Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (476)

Search Parameters:
Journal = ASI
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1971 KiB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

20 pages, 1426 KiB  
Article
Hybrid CNN-NLP Model for Detecting LSB Steganography in Digital Images
by Karen Angulo, Danilo Gil, Andrés Yáñez and Helbert Espitia
Appl. Syst. Innov. 2025, 8(4), 107; https://doi.org/10.3390/asi8040107 - 30 Jul 2025
Viewed by 265
Abstract
This paper proposes a hybrid model that combines convolutional neural networks with natural language processing techniques for least significant bit-based steganography detection in grayscale digital images. The proposed approach identifies hidden messages by analyzing subtle alterations in the least significant bits and validates [...] Read more.
This paper proposes a hybrid model that combines convolutional neural networks with natural language processing techniques for least significant bit-based steganography detection in grayscale digital images. The proposed approach identifies hidden messages by analyzing subtle alterations in the least significant bits and validates the linguistic coherence of the extracted content using a semantic filter implemented with spaCy. The system is trained and evaluated on datasets ranging from 5000 to 12,500 images per class, consistently using an 80% training and 20% validation partition. As a result, the model achieves a maximum accuracy and precision of 99.96%, outperforming recognized architectures such as Xu-Net, Yedroudj-Net, and SRNet. Unlike traditional methods, the model reduces false positives by discarding statistically suspicious but semantically incoherent outputs, which is essential in forensic contexts. Full article
Show Figures

Figure 1

36 pages, 1411 KiB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 493
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

23 pages, 3847 KiB  
Article
Optimizing Sentiment Analysis in Multilingual Balanced Datasets: A New Comparative Approach to Enhancing Feature Extraction Performance with ML and DL Classifiers
by Hamza Jakha, Souad El Houssaini, Mohammed-Alamine El Houssaini, Souad Ajjaj and Abdelali Hadir
Appl. Syst. Innov. 2025, 8(4), 104; https://doi.org/10.3390/asi8040104 - 28 Jul 2025
Viewed by 325
Abstract
Social network platforms have a big impact on the development of companies by influencing clients’ behaviors and sentiments, which directly affect corporate reputations. Analyzing this feedback has become an essential component of business intelligence, supporting the improvement of long-term marketing strategies on a [...] Read more.
Social network platforms have a big impact on the development of companies by influencing clients’ behaviors and sentiments, which directly affect corporate reputations. Analyzing this feedback has become an essential component of business intelligence, supporting the improvement of long-term marketing strategies on a larger scale. The implementation of powerful sentiment analysis models requires a comprehensive and in-depth examination of each stage of the process. In this study, we present a new comparative approach for several feature extraction techniques, including TF-IDF, Word2Vec, FastText, and BERT embeddings. These methods are applied to three multilingual datasets collected from hotel review platforms in the tourism sector in English, French, and Arabic languages. Those datasets were preprocessed through cleaning, normalization, labeling, and balancing before being trained on various machine learning and deep learning algorithms. The effectiveness of each feature extraction method was evaluated using metrics such as accuracy, F1-score, precision, recall, ROC AUC curve, and a new metric that measures the execution time for generating word representations. Our extensive experiments demonstrate significant and excellent results, achieving accuracy rates of approximately 99% for the English dataset, 94% for the Arabic dataset, and 89% for the French dataset. These findings confirm the important impact of vectorization techniques on the performance of sentiment analysis models. They also highlight the important relationship between balanced datasets, effective feature extraction methods, and the choice of classification algorithms. So, this study aims to simplify the selection of feature extraction methods and appropriate classifiers for each language, thereby contributing to advancements in sentiment analysis. Full article
(This article belongs to the Topic Social Sciences and Intelligence Management, 2nd Volume)
Show Figures

Figure 1

26 pages, 984 KiB  
Article
Assessing and Prioritizing Service Innovation Challenges in UAE Government Entities: A Network-Based Approach for Effective Decision-Making
by Abeer Abuzanjal and Hamdi Bashir
Appl. Syst. Innov. 2025, 8(4), 103; https://doi.org/10.3390/asi8040103 - 28 Jul 2025
Viewed by 351
Abstract
Public service innovation research often focuses on the private or general public sectors, leaving the distinct challenges government entities face unexplored. An empirical study was carried out to bridge this gap using survey results from the United Arab Emirates (UAE) government entities. This [...] Read more.
Public service innovation research often focuses on the private or general public sectors, leaving the distinct challenges government entities face unexplored. An empirical study was carried out to bridge this gap using survey results from the United Arab Emirates (UAE) government entities. This study built on that research by further analyzing the relationships among these challenges through a social network approach, visualizing and analyzing the connections between them by utilizing betweenness centrality and eigenvector centrality as key metrics. Based on this analysis, the challenges were classified into different categories; 8 out of 22 challenges were identified as critical due to their high values in both metrics. Addressing these critical challenges is expected to create a cascading impact, helping to resolve many others. Targeted strategies are proposed, and leveraging open innovation is highlighted as an effective and versatile solution to address and mitigate these challenges. This study is one of the few to adopt a social network analysis perspective to visualize and analyze the relationships among challenges, enabling the identification of critical ones. This research offers novel and valuable insights that could assist decision-makers in UAE government entities and countries with similar contexts with actionable strategies to advance public service innovation. Full article
Show Figures

Figure 1

18 pages, 500 KiB  
Article
Hybrid Model-Based Traffic Network Control Using Population Games
by Sindy Paola Amaya, Pablo Andrés Ñañez, David Alejandro Martínez Vásquez, Juan Manuel Calderón Chávez and Armando Mateus Rojas
Appl. Syst. Innov. 2025, 8(4), 102; https://doi.org/10.3390/asi8040102 - 25 Jul 2025
Viewed by 228
Abstract
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of [...] Read more.
Modern traffic management requires sophisticated approaches to address the complexities of urban road networks, which continue to grow in complexity due to increasing urbanization and vehicle usage. Traditional methods often fall short in mitigating congestion and optimizing traffic flow, inducing the exploration of innovative traffic control strategies based on advanced theoretical frameworks. In this sense, we explore different game theory-based control strategies in an eight-intersection traffic network modeled by means of hybrid systems and graph theory, using a software simulator that combines the multi-modal traffic simulation software VISSIM and MATLAB to integrate traffic network parameters and population game criteria. Across five distinct network scenarios with varying saturation conditions, we explore a fixed-time scheme of signaling by means of fictitious play dynamics and adaptive schemes, using dynamics such as Smith, replicator, Logit and Brown–Von Neumann–Nash (BNN). Results show better performance for Smith and replicator dynamics in terms of traffic parameters both for fixed and variable signaling times, with an interesting outcome of fictitious play over BNN and Logit. Full article
Show Figures

Figure 1

22 pages, 2652 KiB  
Article
Niching-Driven Divide-and-Conquer Hill Exploration
by Junchen Wang, Changhe Li and Yiya Diao
Appl. Syst. Innov. 2025, 8(4), 101; https://doi.org/10.3390/asi8040101 - 22 Jul 2025
Viewed by 296
Abstract
Optimization problems often feature local optima with a significant difference in the basin of attraction (BoA), making evolutionary computation methods prone to discarding solutions located in less-attractive BoAs, thereby posing challenges to the search for optima in these BoAs. To enhance the ability [...] Read more.
Optimization problems often feature local optima with a significant difference in the basin of attraction (BoA), making evolutionary computation methods prone to discarding solutions located in less-attractive BoAs, thereby posing challenges to the search for optima in these BoAs. To enhance the ability to find these optima, various niching methods have been proposed to restrict the competition scope of individuals to their specific neighborhoods. However, redundant searches in more-attractive BoAs as well as necessary searches in less-attractive BoAs can only be promoted simultaneously by these methods. To address this issue, we propose a general framework for niching methods named niching-driven divide-and-conquer hill exploration (NDDCHE). Through gradually learning BoAs from the search results of a niching method and dividing the problem into subproblems with a much smaller number of optima, NDDCHE aims to bring a more balanced distribution of searches in the BoAs of optima found so far, and thus enhance the niching method’s ability to find optima in less-attractive BoAs. Through experiments where niching methods with different categories of niching techniques are integrated with NDDCHE and tested on problems with significant differences in the size of the BoA, the effectiveness and the generalization ability of NDDCHE are proven. Full article
Show Figures

Figure 1

25 pages, 1344 KiB  
Article
Cloud-Based Data-Driven Framework for Optimizing Operational Efficiency and Sustainability in Tube Manufacturing
by Michael Maiko Matonya and István Budai
Appl. Syst. Innov. 2025, 8(4), 100; https://doi.org/10.3390/asi8040100 - 22 Jul 2025
Viewed by 327
Abstract
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often [...] Read more.
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often lacks dynamic environmental indicators, while standard Life Cycle Assessment (LCA) provides environmental evaluation but uses static data unsuitable for real-time optimization. Frameworks integrating real-time data for dynamic multi-objective optimization are scarce. This study proposes a comprehensive, data-driven, cloud-based framework that overcomes these limitations. It uniquely combines three key components: (1) real-time Process Mining for actual workflows and operational KPIs; (2) dynamic LCA using live sensor data for instance-level environmental impacts (energy, emissions, waste) and (3) Multi-Objective Optimization (NSGA-II) to identify Pareto-optimal solutions balancing efficiency and sustainability. TOPSIS assists decision-making by ranking these solutions. Validated using extensive real-world data from a tube manufacturing facility processing over 390,000 events, the framework demonstrated significant, quantifiable improvements. The optimization yielded a Pareto front of solutions that surpassed baseline performance (87% efficiency; 2007.5 kg CO2/day). The optimal balanced solution identified by TOPSIS simultaneously increased operational efficiency by 5.1% and reduced carbon emissions by 12.4%. Further analysis quantified the efficiency-sustainability trade-offs and confirmed the framework’s adaptability to varying strategic priorities through sensitivity analysis. This research offers a validated framework for industrial applications that enables manufacturers to improve both operational efficiency and environmental sustainability in a unified manner, moving beyond the limitations of disconnected tools. The validated integrated framework provides a powerful, data-driven tool, recommended as a valuable approach for industrial applications seeking continuous improvement in both economic and environmental performance dimensions. Full article
Show Figures

Figure 1

32 pages, 1156 KiB  
Article
A Study of the Response Surface Methodology Model with Regression Analysis in Three Fields of Engineering
by Hsuan-Yu Chen and Chiachung Chen
Appl. Syst. Innov. 2025, 8(4), 99; https://doi.org/10.3390/asi8040099 - 21 Jul 2025
Viewed by 365
Abstract
Researchers conduct experiments to discover factors influencing the experimental subjects, so the experimental design is essential. The response surface methodology (RSM) is a special experimental design used to evaluate factors significantly affecting a process and determine the optimal conditions for different factors. The [...] Read more.
Researchers conduct experiments to discover factors influencing the experimental subjects, so the experimental design is essential. The response surface methodology (RSM) is a special experimental design used to evaluate factors significantly affecting a process and determine the optimal conditions for different factors. The relationship between response values and influencing factors is mainly established using regression analysis techniques. These equations are then used to generate contour and surface response plots to provide researchers with further insights. The impact of regression techniques on response surface methodology (RSM) model building has not been studied in detail. This study uses complete regression techniques to analyze sixteen datasets from the literature on semiconductor manufacturing, steel materials, and nanomaterials. Whether each variable significantly affected the response value was assessed using backward elimination and a t-test. The complete regression techniques used in this study included considering the significant influencing variables of the model, testing for normality and constant variance, using predictive performance criteria, and examining influential data points. The results of this study revealed some problems with model building in RSM studies in the literature from three engineering fields, including the direct use of complete equations without statistical testing, deletion of variables with p-values above a preset value without further examination, existence of non-normality and non-constant variance conditions of the dataset without testing, and presence of some influential data points without examination. Researchers should strengthen training in regression techniques to enhance the RSM model-building process. Full article
Show Figures

Figure 1

27 pages, 2527 KiB  
Review
A Systematic Review of Responsible Artificial Intelligence Principles and Practice
by Lakshitha Gunasekara, Nicole El-Haber, Swati Nagpal, Harsha Moraliyage, Zafar Issadeen, Milos Manic and Daswin De Silva
Appl. Syst. Innov. 2025, 8(4), 97; https://doi.org/10.3390/asi8040097 - 21 Jul 2025
Viewed by 697
Abstract
The accelerated development of Artificial Intelligence (AI) capabilities and systems is driving a paradigm shift in productivity, innovation and growth. Despite this generational opportunity, AI is fraught with significant challenges and risks. To address these challenges, responsible AI has emerged as a modus [...] Read more.
The accelerated development of Artificial Intelligence (AI) capabilities and systems is driving a paradigm shift in productivity, innovation and growth. Despite this generational opportunity, AI is fraught with significant challenges and risks. To address these challenges, responsible AI has emerged as a modus operandi that ensures protections while not stifling innovations. Responsible AI minimizes risks to people, society, and the environment. However, responsible AI principles and practice are impacted by ‘principle proliferation’ as they are diverse and distributed across the applications, stakeholders, risks, and downstream impact of AI systems. This article presents a systematic review of responsible AI principles and practice with the objectives of discovering the current state, the foundations and the need for responsible AI, followed by the principles of responsible AI, and translation of these principles into the responsible practice of AI. Starting with 22,711 relevant peer-reviewed articles from comprehensive bibliographic databases, the review filters through to 9700 at de-duplication, 5205 at abstract screening, 1230 at semantic screening and 553 at final full-text screening. The analysis of this final corpus is presented as six findings that contribute towards the increased understanding and informed implementation of responsible AI. Full article
Show Figures

Figure 1

30 pages, 3461 KiB  
Article
A Privacy-Preserving Record Linkage Method Based on Secret Sharing and Blockchain
by Shumin Han, Zikang Wang, Qiang Zhao, Derong Shen, Chuang Wang and Yangyang Xue
Appl. Syst. Innov. 2025, 8(4), 92; https://doi.org/10.3390/asi8040092 - 28 Jun 2025
Viewed by 477
Abstract
Privacy-preserving record linkage (PPRL) aims to link records from different data sources while ensuring sensitive information is not disclosed. Utilizing blockchain as a trusted third party is an effective strategy for enhancing transparency and auditability in PPRL. However, to ensure data privacy during [...] Read more.
Privacy-preserving record linkage (PPRL) aims to link records from different data sources while ensuring sensitive information is not disclosed. Utilizing blockchain as a trusted third party is an effective strategy for enhancing transparency and auditability in PPRL. However, to ensure data privacy during computation, such approaches often require computationally intensive cryptographic techniques. This can introduce significant computational overhead, limiting the method’s efficiency and scalability. To address this performance bottleneck, we combine blockchain with the distributed computation of secret sharing to propose a PPRL method based on blockchain-coordinated distributed computation. At its core, the approach utilizes Bloom filters to encode data and employs Boolean and arithmetic secret sharing to decompose the data into secret shares, which are uploaded to the InterPlanetary File System (IPFS). Combined with masking and random permutation mechanisms, it enhances privacy protection. Computing nodes perform similarity calculations locally, interacting with IPFS only a limited number of times, effectively reducing communication overhead. Furthermore, blockchain manages the entire computation process through smart contracts, ensuring transparency and correctness of the computation, achieving efficient and secure record linkage. Experimental results demonstrate that this method effectively safeguards data privacy while exhibiting high linkage quality and scalability. Full article
Show Figures

Figure 1

26 pages, 1806 KiB  
Article
From Transactions to Transformations: A Bibliometric Study on Technology Convergence in E-Payments
by Priyanka C. Bhatt, Yu-Chun Hsu, Kuei-Kuei Lai and Vinayak A. Drave
Appl. Syst. Innov. 2025, 8(4), 91; https://doi.org/10.3390/asi8040091 - 28 Jun 2025
Viewed by 678
Abstract
This study investigates the convergence of blockchain, artificial intelligence (AI), near-field communication (NFC), and mobile technologies in electronic payment (e-payment) systems, proposing an innovative integrative framework to deconstruct the systemic innovations and transformative impacts driven by such technological synergy. Unlike prior research, which [...] Read more.
This study investigates the convergence of blockchain, artificial intelligence (AI), near-field communication (NFC), and mobile technologies in electronic payment (e-payment) systems, proposing an innovative integrative framework to deconstruct the systemic innovations and transformative impacts driven by such technological synergy. Unlike prior research, which often focuses on single-technology adoption, this study uniquely adopts a cross-technology convergence perspective. To our knowledge, this is the first study to empirically map the multi-technology convergence landscape in e-payment using scientometric techniques. By employing bibliometric and thematic network analysis methods, the research maps the intellectual evolution and key research themes of technology convergence in e-payment systems. Findings reveal that while the integration of these technologies holds significant promise, improving transparency, scalability, and responsiveness, it also presents challenges, including interoperability barriers, privacy concerns, and regulatory complexity. Furthermore, this study highlights the potential for convergent technologies to unintentionally deepen the digital divide if not inclusively designed. The novelty of this study is threefold: (1) theoretical contribution—this study expands existing frameworks of technology adoption and digital governance by introducing an integrated perspective on cross-technology adoption and regulatory responsiveness; (2) practical relevance—it offers actionable, stakeholder-specific recommendations for policymakers, financial institutions, developers, and end-users; (3) methodological innovation—it leverages scientometric and topic modeling techniques to capture the macro-level trajectory of technology convergence, complementing traditional qualitative insights. In conclusion, this study advances the theoretical foundations of digital finance and provides forward-looking policy and managerial implications, paving the way for a more secure, inclusive, and innovation-driven digital payment ecosystem. Full article
(This article belongs to the Topic Social Sciences and Intelligence Management, 2nd Volume)
Show Figures

Figure 1

44 pages, 822 KiB  
Article
Intelligent Active and Reactive Power Management for Wind-Based Distributed Generation in Microgrids via Advanced Metaheuristic Optimization
by Rubén Iván Bolaños, Héctor Pinto Vega, Luis Fernando Grisales-Noreña, Oscar Danilo Montoya and Jesús C. Hernández
Appl. Syst. Innov. 2025, 8(4), 87; https://doi.org/10.3390/asi8040087 - 26 Jun 2025
Viewed by 671
Abstract
This research evaluates the performance of six metaheuristic algorithms in the active and reactive power management of wind turbines (WTs) integrated into an AC microgrid (MG). The population-based genetic algorithm (PGA) is proposed as the primary optimization strategy and is rigorously compared against [...] Read more.
This research evaluates the performance of six metaheuristic algorithms in the active and reactive power management of wind turbines (WTs) integrated into an AC microgrid (MG). The population-based genetic algorithm (PGA) is proposed as the primary optimization strategy and is rigorously compared against five benchmark techniques: Monte Carlo (MC), particle swarm optimization (PSO), the JAYA algorithm, the generalized normal distribution optimizer (GNDO), and the multiverse optimizer (MVO). This study aims to minimize, through independent optimization scenarios, the operating costs, power losses, or CO2 emissions of the microgrid during both grid-connected and islanded modes. To achieve this, a coordinated control strategy for distributed generators is proposed, offering flexible adaptation to economic, technical, or environmental priorities while accounting for the variability of power generation and demand. The proposed optimization model includes active and reactive power constraints for both conventional generators and WTs, along with technical and regulatory limits imposed on the MG, such as current thresholds and nodal voltage boundaries. To validate the proposed strategy, two scenarios are considered: one involving 33 nodes and another one featuring 69. These configurations allow evaluation of the aforementioned optimization strategies under different energy conditions while incorporating the power generation and demand variability corresponding to a specific region of Colombia. The analysis covers two-time horizons (a representative day of operation and a full week) in order to capture both short-term and weekly fluctuations. The variability is modeled via an artificial neural network to forecast renewable generation and demand. Each optimization method undergoes a statistical evaluation based on multiple independent executions, allowing for a comprehensive assessment of its effectiveness in terms of solution quality, average performance, repeatability, and computation time. The proposed methodology exhibits the best performance for the three objectives, with excellent repeatability and computational efficiency across varying microgrid sizes and energy behavior scenarios. Full article
Show Figures

Figure 1

29 pages, 535 KiB  
Review
A Systematic Mapping Study on the Modernization of Legacy Systems to Microservice Architecture
by Lucas Fernando Fávero, Nathalia Rodrigues de Almeida and Frank José Affonso
Appl. Syst. Innov. 2025, 8(4), 86; https://doi.org/10.3390/asi8040086 - 20 Jun 2025
Viewed by 1047
Abstract
Microservice architecture (MSA) has garnered attention in various software communities because of its significant advantages. Organizations have also prioritized migrating their legacy systems to MSA, seeking to gather the intrinsic advantages of this architectural style. Despite the importance of this architectural style, there [...] Read more.
Microservice architecture (MSA) has garnered attention in various software communities because of its significant advantages. Organizations have also prioritized migrating their legacy systems to MSA, seeking to gather the intrinsic advantages of this architectural style. Despite the importance of this architectural style, there is a lack of comprehensive studies in the literature on the modernization of legacy systems to MSA. Thus, the principal objective of this article is to present a comprehensive overview of this research theme through a mixed-method investigation composed of a systematic mapping study based on 43 studies and an empirical evaluation by industry practitioners. From these, a taxonomy for the initiatives identified in the literature is established, along with the application domain for which such initiatives were designed, the methods used to evaluate these initiatives, the main quality attributes identified in our investigation, and the main activities employed in the design of such initiatives. As a result, this article delineates a process of modernization based on six macro-activities, designed to facilitate the transition from legacy systems to microservice-based ones. Finally, this article presents a discussion of the results based on the evidence gathered during our investigation, which may serve as a source of inspiration for the design of new initiatives to support software modernization. Full article
Show Figures

Graphical abstract

39 pages, 1072 KiB  
Article
Efficient BESS Scheduling in AC Microgrids via Multiverse Optimizer: A Grid-Dependent and Self-Powered Strategy to Minimize Power Losses and CO2 Footprint
by Daniel Sanin-Villa, Hugo Alessandro Figueroa-Saavedra and Luis Fernando Grisales-Noreña
Appl. Syst. Innov. 2025, 8(3), 85; https://doi.org/10.3390/asi8030085 - 19 Jun 2025
Viewed by 681
Abstract
This paper presents a novel energy management system for AC microgrids that integrates a parallel implementation of the Multi-Verse Optimizer (MVO) with the Successive Approximations method for power flow analysis. The proposed approach optimally schedules battery energy storage systems (BESSs) in both grid-connected [...] Read more.
This paper presents a novel energy management system for AC microgrids that integrates a parallel implementation of the Multi-Verse Optimizer (MVO) with the Successive Approximations method for power flow analysis. The proposed approach optimally schedules battery energy storage systems (BESSs) in both grid-connected and islanded modes, aiming to minimize energy losses and reduce CO2 emissions. Numerical evaluations on a 33-node AC microgrid demonstrate significant improvements: in the grid-dependent mode, energy losses drop from 2484.57 kWh (base case) to 2374.85 kWh, and emissions fall from 9.8874 Ton(CO2) to 9.8693 Ton(CO2). Under the self-powered configuration, energy losses and emissions are curtailed from 2484.57 kWh to 2373.53 kWh and from 16.0659 Ton(CO2) to 16.0364 Ton(CO2), respectively. The results highlight that the proposed method outperforms existing metaheuristics in solution quality and consistency. This work advances microgrid scheduling by ensuring technical feasibility, reducing carbon footprint, and maintaining voltage stability under diverse operational conditions. Full article
Show Figures

Figure 1

Back to TopTop