Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Journal = J. Compos. Sci.
Section = Composites Manufacturing and Processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1474 KiB  
Review
A Review Focused on 3D Hybrid Composites from Glass and Natural Fibers Used for Acoustic and Thermal Insulation
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra and Miroslav Muller
J. Compos. Sci. 2025, 9(8), 448; https://doi.org/10.3390/jcs9080448 - 19 Aug 2025
Viewed by 237
Abstract
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s [...] Read more.
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s modulus range of 70–85 GPa, and are widely used in automotive, aerospace, construction, and marine applications due to their excellent mechanical properties, thermal conductivity of ~0.045 W/m·K, and resistance to fire and corrosion. On the other hand, natural fibers, derived from plants and animals, are increasingly recognized for their environmental benefits and potential in sustainable construction, offering advantages such as biodegradability, lower carbon footprints, and reduced energy consumption, with a sound absorption coefficient (SAC) range of 0.7–0.8 at frequencies above 2000 Hz and thermal conductivity range of 0.07–0.09 W/m·K. Notably, the integration of these materials in construction and automotive sectors reflects a growing trend towards sustainable practices, driven by the need to mitigate carbon emissions associated with traditional building materials and enhance fuel efficiency, as seen in hybrid composites achieving 44.9 dB acoustic insulation at 10,000 Hz and a thermal conductivity range of 0.05–0.06 W/m·K in applications such as the BMW i3 door panels. Natural fibers contribute to reducing reliance on fossil fuels, supporting a circular economy through the recycling of agricultural waste, while glass fibers are instrumental in creating lightweight composites for improved vehicle performance and structural integrity. However, both materials face distinct challenges. Glass fibers, while offering superior strength, are vulnerable to chemical degradation and can pose recycling difficulties due to the complex processes involved. On the other hand, natural fibers may experience moisture absorption, affecting their durability and mechanical properties, necessitating innovations to enhance their application in demanding environments. The ongoing research into optimizing the performance of both materials highlights their relevance in future sustainable engineering practices. In summary, this review underscores the growing importance of glass and natural fibers in addressing modern environmental challenges while also improving product performance. As industries increasingly prioritize sustainability, these materials are poised to play crucial roles in shaping the future of construction and transportation, driving innovations that align with ecological goals and consumer expectations. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

15 pages, 2219 KiB  
Article
Feasibility Assessment of Hydrophobic Surface Creation via Digital Light Processing: Influence of Texture Geometry, Composition, and Resin Type
by Saher Mohammed Abo Shawish, Mohsen Barmouz and Bahman Azarhoushang
J. Compos. Sci. 2025, 9(8), 447; https://doi.org/10.3390/jcs9080447 - 19 Aug 2025
Viewed by 185
Abstract
This study explores the fabrication of hydrophobic surfaces on polymer components via Digital Light Processing (DLP), with emphases on how texture geometry, feature dimensions, and resin type influence surface wettability. Square and cylindrical microtextures were fabricated and evaluated using static contact angle measurements. [...] Read more.
This study explores the fabrication of hydrophobic surfaces on polymer components via Digital Light Processing (DLP), with emphases on how texture geometry, feature dimensions, and resin type influence surface wettability. Square and cylindrical microtextures were fabricated and evaluated using static contact angle measurements. Square-shaped structures demonstrated enhanced hydrophobicity, with contact angles reaching 133.6°, compared to approximately 100° for cylindrical counterparts of identical dimensions. Increasing pillar height to 521 µm enhanced hydrophobicity by approximately 15%, while decreasing pillar spacing to 150 µm increased contact angles from 86.8° to 106°, highlighting the role of microstructure density. For square-shaped structures, the addition of a hydrophobic agent at 3 wt.% resulted in a contact angle of 123.4°, representing a 44% improvement over the untreated sample. These findings underscore the combined influence of resin chemistry, surface texture design, and dimensional parameters on wettability behavior. Although superhydrophobicity (contact angle > 150°) was not achieved, the study demonstrates notable advancements in optimizing hydrophobicity through DLP printing. Overall, the results support DLP as a scalable and cost-effective approach for engineering functional surfaces suited to self-cleaning, biomedical, and anti-fouling applications. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

14 pages, 5271 KiB  
Article
Influence of Preparation Methods on the Physicochemical and Functional Properties of NiO-CeO2/Al2O3 Catalysts
by Laura Myltykbayeva, Manshuk Mambetova, Moldir Anissova, Nursaya Makayeva, Kusman Dossumov and Gaukhar Yergaziyeva
J. Compos. Sci. 2025, 9(8), 446; https://doi.org/10.3390/jcs9080446 - 18 Aug 2025
Viewed by 240
Abstract
This study presents a comparative investigation of 3Ni2Ce/Al catalysts synthesized via different methods dry impregnation (DI), capillary impregnation (CI), and solution combustion synthesis (SC) for the complete oxidation of methane. The aim was to elucidate the influence of the preparation method on the [...] Read more.
This study presents a comparative investigation of 3Ni2Ce/Al catalysts synthesized via different methods dry impregnation (DI), capillary impregnation (CI), and solution combustion synthesis (SC) for the complete oxidation of methane. The aim was to elucidate the influence of the preparation method on the catalytic activity and reduction behavior of the catalysts. Among the samples tested, the catalyst prepared by the solution combustion method exhibited the highest activity: at 500 °C, the methane conversion reached 82%, compared to 43% and 41% for the 3Ni2Ce/Al (CI) and 3Ni2Ce/Al (DI) prepared catalysts, respectively. At 550 °C, the 3Ni2Ce/Al (SC) catalyst achieved 99% conversion, surpassing the 3Ni2Ce/Al (CI) (72.5%) and 3Ni2Ce/Al (DI) (95%) analogs. Hydrogen temperature-programmed reduction (H2-TPR) analysis revealed that the 3Ni2Ce/Al (SC) catalyst exhibited enhanced hydrogen uptake in the range of 450–850 °C, indicating the presence of more easily reducible NiO species interacting with CeO2 and the alumina support. Scanning electron microscopy (SEM) further confirmed a more uniform distribution of the active phase on the surface of the 3Ni2Ce/Al (SC) catalyst in comparison to the impregnated samples. Overall, the findings demonstrate that the preparation method has a significant impact on the development of a redox-active catalyst structure. The superior performance of the SC-derived catalyst in methane oxidation is attributed to its improved reducibility and homogenous morphology, making it a promising candidate for high-temperature catalytic applications. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

24 pages, 9717 KiB  
Article
Core Monitoring of Thermoset Polymer Composites’ Curing with Embedded Nanocomposite Sensors: A Key Step Towards Process 4.0
by Antoine Lemartinel, Mickaël Castro and Jean-Francois Feller
J. Compos. Sci. 2025, 9(8), 435; https://doi.org/10.3390/jcs9080435 - 13 Aug 2025
Viewed by 372
Abstract
Structural composite materials are being used more than ever in aeronautics, automotive and naval, or in renewable energies fields. To reconcile the contradictory needs for higher performances and lower costs, it is crucial to ensure the real-time monitoring of as many features as [...] Read more.
Structural composite materials are being used more than ever in aeronautics, automotive and naval, or in renewable energies fields. To reconcile the contradictory needs for higher performances and lower costs, it is crucial to ensure the real-time monitoring of as many features as possible during the manufacturing process to feed a digital twin able to minimise post-fabrication controls. For thermoset composites, little information is available regarding the evolution of the polymer’s core properties during infusion and curing. The local kinetics of reticulation, in several areas of interest across the thickness of a structural composite part, are valuable data to record and analyse to guarantee the materials’ performances. This paper investigates a novel strategy curing in the core of an epoxy matrix with crosslinkable quantum-resistive nanocomposite sensors (xQRS). First, the electrical behaviour of the sensor during isothermal curing is considered. Then, the influence of the dynamic percolation and the epoxy crosslinking reaction on the resistance is examined. The evidence of a relationship between the curing state of the resin and the evolution of the xQRS resistance makes its use in the process monitoring of thermoset composites promising, especially in cases involving large and thick parts. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

11 pages, 3693 KiB  
Article
Construction of pH-Responsive Drug Carrier Based on Molecularly Imprinted Polymers for Controlled Capecitabine Release
by Zimeng Guo, Tianxiao He, Yuqi Lou, Guoxing Xu and Qiong Jia
J. Compos. Sci. 2025, 9(8), 421; https://doi.org/10.3390/jcs9080421 - 6 Aug 2025
Viewed by 302
Abstract
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its [...] Read more.
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its structural characteristics and clinical relevance. In vitro drug release studies demonstrated the pH-responsive release behaviors of the fabricated carrier, highlighting its promising applicability in the controlled release of pharmaceutical compounds containing cis-diols, particularly for site-specific therapy where pH variations serve as physiological triggers. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Graphical abstract

12 pages, 728 KiB  
Article
Comparison of Microhardness and Depth of Cure of Six Bulk-Fill Resin Composites
by Tomislav Skrinjaric, Kristina Gorseta, Jelena Bagaric, Petra Bucevic Sojcic, Jakov Stojanovic and Luc A. M. Marks
J. Compos. Sci. 2025, 9(8), 418; https://doi.org/10.3390/jcs9080418 - 5 Aug 2025
Viewed by 306
Abstract
Background. Physicomechanical properties and clinical service of bulk-fill composites depend on their adequate polymerization and depth of cure. Some manufacturers claim that these composites can be adequately cured when used in bulks exceeding 4 mm. Objective. The aim of this study was to [...] Read more.
Background. Physicomechanical properties and clinical service of bulk-fill composites depend on their adequate polymerization and depth of cure. Some manufacturers claim that these composites can be adequately cured when used in bulks exceeding 4 mm. Objective. The aim of this study was to compare Vickers microhardness (VMH) and depth of cure (DOC) of six contemporary bulk-fill resin composites at depths of 4 mm and 6 mm. Material and methods. Six bulk-fill composites were evaluated in this study: 1. Tetric EvoCeram Bulk (Ivoclar Vivadent, Schaan, Liechtenstein), (TEC); 2. Filtek Bulk Fill Posterior (3M ESPE Dental Products Division, St. Paul, MN, USA), (FBF); 3. Filtek One Bulk Fill (3M ESPE Dental Products Division, St. Paul, MN, USA, (FOB); 4. SonicFill 2 (Kerr, Orange, CA, USA), (SF2); 5. Admira Fusion X-tra (Voco, GmbH, Cuxhaven, Germany), (AFX); 6. GrandioSO X-tra (Voco, GmbH, Cuxhaven, Germany), (GSX). The 18 specimens (3 of each composite) were prepared in split Teflon moulds of 4 mm diameter and 6 mm thickness. All composites were cured in standard mode for 20 s using LED LCU (D-Light Duo, RF-Pharmaceuticals Sarl, Geneva, Switzerland; 1200–1300 mW/cm). The VMH was measured using a digital Micro Hardness Tester Shimadzu (HMV-2T E, Shimadzu Corporation, Kyoto, Japan). A 50 g (0.5 N) load force was applied for 30 s. Each specimen was measured at five places selected by chance at each level (N = 15). The hardness ratio or DOC was calculated for all samples as the ratio of bottom and surface microhardness at levels of 4 and 6 mm. Data were analysed using one-way ANOVA and Tukey’s post hoc test. Results. Significant reduction in VMH was observed for all tested materials when comparing top surface and bottom (p < 0.01). The highest VMH was obtained for GSX and AFX, and the lowest for TEC. The results show that the degree of polymerization was adequate for all tested materials at a depth of 6 mm, since the hardness ratio exceeded 0.80 in all cases. The hardness ratio at 4 mm was high for all tested composites ranging from 0.91 for TEC to 0.98 for GSX. All composites showed adequate DOC at the bottom of the 6 mm bulk samples. However, the hardness ratio was the highest for Admira Fusion X-tra (0.96) and GrandioSO X-tra (0.97). Conclusions. All tested materials showed a significant decrease in microhardness from the top surface to the bottom. The DOC was adequate for all bulk-fill composites at a depth of 6 mm cured under standard mode for 20 s. All bulk-fill resin composites evaluated in this study can be used in bulk, up to 6 mm. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 639
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Photocurable Resin Composites with Silica Micro- and Nano-Fillers for 3D Printing of Dental Restorative Materials
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
J. Compos. Sci. 2025, 9(8), 405; https://doi.org/10.3390/jcs9080405 - 1 Aug 2025
Viewed by 529
Abstract
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to [...] Read more.
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to formulate photocurable resins suitable for vat-photopolymerization. The rheological behavior of these liquid-state resins was assessed through viscosity measurements. Printed resin composites were fabricated and characterized for mechanical properties—including flexural strength, flexural modulus, and Vickers hardness—both before and after 8 weeks of water immersion. Physicochemical properties, such as water sorption, water solubility, and degree of conversion, were also evaluated. Additionally, shear bond strength to a resin-based luting agent was measured before and after artificial aging via thermocycling. A commercial dental CAD-CAM resin composite served as a reference material. Filler incorporation significantly improved the mechanical properties of the printed composites. The highest performance was observed in the composite containing 60 wt% micro-fillers, with a flexural strength of 168 ± 10 MPa, flexural modulus of 6.3 ± 0.4 GPa, and Vickers hardness of 63 ± 1 VHN, while the commercial CAD-CAM composite showed values of 152 ± 8 MPa, 7.9 ± 0.3 GPa, and 66 ± 2 VHN, respectively. Filler addition did not adversely affect the degree of conversion, although the relatively low conversion led to the elution of unpolymerized monomers and increased water solubility. The shear bond strength of the optimal printed composite remained stable after aging without silanization, demonstrating superior bonding performance compared with the CAD-CAM composite. These findings suggest that the developed 3D-printed resin composite is a promising candidate for dental restorative materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 536
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

24 pages, 3123 KiB  
Article
Investigation of the Effects of Water-to-Cement Ratios on Concrete with Varying Fine Expanded Perlite Aggregate Content
by Mortada Sabeh Whwah, Hajir A Al-Hussainy, Anmar Dulaimi, Luís Filipe Almeida Bernardo and Tiago Pinto Ribeiro
J. Compos. Sci. 2025, 9(8), 390; https://doi.org/10.3390/jcs9080390 - 24 Jul 2025
Viewed by 606
Abstract
This study investigates the influence of varying water-to-cement (W/C) ratios and fine aggregate compositions on the performance of concrete incorporating expanded perlite aggregate (EPA) as a lightweight alternative to natural sand. A total of eighteen concrete mixes were produced, each with different W/C [...] Read more.
This study investigates the influence of varying water-to-cement (W/C) ratios and fine aggregate compositions on the performance of concrete incorporating expanded perlite aggregate (EPA) as a lightweight alternative to natural sand. A total of eighteen concrete mixes were produced, each with different W/C ratios and fine-to-coarse aggregate (FA/CA) ratios, and evaluated for workability, compressive strength, flexural and tensile strength, water absorption, density, and thermal conductivity. Perlite was used to fully replace natural sand in half of the mixes, allowing a direct assessment of its effects across low-, medium-, and high-strength concrete formulations. The results demonstrate that EPA can improve workability and reduce both density and thermal conductivity, with variable impacts on mechanical performance depending on the W/C and FA/CA ratios. Notably, higher cement contents enhanced the internal curing effect of perlite, while lower-strength mixes experienced a reduction in compressive strength when perlite was used. These findings suggest that expanded perlite can be effectively applied in structural and non-structural concrete with optimized mix designs, supporting the development of lightweight, thermally efficient concretes. Mixture W16-100%EPS was considered the ideal mix because its compressive strength at the age of 65 days 44.2 MPa and the reduction in compressive strength compared to the reference mix 14% and the reduction in density 5.4% compared with the reference mix and the reduction in thermal conductivity 14% compared with the reference mix. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Viewed by 531
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

13 pages, 3880 KiB  
Article
Low-Velocity Impact Damage Behavior and Failure Mechanism of 2.5D SiC/SiC Composites
by Jianyong Tu, Xingmiao Duan, Xingang Luan, Dianwei He and Laifei Cheng
J. Compos. Sci. 2025, 9(8), 388; https://doi.org/10.3390/jcs9080388 - 22 Jul 2025
Viewed by 358
Abstract
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop [...] Read more.
Continuous SiC fiber-reinforced SiC matrix composites (SiC/SiC), as structural heat protection integrated materials, are often used in parts for large-area heat protection and sharp leading edges, and there are a variety of low-velocity impact events in their service. In this paper, a drop hammer impact test was conducted using narrow strip samples to simulate the low-velocity impact damage process of sharp-edged components. During the test, different impact energies and impact times were set to focus on investigating the low-velocity impact damage characteristics of 2.5D SiC/SiC composites. To further analyze the damage mechanism, computed tomography (CT) was used to observe the crack propagation paths and distribution states of the composites before and after impact, while scanning electron microscopy (SEM) was employed to characterize the differences in the micro-morphology of their fracture surfaces. The results show that the in-plane impact behavior of a 2.5D needled SiC/SiC composite strip samples differs from the conventional three-stage pattern. In addition to the three stages observed in the energy–time curve—namely in the quasi-linear elastic region, the severe load drop region, and the rebound stage after peak impact energy—a plateau stage appears when the impact energy is 1 J. During the impact process, interlayer load transfer is achieved through the connection of needled fibers, which continuously provide significant structural support, with obvious fiber pull-out and debonding phenomena. When the samples are subjected to two impacts, damage accumulation occurs inside the material. Under conditions with the same total energy, multiple impacts cause more severe damage to the material compared to a single impact. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

23 pages, 8320 KiB  
Review
Investigation of Phosphorus Dendrons and Their Properties for the Functionalization of Materials
by Cédric-Olivier Turrin, Valérie Maraval and Anne-Marie Caminade
J. Compos. Sci. 2025, 9(8), 382; https://doi.org/10.3390/jcs9080382 - 22 Jul 2025
Viewed by 399
Abstract
Dendrons, also named dendritic wedges, are a kind of molecular tree, having a branched structure linked to a functional core. The functional core can be used in particular for the functionalization of materials. Different types of dendrons are known, synthesized either by a [...] Read more.
Dendrons, also named dendritic wedges, are a kind of molecular tree, having a branched structure linked to a functional core. The functional core can be used in particular for the functionalization of materials. Different types of dendrons are known, synthesized either by a convergent process, from the external part to the core, or by a divergent process from the core to the external part. Polyphosphorhydrazone (PPH) dendrons are always synthesized by a divergent process, which enables a fine-tuning of both the core function and the external functions. They have been used for the functionalization of diverse materials such as silica, titanium dioxide, gold, graphene oxide, or different types of nanoparticles. Nanocomposites based on materials functionalized with PPH dendrons have been used in diverse fields such as catalysts, chemical sensors, for trapping pollutants, to support cell cultures, and against cancers, as will be emphasized in this review. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Scheme 1

15 pages, 3974 KiB  
Article
Cast Polyamide 6 Molds as a Suitable Alternative to Metallic Molds for In Situ Automated Fiber Placement
by Fynn Atzler, Ines Mössinger, Jonathan Freund, Samuel Tröger, Ashley R. Chadwick, Simon Hümbert and Lukas Raps
J. Compos. Sci. 2025, 9(7), 367; https://doi.org/10.3390/jcs9070367 - 15 Jul 2025
Viewed by 1110
Abstract
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part [...] Read more.
Thermoplastic in situ Automated Fiber Placement (AFP) is an additive manufacturing method currently investigated for its suitability for the production of aerospace-grade composite structures. A considerable expense in this process is the manufacturing and preparation of a mold in which a composite part can be manufactured. One approach to lowering these costs is the use of a 3D-printable thermoplastic mold. However, AFP lay-up on a 3D-printed mold differs from the usage of a traditional metallic mold in various aspects. Most notable is a reduced stiffness of the mold, a lower thermal conductivity of the mold, and the need for varied process parameters of the AFP process. This study focuses on the investigation of the difference in mechanical and morphological characteristics of laminates produced on metallic and polymeric molds. To this end, the tensile strength and the interlaminar shear strength of laminates manufactured on each substrate were measured and compared. Additionally, morphological analysis using scanning electron microscopy and differential scanning calorimetry was performed to compare the crystallinity in laminates. No statistically significant difference in mechanical or morphological properties was found. Thus, thermoplastics were shown to be a suitable material for non-heated molds to manufacture in situ AFP composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

20 pages, 10209 KiB  
Article
Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing
by H. M. D. U. Sewwandi, J. D. Chathuranga, W. G. C. M. Kulasooriya, D. K. A. Induranga, S. V. A. A. Indupama, G. D. C. P. Galpaya, M. K. D. M. Gunasena, H. V. V. Priyadarshana and K. R. Koswattage
J. Compos. Sci. 2025, 9(7), 365; https://doi.org/10.3390/jcs9070365 - 14 Jul 2025
Viewed by 455
Abstract
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray [...] Read more.
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Mechanical properties of the materials were investigated through compression, tensile, and bending tests in order to assess their strength and flexibility, while biodegradability was evaluated through soil burial tests. The results indicate that SCBA addition enhances compressive strength, with optimal performance obtained at 15% SCBA content, while tensile and bending strengths showed an enhancement at 5% content. FTIR and XRD analyses suggested an increase in amorphous regions and notable microstructural interactions between SCBA particles and cellulose fibers, particularly at a 10% concentration. SEM images further confirmed effective particle dispersion and improved porosity in the composite materials. Furthermore, samples incorporating SCBA exhibited superior biodegradability compared to pure pulp. Overall, these findings highlight that incorporating 10–15% SCBA provides a promising balance between mechanical integrity and environmental sustainability, offering a viable strategy for developing eco-friendly, high-performance packaging materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Composites and Manufacturing Innovations)
Show Figures

Figure 1

Back to TopTop