Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,043)

Search Parameters:
Authors = Zhu Chen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 961 KiB  
Review
Pro-Dermcidin as an Emerging Regulator of Innate Immunity in Sepsis
by Li Lou, Jianhua Li, Weiqiang Chen, Cassie Shu Zhu, Xiaoling Qiang and Haichao Wang
Int. J. Mol. Sci. 2025, 26(15), 7643; https://doi.org/10.3390/ijms26157643 (registering DOI) - 7 Aug 2025
Abstract
Human dermcidin (DCD) is synthesized as a 110-amino acid precursor (pre-dermcidin, pre-DCD) containing a 19-residue leader signal sequence, which is removed to produce a leader-less pro-domain-containing peptide termed as pro-dermcidin, pro-DCD. Pro-DCD can be secreted by human eccrine sweat glands and then cleaved [...] Read more.
Human dermcidin (DCD) is synthesized as a 110-amino acid precursor (pre-dermcidin, pre-DCD) containing a 19-residue leader signal sequence, which is removed to produce a leader-less pro-domain-containing peptide termed as pro-dermcidin, pro-DCD. Pro-DCD can be secreted by human eccrine sweat glands and then cleaved into antimicrobial peptides, such as dermcidin (DCD). Emerging evidence suggests that pro-DCD has broader physiological roles beyond antimicrobial defense, potentially serving as a therapeutic agent for inflammatory diseases like sepsis. In this review, we summarize recent evidence supporting pro-DCD as a regulator of innate immunity in sepsis. Full article
Show Figures

Figure 1

16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

23 pages, 4484 KiB  
Article
Mechanistic Study of NT5E in Reg3β-Induced Macrophage Polarization and Cooperation with Plasma Proteins in Myocarditis Injury and Repair
by Shichao Zhang, Peirou Zhou, Fanfan Zhu, Yingying Wang, Xuesong Wang, Jingwen Chen, Yumeng Li and Xiaoyi Shao
Biology 2025, 14(8), 1017; https://doi.org/10.3390/biology14081017 - 7 Aug 2025
Abstract
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed [...] Read more.
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed using RNA sequencing, Western blotting, and quantitative polymerase chain reaction. Mendelian randomization was employed to identify NT5E and various plasma proteins as potential therapeutic targets for myocarditis. Mediation analysis, enrichment analysis, protein–protein interaction network analysis, drug prediction, molecular docking, and single-cell RNA sequencing were integrated to further evaluate the biological functions and pharmacological potential of the identified targets. Finally, phenome-wide association studies were conducted to assess the safety of targeting these proteins. Results: NT5E expression was elevated in Reg3β-stimulated M2 macrophages. The expression of Arg-1, a marker of M2 macrophages, decreased upon NT5E knockdown, suggesting that NT5E is involved in the Reg3β-mediated polarization of macrophages to the M2 phenotype. Mendelian randomization analysis identified NT5E and 80 other plasma proteins as being causally associated with myocarditis. Mediation analysis revealed 12 immune-cell types were mediators of the effects of plasma protein on myocarditis progression. Drug prediction identified candidates such as ICN 1229 and chrysin, which showed strong binding affinities in molecular docking analyses. These findings may contribute to the development of effective treatments for myocarditis. Conclusions: NT5E plays a dual role in Reg3β-induced macrophage polarization and in interacting with plasma proteins that influence the onset and progression of myocarditis through immune-cell pathways. Full article
Show Figures

Figure 1

16 pages, 10690 KiB  
Article
Clade-Specific Recombination and Mutations Define the Emergence of Porcine Epidemic Diarrhea Virus S-INDEL Lineages
by Yang-Yang Li, Ke-Fan Chen, Chuan-Hao Fan, Hai-Xia Li, Hui-Qiang Zhen, Ye-Qing Zhu, Bin Wang, Yao-Wei Huang and Gairu Li
Animals 2025, 15(15), 2312; https://doi.org/10.3390/ani15152312 - 7 Aug 2025
Abstract
 Porcine epidemic diarrhea virus (PEDV) continues to circulate globally, causing substantial economic losses to the swine industry. Historically, PEDV strains are classified into the classical G1, epidemic G2, and S-INDEL genotypes. Among these genotypes, the highly virulent and prevalent G2 genotype has been [...] Read more.
 Porcine epidemic diarrhea virus (PEDV) continues to circulate globally, causing substantial economic losses to the swine industry. Historically, PEDV strains are classified into the classical G1, epidemic G2, and S-INDEL genotypes. Among these genotypes, the highly virulent and prevalent G2 genotype has been extensively studied. However, recent clinical outbreaks in China necessitate a reevaluation of the epidemiological and evolutionary dynamics of circulating strains. This study analyzed 37 newly sequenced S genes and public sequences to characterize the genetic variations of S-INDEL strains. Our analysis revealed that S-INDEL strains are endemic throughout China, with a phylogenetic analysis identifying two distinct clades: clade 1, comprising early endemic strains, and clade 2, representing a recently dominant, geographically restricted lineage in China. While inter-genotypic recombination has been documented, our findings also demonstrate that intra-genotypic and intra-clade recombination events contributed significantly to the emergence of clade 2, distinguishing its evolutionary pattern from clade 1. A comparative analysis identified 22 clade-specific amino acid changes, 11 of which occurred in the D0 domain. Notably, mutations at positively selected sites—113 and 114 within the D0 domain, a domain associated with pathogenicity—were specific to clade 2. A phylodynamic analysis indicated Germany as the epicenter of S-INDEL dispersal, with China acting as a sink population characterized by localized transmission networks and frequent recombination events. These results demonstrate that contemporary S-INDEL strains, specifically clade 2, exhibit unique recombination patterns and mutations potentially impacting virulence. Continuous surveillance is essential to assess the pathogenic potential of these evolving recombinant variants and the efficacy of vaccines against them.  Full article
Show Figures

Figure 1

13 pages, 2770 KiB  
Article
Tribocatalytic Degradation of Organic Dyes by Disk-Shaped PTFE and Titanium: A Powder-Free Catalytic Technology for Wastewater Treatment
by Hanze Zhu, Zeren Zhou, Senhua Ke, Chenyue Mao, Jiannan Song and Wanping Chen
Catalysts 2025, 15(8), 754; https://doi.org/10.3390/catal15080754 - 7 Aug 2025
Abstract
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as [...] Read more.
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as magnetic rotary disks and then driven to rotate through magnetic stirring in dye solutions in beakers with PTFE, Ti, and Al2O3 disks coated on bottoms separately. PTFE and Ti generated dynamic friction with the disks on the beaker bottoms in the course of magnetic stirring, from which some interesting dye degradations resulted. Among those dynamic frictions generated, 40 mg/L rhodamine b (RhB), 30 mg/L methyl orange (MO), and 20 mg/L methylene blue (MB) were effectively degraded by the one between PTFE and PTFE, the one between Ti and Ti, and the one between PTFE and Ti, respectively. Hydroxyl radicals and superoxide radicals were detected for two frictions, one between PTFE and PTFE and the other between Ti and Ti. It is proposed that Ti in friction increases the pressure in blocked areas through deformation and then catalyzes reactions under high pressure. Mechano-radicals are formed by PTFE through deformation, and are responsible for dye degradation. This work demonstrates a powder-free tribocatalysis for organic pollutant degradation and suggests an especially eco-friendly catalytic technology to wastewater treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

39 pages, 938 KiB  
Article
A Survey of Data Security Sharing
by Dexin Zhu, Zhiqiang Zhou, Yuanbo Li, Huanjie Zhang, Yang Chen, Zilong Zhao and Jun Zheng
Symmetry 2025, 17(8), 1259; https://doi.org/10.3390/sym17081259 - 7 Aug 2025
Abstract
In the digital era, secure data sharing has become a core requirement for enabling cross-domain collaboration, cloud computing, and Internet of Things (IoT) applications, as well as a critical measure for safeguarding privacy and defending against malicious attacks. In light of the risks [...] Read more.
In the digital era, secure data sharing has become a core requirement for enabling cross-domain collaboration, cloud computing, and Internet of Things (IoT) applications, as well as a critical measure for safeguarding privacy and defending against malicious attacks. In light of the risks of data leakage and misuse in open environments, achieving efficient, controllable, and privacy-preserving data sharing has emerged as a key research focus. This paper first provides a systematic review of the prevailing secure data sharing technologies, including proxy re-encryption, searchable encryption, key agreement and distribution, and attribute-based encryption, summarizing their design principles and application features. Subsequently, game-theoretic modeling based on incentive theory is introduced to construct a strategic interaction framework between data owners and data users, aiming to analyze and optimize benefit allocation mechanisms. Furthermore, the paper explores the integration of game theory with secure sharing mechanisms to enhance the sustainability and stability of the data sharing ecosystem. Finally, it outlines the critical challenges currently faced in secure data sharing and discusses future research directions, offering theoretical insights and technical references for building a more comprehensive data sharing framework. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 4493 KiB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
Show Figures

Figure 1

18 pages, 11555 KiB  
Article
Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
by Ying Huang, Xinsheng Chen, Ying Zhuo and Lianlian Zhu
Water 2025, 17(15), 2337; https://doi.org/10.3390/w17152337 - 6 Aug 2025
Abstract
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil [...] Read more.
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil retention, flood regulation, water purification, net primary productivity, and habitat quality) were investigated through remote-sensing images and the InVEST model in the Dongting Lake Region during 2000–2020. Results revealed that crop and aquatic production increased significantly from 2000 to 2020, particularly in the northwestern and central regions, while soil retention and net primary productivity also improved. However, flood regulation, water purification, and habitat quality decreased, with the fastest decline in habitat quality occurring at the periphery of the Dongting Lake. Land-use types accounted for 63.3%, 53.8%, and 40.3% of spatial heterogeneity in habitat quality, flood regulation, and water purification, respectively. Land-use changes, particularly the expansion of construction land and the conversion of water bodies to cropland, led to a sharp decline in soil retention, flood regulation, water purification, net primary productivity, and habitat quality. In addition, crop production and aquatic production were higher in cultivated land and residential land, while the accompanying degradation of flood regulation, water purification, and habitat quality formed a “production-pollution-degradation” spatial coupling pattern. Furthermore, hydrological fluctuations further complicated these dynamics; wet years amplified agricultural outputs but intensified ecological degradation through spatial spillover effects. These findings underscore the need for integrated land-use and hydrological management strategies that balance human livelihoods with ecosystem resilience. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

20 pages, 3157 KiB  
Article
Enhancement of Foaming Performance of Oat Globulin by Limited Enzymatic Hydrolysis: A Study from the Viewpoint of the Structural and Functional Properties
by Yahui Zhu, Junlong Zhang, Xuedong Gu, Pengjie Wang, Yang Liu, Yingze Jiao, Lin Yang and Han Chen
Gels 2025, 11(8), 615; https://doi.org/10.3390/gels11080615 - 6 Aug 2025
Abstract
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. [...] Read more.
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. The results show that the foaming capacity of oat globulin hydrolysates is negatively correlated with surface hydrophobicity and positively correlated with the degree of hydrolysis. The results of circular dichroism (CD) and size-exclusion chromatography (SEC) indicate that hydrolysis generated smaller, disordered peptides. Under equilibrium conditions at a 2% concentration, a reduction of 1.62 mN/m in surface tension and an increase of 3.82 μm in foam film thickness were observed. These peptides reduce surface tension between air and water, forming larger, thicker, and more stable foams. Compared to untreated oat globulin, the foaming capacity of hydrolyzed ones increased by 87.17%. Under comparable conditions, these findings demonstrate that limited hydrolyzed oat globulin exhibits potential as an effective plant-based foaming agent up to a degree of hydrolysis of 15.06%. Full article
(This article belongs to the Special Issue Gels for Plant-Based Food Applications (2nd Edition))
Show Figures

Graphical abstract

15 pages, 7500 KiB  
Article
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically [...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

15 pages, 961 KiB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of PVC-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of RIP-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
by Yijie Ren, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei and Shuang Song
Agriculture 2025, 15(15), 1689; https://doi.org/10.3390/agriculture15151689 - 5 Aug 2025
Abstract
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve [...] Read more.
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve the recognition accuracy of various maize disease spores, this study introduced the YOLOv8s-SPM model by incorporating the space-to-depth and convolution (SPD-Conv) layers, the Partial Self-Attention (PSA) mechanism, and Minimum Point Distance Intersection over Union (MPDIoU) loss function. First, we combined SPD-Conv layers into the Backbone of the YOLOv8s to enhance recognition performance on small targets and low-resolution images. To improve computational efficiency, the PSA mechanism was incorporated within the Neck layer of the network. Finally, MPDIoU loss function was applied to refine the localization performance of bounding boxes. The results revealed that the YOLOv8s-SPM model achieved 98.9% accuracy on the mixed spore dataset. Relative to the baseline YOLOv8s, the YOLOv8s-SPM model yielded a 1.4% gain in accuracy. The improved model significantly improved spore detection accuracy and demonstrated superior performance in recognizing diverse spore types under complex background conditions. It met the demands for high-precision spore detection and filled a gap in intelligent spore recognition for maize, offering an effective starting point and practical path for future research in this field. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

5 pages, 131 KiB  
Editorial
The Coordinated Development of Territorial Space and Transportation
by Gaoru Zhu, Linchuan Yang and Jing Chen
Land 2025, 14(8), 1596; https://doi.org/10.3390/land14081596 - 5 Aug 2025
Abstract
As a foundational, pioneering, and strategic sector of the national economy, transportation is deeply intertwined with the layout and structure of territorial space [...] Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Back to TopTop