Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information
3.2. Synthesis of Pyrrolidin-2-ones 2,3 from Anilines and Benzylamines
3.2.1. General Procedure 1
3.2.2. General Procedure 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef] [PubMed]
- Walji, A.; Berger, R.; Stump, C.A.; Schlegel, K.A.S.; Mulhearn, J.J.; Greshock, T.J.; Wang, D.; Fraley, M.E.; Jones, K.G. 3-Aryl and Heteroaryl Substituted 5-Trifluoromethyl Oxadiazoles as Histone Deacetylase 6 (HDAC6) Inhibitors. WO Pat. 2017222951A1, 28 December 2017. [Google Scholar]
- Walji, A.; Berger, R.; Stump, C.A.; Schlegel, K.A.S.; Mulhearn, J.J.; Greshock, T.J.; Ginnetti, A.T.; Wang, D.; Stachel, S.J.; Fraley, M.E. 3-Heterocyclyl Substituted 5-Trifluoromethyl Oxadiazoles as Histone Deacetylase 6 (HDAC6) Inhibitors. WO Pat. 2017222950A1, 28 December 2017. [Google Scholar]
- Mandegar, M.A.; Patel, S.; Ding, P.; Bhatt, U.; Holan, M.; Lee, J.; Li, Y.; Medina, J.; Nerurkar, A.; Seidl, F.; et al. Fluoroalkyl-Oxadiazoles and Uses Thereof. WO Pat. 2021127643A1, 24 June 2021. [Google Scholar]
- Carpino, P.A.; Sanner, M.A. Cannabinoid Receptors and Uses Thereof. WO Pat. 2007020502A2, 19 April 2007. [Google Scholar]
- Liu, H.; He, X.; Phillips, D.; Zhu, X.; Yang, K.; Lau, T.; Wu, B.; Xie, Y.; Nguyen, T.N.; Wang, X. Compounds and Compositions as Inhibitors of Cannabinoid Receptor 1 Activity. WO Pat. 2008076754A2, 22 December 2008. [Google Scholar]
- Pevarello, P.; Brasca, M.G.; Orsini, P.; Traquandi, G.; Longo, A.; Nesi, M.; Orzi, F.; Piutti, C.; Sansonna, P.; Varasi, M.; et al. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization. J. Med. Chem. 2005, 48, 2944–2956. [Google Scholar] [CrossRef] [PubMed]
- Bregman, H.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Gu, Y.; Huang, X.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; et al. Discovery of novel, induced-pocket binding oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem. 2013, 56, 4320–4342. [Google Scholar] [CrossRef]
- Heiser, U.; Ramsbeck, D.; Sommer, R.; Meyer, A.; Hoffmann, T.; Boehme, L.; Demuth, H.U. Novel Inhibitors. US Pat. 20110092501A1, 21 April 2011. [Google Scholar]
- Lee, E.C.; Tu, M.; Stevens, B.D.; Bian, J.; Aspnes, G.; Perreault, C.; Sammons, M.F.; Wright, S.W.; Litchfield, J.; Kalgutkar, A.S.; et al. Identification of a novel conformationally constrained glucagon receptor antagonist. Bioorg. Med. Chem. Lett. 2014, 24, 839–844. [Google Scholar] [CrossRef]
- Sifferlen, T.; Boller, A.; Chardonneau, A.; Cottreel, E.; Gatfield, J.; Treiber, A.; Roch, C.; Jenck, F.; Aissaoui, H.; Williams, J.T.; et al. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2. Bioorg. Med. Chem. Lett. 2015, 25, 1884–1891. [Google Scholar] [CrossRef]
- Sifferlen, T.; Boller, A.; Chardonneau, A.; Cottreel, E.; Hoecker, J.; Aissaoui, H.; Williams, J.T.; Brotschi, C.; Heidmann, B.; Siegrist, R.; et al. Discovery of substituted lactams as novel dual orexin receptor antagonists. Synthesis, preliminary structure-activity relationship studies and efforts towards improved metabolic stability and pharmacokinetic properties. Part 1. Bioorg. Med. Chem. Lett. 2014, 24, 1201–1208. [Google Scholar] [CrossRef]
- Crowley, B.; Fraley, M.; Potteiger, C.; Gilfillan, R.; Patel, M.; Arrington, K.; Mitchell, H.; Shirripa, K.; McWerther, M.; Biftu, T.; et al. Benzamide CGPR Receptor Antagonists. WO Pat. 2015161011A1, 22 October 2015. [Google Scholar]
- Kise, N.; Hamada, Y.; Sakurai, T. Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β-unsaturated esters: Synthesis of 5-aryl substituted γ-butyrolactones and lactams. Tetrahedron 2017, 73, 1143–1156. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Uchiyama, T.; Sakai, N. Reductive amination/cyclization of keto acids using a hydrosilane for selective production of lactams versus cyclic amines by switching of the indium catalyst. Angew. Chem. Int. Ed. 2016, 55, 1864–1867. [Google Scholar] [CrossRef]
- Yeh, C.H.; Korivi, R.P.; Cheng, C.H. Regioselective synthesis of γ-amino esters, nitriles, sulfones, and pyrrolidinones by nickel-catalyzed reductive coupling of aldimines and activated alkenes. Angew. Chem. Int. Ed. 2008, 47, 4892–4895. [Google Scholar] [CrossRef]
- Dugar, S.; Crouse, J.R.; Das, P.R. Isolation and characterization of a unique hydrated gamma-lactam. J. Org. Chem. 1992, 57, 5766–5768. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, X.; Feng, X. Asymmetric catalytic reactions of donor–acceptor cyclopropanes. Angew. Chem. Int. Ed. 2021, 60, 9192–9204. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Dey, A.; Banerjee, P. Relieving the stress together: Annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chem. Commun. 2021, 57, 5359–5373. [Google Scholar] [CrossRef] [PubMed]
- Augustin, A.U.; Werz, D.B. Exploiting heavier organochalcogen compounds in donor–acceptor cyclopropane chemistry. Acc. Chem. Res. 2021, 54, 1528–1541. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Das, S. Recent advances in ring-opening of donor acceptor cyclopropanes using C-nucleophiles. Org. Biomol. Chem. 2021, 19, 965–982. [Google Scholar] [CrossRef]
- Pirenne, V.; Muriel, B.; Waser, J. Catalytic enantioselective ring-opening reactions of cyclopropanes. Chem. Rev. 2021, 121, 227–263. [Google Scholar] [CrossRef]
- Sarkar, T.; Das, B.K.; Talukdar, K.; Shah, T.A.; Punniyamurthy, T. Recent advances in stereoselective ring expansion of spirocyclopropanes: Access to the spirocyclic compounds. ACS Omega 2020, 5, 26316–26328. [Google Scholar] [CrossRef]
- Werz, D.B.; Biju, A.T. Uncovering the neglected similarities of arynes and donor-acceptor cyclopropanes. Angew. Chem. Int. Ed. 2020, 59, 3385–3398. [Google Scholar] [CrossRef]
- Singh, P.; Varshnaya, R.K.; Dey, R.; Banerjee, P. Donor-acceptor cyclopropanes as an expedient building block towards the construction of nitrogen-containing molecules: An update. Adv. Synth. Catal. 2020, 362, 1447–1484. [Google Scholar] [CrossRef]
- Ivanova, O.A.; Trushkov, I.V. Donor-acceptor cyclopropanes in the synthesis of carbocycles. Chem. Rec. 2019, 19, 2189–2208. [Google Scholar] [CrossRef]
- Tomilov, Y.V.; Menchikov, L.G.; Novikov, R.A.; Ivanova, O.A.; Trushkov, I.V. Methods for the synthesis of donor-acceptor cyclopropanes. Russ. Chem. Rev. 2018, 87, 201–250. [Google Scholar] [CrossRef]
- Budynina, E.M.; Ivanov, K.L.; Sorokin, I.D.; Melnikov, M.Ya. Ring opening of donor-acceptor cyclopropanes with N-nucleophiles. Synthesis 2017, 49, 3035–3068. [Google Scholar] [CrossRef] [Green Version]
- Pagenkopf, B.L.; Vemula, N. Cycloadditions of Donor-Acceptor Cyclopropanes and Nitriles. Eur. J. Org. Chem. 2017, 2017, 2561–2567. [Google Scholar] [CrossRef]
- Grover, H.K.; Emmett, M.; Kerr, M.A. Carbocycles from donor-acceptor cyclopropanes. Org. Biomol. Chem. 2015, 13, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Novikov, R.A.; Tomilov, Y.V. Dimerization of donor-acceptor cyclopropanes. Mendeleev Commun. 2015, 25, 1–10. [Google Scholar] [CrossRef]
- Schneider, T.F.; Kaschel, J.; Werz, D.B. A new golden age for donor-acceptor cyclopropanes. Angew. Chem. Int. Ed. 2014, 53, 5504–5523. [Google Scholar] [CrossRef] [PubMed]
- Vartanova, A.E.; Levina, I.I.; Ratmanova, N.K.; Andreev, I.A.; Ivanova, O.A.; Trushkov, I.V. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org. Biomol. Chem. 2022, 20, 7795–7802. [Google Scholar] [CrossRef] [PubMed]
- Vartanova, A.E.; Plodukhin, A.Y.; Ratmanova, N.K.; Andreev, I.A.; Anisimov, M.N.; Gudimchuk, N.B.; Rybakov, V.B.; Levina, I.I.; Ivanova, O.A.; Trushkov, I.V.; et al. Expanding Stereoelectronic Limits of endo-tet Cyclizations: Synthesis of Benz[b]azepines from Donor-Acceptor Cyclopropanes. J. Am. Chem. Soc. 2021, 143, 13952–13961. [Google Scholar] [CrossRef]
- Vartanova, A.E.; Levina, I.I.; Rybakov, V.B.; Ivanova, O.A.; Trushkov, I.V. Donor-Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5-b]azepines Synthesis. J. Org. Chem. 2021, 86, 12300–12308. [Google Scholar] [CrossRef]
- Boichenko, M.A.; Ivanova, O.V.; Andreev, I.A.; Chagarovskiy, A.O.; Levina, I.I.; Rybakov, V.B.; Skvortsov, D.A.; Trushkov, I.V. Convenient approach to polyoxygenated dibenzo[c,e]pyrrolo[1,2-a]azepines from donor-acceptor cyclopropanes. Org. Chem. Front. 2018, 5, 2829–2834. [Google Scholar] [CrossRef]
- Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Skvortsov, D.A.; Trushkov, I.V.; Melnikov, M.Ya. Concise approach to pyrrolizino[1,2-b]indoles from indole-derived donor-acceptor cyclopropanes. RSC Adv. 2016, 6, 62014–62018. [Google Scholar] [CrossRef]
- Ivanov, K.L.; Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V.; Melnikov, M.Ya. Ring opening of donor-acceptor cyclopropanes with the azide ion: A tool for construction of N-heterocycles. Chem. Eur. J. 2015, 21, 4975–4987. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.F.G.; O’Connor, N.R.; Craig, R.A.; Stoltz, B.M. Lewis Acid Mediated (3 + 2) Cycloadditions of Donor-Acceptor Cyclopropanes with Heterocumulenes. Org. Lett. 2012, 14, 5314–5317. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Ishida, T.; Tsuji, J. Palladium(0)-catalyzed Cycloaddition of Activated Vinylcyclopropanes with Aryl Isocyanates. Chem. Lett. 1987, 16, 1157–1158. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.K.; Biswas, S.; Bora, S.K.; Saikia, A.K. Synthesis of 3C-alkylated active methylene substituted 2H-indazole derivatives via sequential ring opening of donor-acceptor cyclopropanes and reductive cyclization reaction. New J. Chem. 2022, 46, 12456–12460. [Google Scholar] [CrossRef]
- Unnava, R.; Chahal, K.; Reddy, K.R. Synthesis of substituted 1,2-dihydroisoquinolines via Ni(II) and Cu(I)/Ag(I) catalyzed double nucleophilic addition of arylamines to ortho-alkynyl donor-acceptor cyclopropanes (o-ADACs). Org. Biomol. Chem. 2021, 19, 6025–6029. [Google Scholar] [CrossRef]
- Chang, F.; Shen, B.; Wang, S.; Lin, L.; Feng, X. Lewis acid catalysed asymmetric cascade reaction of cyclopropyl ketones: Concise synthesis of pyrrolobenzothiazoles. Chem. Commun. 2020, 56, 13429–13432. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, N.; Banerjee, P. Regioselective Bronsted acid-catalyzed annulation of cyclopropane aldehydes with N′-aryl anthranil hydrazides: Domino construction of tetrahydropyrrolo[1,2-a]quinazolin-5(1H)ones. J. Org. Chem. 2020, 85, 3393–3406. [Google Scholar] [CrossRef]
- Augustin, A.U.; Jones, P.G.; Werz, D.B. Ring-Opening 1,3-Aminochalcogenation of Donor–Acceptor Cyclopropanes: A Three-Component Approach. Chem. Eur. J. 2019, 25, 11620–11624. [Google Scholar] [CrossRef]
- Li, S.K.; Huang, L.L.; Lv, Y.D.; Feng, H.D. Synthesis of γ-(Arylamino)butyric Acid Derivatives via Ring-Opening Addition of Arylamines to Cyclopropane-1,1-Dicarboxylates. Russ. J. Org. Chem. 2019, 55, 1432–1438. [Google Scholar] [CrossRef]
- Nambu, H.; Hirota, W.; Fukumoto, M.; Tamura, T.; Yakura, T. An Efficient Route to Highly Substituted Indoles via Tetrahydroindol-4(5H)-one Intermediates Produced by Ring-Opening Cyclization of Spirocyclopropanes with Amines. Chem. Eur. J. 2017, 23, 16799–16805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garve, L.K.B.; Jones, P.G.; Werz, D.B. Ring-Opening 1-Amino-3-aminomethylation of Donor–Acceptor Cyclopropanes via 1,3-Diazepanes. Angew. Chem. Int. Ed. 2017, 56, 9226–9230. [Google Scholar] [CrossRef]
- Xia, Y.; Lin, L.; Chang, F.; Liao, Y.; Liu, X.; Feng, X. Asymmetric ring opening/cyclization/retro-Mannich reaction of cyclopropyl ketones with aryl 1,2-diamines for the synthesis of benzimidazole derivatives. Angew. Chem. Int. Ed. 2016, 55, 12228–12232. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Q.; Zhang, H.H.; Xu, P.F.; Luo, Y.C. Lewis acid and (hypo)iodite relay catalysis allows a strategy for the synthesis of polysubstituted azetidines and tetrahydroquinolines. Org. Lett. 2016, 18, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Asymmetric synthesis of 2,3-dihydropyrroles by ring-opening/cyclization of cyclopropyl ketones using primary amines. Angew. Chem. Int. Ed. 2015, 54, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with amines: Rapid access to 2-substituted 4-hydroxyindole. Org. Lett. 2014, 16, 4012–4015. [Google Scholar] [CrossRef]
- Lebold, T.P.; Leduc, A.B.; Kerr, M.A. Zn(II)-Catalyzed Synthesis of Piperidines from Propargyl Amines and Cyclopropanes. Org. Lett. 2009, 11, 3770–3772. [Google Scholar] [CrossRef]
- Lifchits, O.; Charette, A.B. A Mild Procedure for the Lewis Acid-Catalyzed Ring-Opening of Activated Cyclopropanes with Amine Nucleophiles. Org. Lett. 2008, 10, 2809–2812. [Google Scholar] [CrossRef]
- Schobert, R.; Gordon, G.J.; Bieser, A.; Milius, W. 3-Functionalized Tetronic Acids from Domino Rearrangement/Cyclization/Ring-Opening Reactions of Allyl Tetronates. Eur. J. Org. Chem. 2003, 2003, 3637–3647. [Google Scholar] [CrossRef]
- Jacoby, D.; Celerier, J.P.; Haviari, G.; Petit, H.; Lhommet, G. Regiospecific synthesis of dihydropyrroles. Synthesis 1992, 1992, 884–887. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Schneider, J.A. Diethylaluminum Chloride–Amine Complex Mediated Aminolysis of Activated Cyclopropanes. J. Org. Chem. 1986, 51, 1372–1374. [Google Scholar] [CrossRef]
- Akaev, A.A.; Melnikov, M.Y.; Budynina, E.M. Chameleon-like Activating Nature of the Spirooxindole Group in Donor-Acceptor Cyclopropanes. Org. Lett. 2019, 21, 9795–9799. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Sun, Z.; Fernando, E.H.N.; Nesterov, V.N.; Cundari, T.R.; Wang, H. Asymmetric ring-opening of donor-acceptor cyclopropanes with primary arylamines catalyzed by a chiral heterobimetallic catalyst. ACS Catal. 2019, 9, 8285–8293. [Google Scholar] [CrossRef]
- Das, S.; Daniliuc, C.G.; Studer, A. Stereospecific 1,3-aminobromination of donor-acceptor cyclopropanes. Angew. Chem. Int. Ed. 2017, 56, 11554–11558. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.C.; Patil, D.V.; France, S. Functionalized 4-carboxy- and 4-keto-2,3-dihydropyrroles via Ni(II)-catalyzed nucleophilic amine ring-opening cyclizations of cyclopropanes. J. Org. Chem. 2014, 79, 3030–3039. [Google Scholar] [CrossRef] [PubMed]
- So, S.S.; Auvil, T.J.; Garza, V.J.; Mattson, A.E. Boronate urea activation of nitrocyclopropane carboxylates. Org. Lett. 2012, 14, 444–447. [Google Scholar] [CrossRef]
- Stewart, J.M.; Pagenkopf, G.K. Transmission of Conjugation by the Cyclopropane Ring. J. Org. Chem. 1969, 34, 7–11. [Google Scholar] [CrossRef]
- Badarinarayana, V.; Mahmud, H.; Lovely, C.J. An asymmetric total synthesis of martinellic acid. Heterocycles 2017, 95, 1082–1105. [Google Scholar]
- Gratia, S.; Mosesohn, K.; Diver, S.T. Highly Selective Ring Expansion of Bicyclo[3.1.0]hexenes. Org. Lett. 2016, 18, 5320–5323. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, W.; Yuan, M.; Wang, H.; Ding, W.; Shao, M.; Xu, X. The reaction of electron-deficient cyclopropane derivatives with aromatic amines. Synth. Commun. 2008, 38, 3346–3353. [Google Scholar] [CrossRef]
- Snider, B.B.; Ahn, Y.; O’Hare, S.M. Total Synthesis of (±)-Martinellic Acid. Org. Lett. 2001, 3, 4217–4220. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ding, W.; Cao, W.; Yu, C. The stereoselective synthesis of N-aryl-trans,trans-α-carboxyl-β-methoxy carbonyl-γ-aryl-γ-butyrolactams. Synth. Commun. 2001, 31, 3107–3112. [Google Scholar] [CrossRef]
- Snider, B.B.; Ahn, Y.; Foxman, B.M. Synthesis of the Tricyclic Triamine Core of Martinelline and Martinellic Acid. Tetrahedron Lett. 1999, 40, 3339–3342. [Google Scholar] [CrossRef]
- Abaev, V.T.; Trushkov, I.V.; Uchuskin, M.G. The Butin reaction. Chem. Heterocycl. Compd. 2016, 52, 973–995. [Google Scholar] [CrossRef]
- Trushkov, I.V.; Uchuskin, M.G.; Butin, A.V. Furan’s Gambit: Electrophile-Attack-Triggered Sacrifice of Furan Rings for the Intramolecular Construction of Azaheterocycles. Eur. J. Org. Chem. 2015, 2015, 2999–3016. [Google Scholar] [CrossRef]
- The Structures of 2c was Proved by Single-Crystal X-ray Crystallography. CCDC 2180495 Contains the Supplementary Crystallographic Data for this Paper; The Cambridge Crystallographic Data Centre: Cambridge, UK.
- Zhang, W.; Huang, L.; Wang, J. A Concise Synthesis of Pyrrolo- and Pyrrolidino[1,2-a]quinolin-1-ones via Diels-Alder Reactions of Acyliminium Cations with Olefins. Synthesis 2006, 2006, 2053–2063. [Google Scholar] [CrossRef]
- Fraser, W.; Suckling, C.J.; Wood, H.C.S. Latent inhibitors. Part 7. Inhibition of dihydro-orotate dehydrogenase by apirocyclopropanobarbiturates. J. Chem. Soc. Perkin Trans. 1 1990, 3137–3144. [Google Scholar] [CrossRef]
- Corey, E.J.; Chaykovsky, M. Dimethyloxosulfonium methylide((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to organic synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364. [Google Scholar] [CrossRef]
- Maity, A.K.; Roy, S. A Multimetallic Piano-Stool Ir–Sn3 Catalyst for Nucleophilic Substitution Reaction of γ-Hydroxy Lactams through N-Acyliminium Ions. J. Org. Chem. 2012, 77, 2935–2941. [Google Scholar] [CrossRef]
- Meyer, W.L.; Vaughan, W.R. 1,5-Diaryl-2,3-pyrrolidinediones. VIII. Synthesis and Structure Proof. J. Org. Chem. 1957, 22, 1554–1560. [Google Scholar] [CrossRef]
- Chagarovskiy, A.O.; Ivanov, K.L.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V. Reaction of dimethyl (S)-2-(p-tolyl)cyclopropane-1,1-dicarboxylate with acetonitrile. Chem. Heterocycl. Compd. 2012, 48, 825–827. [Google Scholar] [CrossRef]
Entry | Catalyst | (mol%) | Yield of 4a, % 2 |
---|---|---|---|
1 | Al(OTf)3 | 20 | - |
2 | Fe(OTf)3 | 20 | 78 3 |
3 | Sc(OTf)3 | 10 | 60 3,4 |
4 | Sc(OTf)3 | 20 | 84 |
5 | Zn(OTf)2 | 20 | 80 3 |
6 | Y(OTf)3 | 20 | 93 |
7 | Ni(ClO4)2·6H2O | 5 | 21 3 |
8 | Ni(ClO4)2·6H2O | 10 | 50 3 |
9 | Ni(ClO4)2·6H2O | 20 | 92 |
10 | TfOH | 20 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boichenko, M.A.; Plodukhin, A.Y.; Shorokhov, V.V.; Lebedev, D.S.; Filippova, A.V.; Zhokhov, S.S.; Tarasenko, E.A.; Rybakov, V.B.; Trushkov, I.V.; Ivanova, O.A. Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines. Molecules 2022, 27, 8468. https://doi.org/10.3390/molecules27238468
Boichenko MA, Plodukhin AY, Shorokhov VV, Lebedev DS, Filippova AV, Zhokhov SS, Tarasenko EA, Rybakov VB, Trushkov IV, Ivanova OA. Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines. Molecules. 2022; 27(23):8468. https://doi.org/10.3390/molecules27238468
Chicago/Turabian StyleBoichenko, Maksim A., Andrey Yu. Plodukhin, Vitaly V. Shorokhov, Danyla S. Lebedev, Anastasya V. Filippova, Sergey S. Zhokhov, Elena A. Tarasenko, Victor B. Rybakov, Igor V. Trushkov, and Olga A. Ivanova. 2022. "Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines" Molecules 27, no. 23: 8468. https://doi.org/10.3390/molecules27238468
APA StyleBoichenko, M. A., Plodukhin, A. Y., Shorokhov, V. V., Lebedev, D. S., Filippova, A. V., Zhokhov, S. S., Tarasenko, E. A., Rybakov, V. B., Trushkov, I. V., & Ivanova, O. A. (2022). Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor–Acceptor Cyclopropanes and Anilines/Benzylamines. Molecules, 27(23), 8468. https://doi.org/10.3390/molecules27238468