodukhin, Vitaly V. Shorokhov, Danyla S. Lebedev, Anastasya V. Filippova, Sergey S. Zhokhov, Elena A. Tarasenko, Victor B. Rybakov, Igor V. Trushkov and Olga A. Ivanova
Molecules 2022, 27(23), 8468; https://doi.org/10.3390/molecules27238468 - 2 Dec 2022
Cited by 8 | Viewed by 4788
Abstract
We developed a straightforward synthetic route to pharmacologically important 1,5-substituted pyrrolidin-2-ones from donor–acceptor cyclopropanes bearing an ester group as one of the acceptor substituents. This method includes a Lewis acid-catalyzed opening of the donor–acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino [...] Read more.
We developed a straightforward synthetic route to pharmacologically important 1,5-substituted pyrrolidin-2-ones from donor–acceptor cyclopropanes bearing an ester group as one of the acceptor substituents. This method includes a Lewis acid-catalyzed opening of the donor–acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide range of donor–acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents can be involved in this transformation. In this process, donor–acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines react as 1,1-dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives. Full article
Show Figures

Graphical abstract

16 pages, 4181 KiB  
Article
Ligandless Palladium-Catalyzed Direct C-5 Arylation of Azoles Promoted by Benzoic Acid in Anisole
by Elisabetta Rosadoni, Federico Banchini, Sara Bellini, Marco Lessi, Luca Pasquinelli and Fabio Bellina
Molecules 2022, 27(23), 8454; https://doi.org/10.3390/molecules27238454 - 2 Dec 2022
Cited by 2 | Viewed by 2487
Abstract
The palladium-catalyzed direct arylation of azoles with (hetero)aryl halides is nowadays one of the most versatile and efficient procedures for the selective synthesis of heterobiaryls. Although this procedure is, due to its characteristics, also of great interest in the industrial field, the wide [...] Read more.
The palladium-catalyzed direct arylation of azoles with (hetero)aryl halides is nowadays one of the most versatile and efficient procedures for the selective synthesis of heterobiaryls. Although this procedure is, due to its characteristics, also of great interest in the industrial field, the wide use of a reaction medium such as DMF or DMA, two polar aprotic solvents coded as dangerous according to environmental, health, safety (EHS) parameters, strongly limits its actual use. In contrast, the use of aromatic solvents as the reaction medium for direct arylations, although some of them show good EHS values, is poorly reported, probably due to their low solvent power against reagents and their potential involvement in undesired side reactions. In this paper we report an unprecedented selective C-5 arylation procedure involving anisole as an EHS green reaction solvent. In addition, the beneficial role of benzoic acid as an additive was also highlighted, a role that had never been previously described. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop