Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Double Aza-oxa[7]helicene 3
2.2. Structure and Packing Mode of 3
2.3. Photophysical Properties
2.4. Energetic Characterization by Cyclic Voltammetry
3. Materials and Methods
3.1. General Experimental Details
3.2. Synthetic Procedures
3.2.1. General Procedure for the Synthesis of Double 3-Hydroxy Benzo[c]carbazole 2
- 7,7’-(1,4-Phenylene)bis(7H-benzo[c]carbazol-10-ol) 2
3.2.2. General Procedure for the Synthesis of Double Aza-oxa[7]helicene 3
- 1,4-Bis(10H-benzo[c]naphtho[1’,2’:4,5]furo[3,2-g]carbazol-10-yl)benzene 3
3.3. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jakubec, M.; Storch, J. Recent advances in functionalizations of helicene backbone. J. Org. Chem. 2020, 85, 13415–13428. [Google Scholar] [CrossRef] [PubMed]
- Gingras, M. One hundred years of helicene chemistry. Part 3: Applications and properties of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Chen, C.-F. Helicenes: Synthesis and applications. Chem. Rev. 2012, 112, 1463–1535. [Google Scholar] [CrossRef] [PubMed]
- Crassous, J.; Stara, I.G.; Stary, I. Helicenes: Synthesis, Properties, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Gingras, M. One hundred years of helicene chemistry. Part 1: Non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. [Google Scholar] [CrossRef]
- Gingras, M.; Félix, G.; Peresutti, R. One hundred years of helicene chemistry. Part 2: Stereoselective syntheses and chiral separations of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. [Google Scholar] [CrossRef]
- Yang, S.Y.; Qu, Y.K.; Liao, L.S.; Jiang, Z.Q.; Lee, S.T. Research progress of intramolecular π-stacked small molecules for device applications. Adv. Mater. 2022, 34, 2104125. [Google Scholar] [CrossRef]
- Han, J.; Guo, S.; Lu, H.; Liu, S.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800538. [Google Scholar] [CrossRef]
- Jeon, S.K.; Lee, H.L.; Yook, K.S.; Lee, J.Y. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. 2019, 31, 1803524. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Qiu, L. Circularly polarized photodetectors based on chiral materials: A review. Front. Chem. 2021, 9, 711488. [Google Scholar] [CrossRef]
- Brandt, J.R.; Salerno, F.; Fuchter, M.J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045. [Google Scholar] [CrossRef]
- Shang, X.; Wan, L.; Wang, L.; Gao, F.; Li, H. Emerging materials for circularly polarized light detection. J. Mater. Chem. C 2022, 10, 2400–2410. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Xie, Z.; Zhen, Y.; Hu, W.; Dong, H. Polycyclic aromatic hydrocarbon-based organic semiconductors: Ring-closing synthesis and optoelectronic properties. J. Mater. Chem. C 2022, 10, 2411–2430. [Google Scholar] [CrossRef]
- Hong, J.; Xiao, X.; Liu, H.; Dmitrieva, E.; Popov, A.A.; Yu, Z.; Li, M.D.; Ohto, T.; Liu, J.; Narita, A.; et al. Controlling the emissive, chiroptical, and electrochemical properties of double [7]helicenes through embedded aromatic rings. Chem. Eur. J. 2022, 28, e202202243. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-H.; Park, G.; Kertesz, M. Electronic structure of helicenes, C2S helicenes, and thiaheterohelicenes. Chem. Mater. 2008, 20, 3266–3277. [Google Scholar] [CrossRef]
- Rajca, A.; Wang, H.; Pink, M.; Rajca, S. Annelated heptathiophene: A fragment of a carbon–sulfur helix. Angew. Chem. Int. Ed. 2000, 39, 4481–4483. [Google Scholar] [CrossRef]
- Pieters, G.; Gaucher, A.; Marque, S.; Maurel, F.o.; Lesot, P.; Prim, D. Regio-defined amino [5]oxa-and thiahelicenes: A dramatic impact of the nature of the heteroatom on the helical shape and racemization barriers. J. Org. Chem. 2010, 75, 2096–2098. [Google Scholar] [CrossRef]
- Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. λ5-Phospha[7]helicenes: Synthesis, properties, and columnar aggregation with one-way chirality. Angew. Chem. Int. Ed. 2012, 51, 695–699. [Google Scholar] [CrossRef]
- Žádný, J.; Jančařík, A.; Andronova, A.; Šámal, M.; Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.; Šaman, D.; Císařová, I.; Stará, I.G.; et al. A general approach to optically pure [5]-,[6]-, and [7]heterohelicenes. Angew. Chem. Int. Ed. 2012, 51, 5857–5861. [Google Scholar] [CrossRef]
- Sundar, M.S.; Bedekar, A.V. Synthesis and study of 7,12,17-trioxa[11]helicene. Org. Lett. 2015, 17, 5808–5811. [Google Scholar] [CrossRef]
- Schickedanz, K.; Trageser, T.; Bolte, M.; Lerner, H.-W.; Wagner, M. A boron-doped helicene as a highly soluble, benchtop-stable green emitter. Chem. Commun. 2015, 51, 15808–15810. [Google Scholar] [CrossRef] [Green Version]
- Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. 2021, 121, 2373–2412. [Google Scholar] [CrossRef] [PubMed]
- Tsurusaki, A.; Kamikawa, K. Multiple helicenes featuring synthetic approaches and molecular structures. Chem. Lett. 2021, 50, 1913–1932. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Miao, Q. Recent progress in chemistry of multiple helicenes. Chem. Asian J. 2018, 13, 884–894. [Google Scholar] [CrossRef]
- Shen, C.; Gan, F.; Zhang, G.; Ding, Y.; Wang, J.; Wang, R.; Crassous, J.; Qiu, H. Helicene-derived aggregation-induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837–844. [Google Scholar] [CrossRef]
- Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N.L.; et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J. Am. Chem. Soc. 2016, 138, 10184–10190. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Liu, G.; Xiao, C.; Shi, Y.; Zhang, L.; Jiang, L.; Baldridge, K.K.; Li, Y.; Siegel, J.S.; Wang, Z. Corannurylene pentapetalae. J. Am. Chem. Soc. 2019, 141, 5402–5408. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Chen, C.-H.; She, N.-Z.; Juan, C.-Y.; Chang, B.; Li, M.-H.; Wang, H.-C.; Cheng, H.-W.; Yabushita, A.; Yang, Y.; et al. Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 2021, 9, 20510–20517. [Google Scholar] [CrossRef]
- Lin, Y.-C.; She, N.-Z.; Chen, C.-H.; Yabushita, A.; Lin, H.; Li, M.-H.; Chang, B.; Hsueh, T.-F.; Tsai, B.-S.; Chen, P.-T.; et al. Perylene diimide-fused dithiophenepyrroles with different end groups as acceptors for organic photovoltaics. ACS Appl. Mater. Interfaces 2022, 14, 37990–38003. [Google Scholar] [CrossRef]
- Yang, W.W.; Shen, J.J. Multiple heterohelicenes: Synthesis, properties and applications. Chem. Eur. J. 2022, 28, e202202069. [Google Scholar] [CrossRef]
- Shiraishi, K.; Rajca, A.; Pink, M.; Rajca, S. π-Conjugated conjoined double helicene via a sequence of three oxidative CC-and NN-homocouplings. J. Am. Chem. Soc. 2005, 127, 9312–9313. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, J.; Wang, J.; Li, C.; Tian, X.; Cheng, Y.; Wang, H. Syntheses and crystal structures of benzohexathia[7]helicene and naphthalene cored double helicene. Org. Lett. 2010, 12, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Nakatsuka, S.; Nakamura, M.; Hatakeyama, T. Construction of a highly distorted benzene ring in a double helicene. Angew. Chem. Int. Ed. 2014, 53, 14074–14076. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. Enantioselective synthesis and enhanced circularly polarized luminescence of S-shaped double azahelicenes. J. Am. Chem. Soc. 2014, 136, 5555–5558. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Liu, H.; Dmitrieva, E.; Chen, Q.; Ma, J.; He, P.; Liu, P.; Popov, A.A.; Cao, X.-Y.; Wang, X.-Y.; et al. Furan-containing double tetraoxa[7]helicene and its radical cation. Chem. Commun. 2020, 56, 15181–15184. [Google Scholar] [CrossRef]
- Terada, N.; Uematsu, K.; Higuchi, R.; Tokimaru, Y.; Sato, Y.; Nakano, K.; Nozaki, K. Synthesis and properties of spiro-double sila[7]helicene: The LUMO spiro-conjugation. Chem. Eur. J. 2021, 27, 9342–9349. [Google Scholar] [CrossRef]
- Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J.H.; Lin, J. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 2021, 12, 142. [Google Scholar] [CrossRef]
- Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Synthesis, properties, and crystal structures of π-extended double [6]helicenes: Contorted multi-dimensional stacking lattice. Org. Biomol. Chem. 2017, 15, 4697–4703. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, C.; Liang, Q.; Bingi, C.; Zhu, W.; Qiang, P.; Wu, D.; Zhang, F. π-Extended C2-symmetric double NBN-heterohelicenes with exceptional luminescent properties. Org. Lett. 2019, 22, 209–213. [Google Scholar] [CrossRef]
- Liu, X.; Yu, P.; Xu, L.; Yang, J.; Shi, J.; Wang, Z.; Cheng, Y.; Wang, H. Synthesis for the mesomer and racemate of thiophene-based double helicene under irradiation. J. Org. Chem. 2013, 78, 6316–6321. [Google Scholar] [CrossRef]
- Sakamaki, D.; Kumano, D.; Yashima, E.; Seki, S. A facile and versatile approach to double N-heterohelicenes: Tandem oxidative C-N couplings of N-heteroacenes via cruciform dimers. Angew. Chem. Int. Ed. 2015, 54, 5404–5407. [Google Scholar] [CrossRef]
- Katayama, T.; Nakatsuka, S.; Hirai, H.; Yasuda, N.; Kumar, J.; Kawai, T.; Hatakeyama, T. Two-step synthesis of boron-fused double helicenes. J. Am. Chem. Soc. 2016, 138, 5210–5213. [Google Scholar] [CrossRef] [PubMed]
- Sakamaki, D.; Tanaka, S.; Tanaka, K.; Takino, M.; Gon, M.; Tanaka, K.; Hirose, T.; Hirobe, D.; Yamamoto, H.M.; Fujiwara, H. Double heterohelicenes composed of benzo [b]-and dibenzo [b, i] phenoxazine: A comprehensive comparison of their electronic and chiroptical properties. J. Phys. Chem. Lett. 2021, 12, 9283–9292. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Wang, X.-C.; Narita, A.; Wagner, M.; Cao, X.-Y.; Feng, X.; Müllen, K. Synthesis, structure, and chiroptical properties of a double [7]heterohelicene. J. Am. Chem. Soc. 2016, 138, 12783–12786. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-K.; Chen, X.-Y.; Guo, Y.-L.; Wang, X.-C.; Sue, A.C.-H.; Cao, X.-Y.; Wang, X.-Y. B,N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region. J. Am. Chem. Soc. 2021, 143, 17958–17963. [Google Scholar] [CrossRef]
- Salem, M.S.H.; Khalid, M.I.; Sako, M.; Higashida, K.; Lacroix, C.; Kondo, M.; Takishima, R.; Taniguchi, T.; Miura, M.; Vo-Thanh, G.; et al. Electrochemical synthesis of aza-oxa[7]helicenes via an oxidative heterocoupling and dehydrative cyclization sequence. Molecules, 2022; Submitted. [Google Scholar]
- Khalid, M.I.; Salem, M.S.H.; Sako, M.; Kondo, M.; Sasai, H.; Takizawa, S. Electrochemical synthesis of heterodehydro[7]helicenes. Commun. Chem. 2022, 5, 166. [Google Scholar] [CrossRef]
- Pushkarskaya, E.; Wong, B.; Han, C.; Capomolla, S.; Gu, C.; Stoltz, B.M.; Zhang, H. Single-step synthesis of 3-hydroxycarbazoles by annulation of electron-rich anilines and quinones. Tetrahedron Lett. 2016, 57, 5653–5657. [Google Scholar] [CrossRef]
- Mei, J.; Diao, Y.; Appleton, A.L.; Fang, L.; Bao, Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 2013, 135, 6724–6746. [Google Scholar] [CrossRef]
- Rivnay, J.; Jimison, L.H.; Northrup, J.E.; Toney, M.F.; Noriega, R.; Lu, S.; Marks, T.J.; Facchetti, A.; Salleo, A. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 2009, 8, 952–958. [Google Scholar] [CrossRef]
- Minemawari, H.; Tanaka, M.; Tsuzuki, S.; Inoue, S.; Yamada, T.; Kumai, R.; Shimoi, Y.; Hasegawa, T. Enhanced layered-herringbone packing due to long alkyl chain substitution in solution-processable organic semiconductors. Chem. Mater. 2017, 29, 1245–1254. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, J.; Jiang, T.; Peng, Q.; Ou, Q.; Shuai, Z. Intermolecular charge-transfer-induced strong optical emission from herringbone H-Aggregates. Nano Lett. 2021, 21, 5394–5400. [Google Scholar] [CrossRef]
- Gierschner, J.; Ehni, M.; Egelhaaf, H.-J.; Milián Medina, B.; Beljonne, D.; Benmansour, H.; Bazan, G.C. Solid-state optical properties of linear polyconjugated molecules: π-stack contra herringbone. J. Chem. Phys. 2005, 123, 144914–144922. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, S.; Möhwald, H. Herringbone structure in two-dimensional single crystals of cyanine dyes. II. Optical properties. J. Chem. Phys. 1995, 103, 826–833. [Google Scholar] [CrossRef]
- Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vögtle, F.; Grimme, S. Circular dichroism of helicenes investigated by time-dependent density functional theory. J. Am. Chem. Soc. 2000, 122, 1717–1724. [Google Scholar] [CrossRef]
- Demissie, T.B.; Sundar, M.S.; Thangavel, K.; Andrushchenko, V.; Bedekar, A.V.; Bouř, P. Origins of optical activity in an oxo-helicene: Experimental and computational studies. ACS Omega 2021, 6, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Haoyu, S.Y.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar]
- Lin, H.A.; Sato, Y.; Segawa, Y.; Nishihara, T.; Sugimoto, N.; Scott, L.T.; Higashiyama, T.; Itami, K. A water-soluble warped nanographene: Synthesis and applications for photoinduced cell death. Angew. Chem. Int. Ed. 2018, 57, 2874–2878. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; Li, J.; Wei, J.; Müllen, K.; Yin, M. A water-soluble, NIR-absorbing quaterrylenediimide chromophore for photoacoustic imaging and efficient photothermal cancer therapy. Angew. Chem. Int. Ed. 2019, 58, 1638–1642. [Google Scholar] [CrossRef]
- Matsuo, Y.; Chen, F.; Kise, K.; Tanaka, T.; Osuka, A. Facile synthesis of fluorescent hetero[8]circulene analogues with tunable solubilities and optical properties. Chem. Sci. 2019, 10, 11006–11012. [Google Scholar] [CrossRef]
- Bredas, J.L.; Silbey, R.; Boudreaux, D.S.; Chance, R.R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 1983, 105, 6555–6559. [Google Scholar] [CrossRef]
- Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemistry: Calling all engineers. Angew. Chem. Int. Ed. 2018, 57, 4149–4155. [Google Scholar] [CrossRef]
- Frisch, M.E.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16, Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224. [Google Scholar] [CrossRef]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Bühl, M.; van Wüllen, C. Computational evidence for a new C84 isomer. Chem. Phys. Lett. 1995, 247, 63–68. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef]
Parameters | Experimental | B3LYP 1 | wB97XD 1 | MN15 1 |
---|---|---|---|---|
Centroids’ distance (rings F’-H’) | 4.949 A° | 4.885 A° | 4.721 A° | 4.759 A° |
d1-N7-d2 Centroid angle | 46.36° | 45.43° | 44.24° | 45.51° |
C5-C6-N7-C9 Dihedral angle | 54.38° | 60.25° | 59.03° | 54.72° |
C1-C6-N7-C8 Dihedral angle | 41.86° | 57.08° | 55.34° | 51.42° |
C1-C15 Distance | 3.181 A° | 3.316 A° | 3.281 A° | 3.241 A° |
C5-C14 Distance | 3.166 A° | 3.356 A° | 3.316 A° | 3.266 A° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.S.H.; Sabri, A.; Khalid, M.I.; Sasai, H.; Takizawa, S. Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene. Molecules 2022, 27, 9068. https://doi.org/10.3390/molecules27249068
Salem MSH, Sabri A, Khalid MI, Sasai H, Takizawa S. Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene. Molecules. 2022; 27(24):9068. https://doi.org/10.3390/molecules27249068
Chicago/Turabian StyleSalem, Mohamed S. H., Ahmed Sabri, Md. Imrul Khalid, Hiroaki Sasai, and Shinobu Takizawa. 2022. "Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene" Molecules 27, no. 24: 9068. https://doi.org/10.3390/molecules27249068
APA StyleSalem, M. S. H., Sabri, A., Khalid, M. I., Sasai, H., & Takizawa, S. (2022). Two-Step Synthesis, Structure, and Optical Features of a Double Hetero[7]helicene. Molecules, 27(24), 9068. https://doi.org/10.3390/molecules27249068