Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Materials
2.3. Data Enhancement and Dataset Construction
2.4. YOLOv8s-SPM
2.4.1. YOLOv8s Model
2.4.2. Space-to-Depth and Convolution Layer
2.4.3. Partial Self-Attention Mechanism
2.4.4. MPDIoU Loss Function
2.5. Test Environment
2.6. Evaluation Index
3. Results and Discussion
3.1. Comparison of Different Attention Mechanism Modules
3.2. Verification of the Effectiveness of PSA at Different Positions
3.3. Ablation Experiments
3.4. Performance Comparison of Different Modes
3.5. Visualization of Detection Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Sec. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Cai, J.; Pan, R.; Lin, J.; Liu, J.; Zhang, L.; Wen, X.; Chen, X.; Zhang, X. Improved EfficientNet for Corn Disease Identification. Front. Plant Sci. 2023, 14, 1224385. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, Y.; He, X.; Wu, X. Northern Maize Leaf Blight Detection Under Complex Field Environment Based on Deep Learning. IEEE Access 2020, 8, 33679–33688. [Google Scholar] [CrossRef]
- Singh, R.; Srivastava, R.P.; Ram, L. Northern Corn Leaf Blight-An Important Disease of Maize: An Extension Fact Sheet. Indian Res. J. Ext. Educ. 2012, 2, 239–241. [Google Scholar]
- Wang, Y.; Xu, C.; Gao, Y.; Ma, Y.; Zhang, X.; Zhang, L.; Di, H.; Ma, J.; Dong, L.; Zeng, X.; et al. Physiological Mechanisms Underlying Tassel Symptom Formation in Maize Infected with Sporisorium Reilianum. Plants 2024, 13, 238. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, Z.; Ma, J.; Yang, W.; Liu, X.; Zhang, X.; Zhang, J.; Wu, X.; Duan, C. Advances in Research on Southern Corn Rust, a Devasting Fungal Disease. Int. J. Mol. Sci. 2024, 25, 13644. [Google Scholar] [CrossRef]
- Korsnes, R.; Westrum, K.; Fløistad, E.; Klingen, I. Computer-Assisted Image Processing to Detect Spores from the Fungus Pandora Neoaphidis. MethodsX 2016, 3, 231–241. [Google Scholar] [CrossRef]
- Le Vourch, V.; Decroës, A.; Thonon, S.; Lienard, C.; Van Steenberge, C.; Rosillon, D.; Lebrun, P.; César, V.; Legrève, A. Spatiotemporal Dynamics of Phytophthora Infestans Airborne Inoculum in Belgium. Eur. J. Plant Pathol. 2025, 171, 323–340. [Google Scholar] [CrossRef]
- Upadhyay, A.; Chandel, N.S.; Singh, K.P.; Chakraborty, S.K.; Nandede, B.M.; Kumar, M.; Subeesh, A.; Upendar, K.; Salem, A.; Elbeltagi, A. Deep Learning and Computer Vision in Plant Disease Detection: A Comprehensive Review of Techniques, Models, and Trends in Precision Agriculture. Artif. Intell. Rev. 2025, 58, 92. [Google Scholar] [CrossRef]
- Wang, Y.; Du, X.; Ma, G.; Liu, Y.; Wang, B.; Mao, H. Classification Methods for Airborne Disease Spores from Greenhouse Crops Based on Multifeature Fusion. Appl. Sci. 2020, 10, 7850. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y.; Rahnama, K. Diagnosing the Spores of Tomato Fungal Diseases Using Microscopic Image Processing and Machine Learning. Multimed. Tools Appl. 2024, 83, 67283–67301. [Google Scholar] [CrossRef]
- Sujatha, R.; Chatterjee, J.M.; Jhanjhi, N.; Brohi, S.N. Performance of Deep Learning vs Machine Learning in Plant Leaf Disease Detection. Microprocess. Microsyst. 2021, 80, 103615. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Zou, X. A Review of Object Detection Techniques. In Proceedings of the 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 251–254. [Google Scholar]
- Chauhan, N.K.; Singh, K. A Review on Conventional Machine Learning vs Deep Learning. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, Uttar Pradesh, India, 28–29 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 347–352. [Google Scholar]
- Li, K.; Zhu, X.; Qiao, C.; Zhang, L.; Gao, W.; Wang, Y. The Gray Mold Spore Detection of Cucumber Based on Microscopic Image and Deep Learning. Plant Phenomics 2023, 5, 0011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, F.; Qiao, C.; Zhang, Y.; Zhang, L.; Gao, W.; Wang, Y. Cucumber Pathogenic Spores’ Detection Using the GCS-YOLOv8 Network with Microscopic Images in Natural Scenes. Plant Methods 2024, 20, 131. [Google Scholar] [CrossRef]
- Varghese, R.; Sambath, M. Sambath YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Zhang, D.-Y.; Zhang, W.; Cheng, T.; Zhou, X.-G.; Yan, Z.; Wu, Y.; Zhang, G.; Yang, X. Detection of Wheat Scab Fungus Spores Utilizing the Yolov5-ECA-ASFF Network Structure. Comput. Electron. Agric. 2023, 210, 107953. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 11531–11539. [Google Scholar]
- Zhang, D.; Tao, W.; Cheng, T.; Zhou, X.; Hu, G.; Qiao, H.; Guo, W.; Wang, Z.; Gu, C. GSD-YOLO: A Lightweight Decoupled Wheat Scab Spore Detection Network Based on Yolov7-Tiny. Agriculture 2024, 14, 2278. [Google Scholar] [CrossRef]
- Elreedy, D.; Atiya, A.F.; Kamalov, F. A Theoretical Distribution Analysis of Synthetic Minority Oversampling Technique (SMOTE) for Imbalanced Learning. Mach. Learn. 2024, 113, 4903–4923. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8759–8768. [Google Scholar]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 936–944. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 7464–7475. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022. [Google Scholar] [CrossRef]
- Sunkara, R.; Luo, T. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. arXiv 2022. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Ma, S.; Xu, Y. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arXiv 2023. [Google Scholar] [CrossRef]
- Bono, F.M.; Radicioni, L.; Cinquemani, S. A Novel Approach for Quality Control of Automated Production Lines Working under Highly Inconsistent Conditions. Eng. Appl. Artif. Intell. 2023, 122, 106149. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Luo, H.-S.; Wang, D.-Y.; Zhou, X.-G.; Li, W.-F.; Gu, C.-Y.; Zhang, G.; He, F.-M. Assessment of the Levels of Damage Caused by Fusarium Head Blight in Wheat Using an Improved YoloV5 Method. Comput. Electron. Agric. 2022, 198, 107086. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H.; Shuang, Y.; Chen, G.; Zou, S.; Yuan, Q. Starting from the Structure: A Review of Small Object Detection Based on Deep Learning. Image Vis. Comput. 2024, 146, 105054. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. arXiv 2021. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 13708–13717. [Google Scholar]
- Zhang, X.; Liu, C.; Yang, D.; Song, T.; Ye, Y.; Li, K.; Song, Y. RFAConv: Innovating Spatial Attention and Standard Convolutional Operation. arXiv 2023. [Google Scholar] [CrossRef]
- Zhao, E.; Zhao, H.; Liu, G.; Jiang, J.; Zhang, F.; Zhang, J.; Luo, C.; Chen, B.; Yang, X. Automated Recognition of Conidia of Nematode-Trapping Fungi Based on Improved YOLOv8. IEEE Access 2024, 12, 81314–81328. [Google Scholar] [CrossRef]
- Li, K.; Qiao, C.; Zhu, X.; Song, Y.; Zhang, L.; Gao, W.; Wang, Y. Lightweight Fungal Spore Detection Based on Improved YOLOv5 in Natural Scenes. Int. J. Mach. Learn. Cyber. 2024, 15, 2247–2261. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
Optical System | Camera | Magnification | Pixel | Exposure Time | Software | System |
---|---|---|---|---|---|---|
BX43 | DP74 | 10 × 10 | 1920 × 1200 | 4.75 ms | CellSens Entry (v1.15) | Win10 × 64 |
Name | Images | Corn Leaf Blight | Corn Head Smut | Corn Rust |
---|---|---|---|---|
Train | 3202 | 11,970 | 13,408 | 12,712 |
Val | 400 | 1467 | 1940 | 1557 |
Test | 401 | 1586 | 1637 | 1434 |
Category | Parameter |
---|---|
GPU | NVIDIA A100 SXM |
CPU | AMD EPYC 7B12 |
System | Win10 |
Python version | 3.8 |
CUDA | 12.6.65 |
Pixel | 640 × 640 |
Epoch | 100 |
Batch size | 16 |
Learning rate | 0.001 |
Models | Precision/% | Recall/% | mAP50/% | mAP50:95/% | F1/% |
---|---|---|---|---|---|
YOLOv8s-SPD-GAM | 97.0 | 96.5 | 98.8 | 89.4 | 97.0% |
YOLOv8s-SPD-ECA | 96.9 | 96.1 | 98.7 | 89.5 | 97.0% |
YOLOv8s-SPD-CA | 96.7 | 96.6 | 98.8 | 89.4 | 97.0% |
YOLOv8s-SPD-RFA | 97.1 | 96.4 | 98.8 | 89.2 | 97.0% |
YOLOv8-SPM | 97.8 | 96.3 | 98.9 | 90.8 | 97.0% |
Position | Precision/% | Recall/% | mAP50/% | mAP50:95/% | F1/% |
---|---|---|---|---|---|
None | 97.0 | 96.4 | 98.9 | 90.3 | 97.0% |
Position-1 | 97.8 | 96.3 | 98.9 | 90.8 | 97.0% |
Position-2 | 96.7 | 96.6 | 98.8 | 89.7 | 97.0% |
Position-3 | 96.7 | 96.0 | 98.8 | 90.6 | 97.0% |
Position-4 | 97.2 | 96.5 | 98.8 | 90.5 | 97.0% |
Models | SPD | PSA | MPDIoU | Precision/% | Recall/% | mAP50/% | mAP50:95/% | F1/% |
---|---|---|---|---|---|---|---|---|
YOLOv8s | 95.5 | 92.3 | 97.5 | 88.1 | 92.0% | |||
YOLOv8s-a | √ | 96.9 | 96.6 | 98.4 | 90.1 | 97.0% | ||
YOLOv8s-b | √ | √ | 97.0 | 96.4 | 98.9 | 90.3 | 97.0% | |
YOLOv8s-SPM | √ | √ | √ | 97.8 | 96.3 | 98.9 | 90.8 | 97.0% |
Models | Precision/% | Recall/% | mAP50/% | mAP50:95/% | F1/% |
---|---|---|---|---|---|
YOLOv5s | 95.8 | 96.1 | 98.1 | 86.8 | 97.0% |
YOLOv6s | 94.3 | 90.0 | 95.9 | 83.0 | 92.0% |
YOLOv7-tiny | 95.2 | 95.8 | 97.9 | 84.1 | 95.0% |
YOLOv8s | 95.5 | 92.3 | 97.5 | 88.1 | 94.0% |
YOLOv8n | 95.0 | 90.5 | 96.4 | 85.5 | 92.0% |
YOLOv8s-p2 | 96.6 | 95.8 | 98.6 | 89.3 | 96.0% |
YOLOv8-SPM | 97.8 | 96.3 | 98.9 | 90.8 | 97.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Xu, Y.; Tian, H.; Zhang, Q.; Yang, M.; Zhu, R.; Xin, D.; Chen, Q.; Wei, Q.; Song, S. Detection of Maize Pathogenic Fungal Spores Based on Deep Learning. Agriculture 2025, 15, 1689. https://doi.org/10.3390/agriculture15151689
Ren Y, Xu Y, Tian H, Zhang Q, Yang M, Zhu R, Xin D, Chen Q, Wei Q, Song S. Detection of Maize Pathogenic Fungal Spores Based on Deep Learning. Agriculture. 2025; 15(15):1689. https://doi.org/10.3390/agriculture15151689
Chicago/Turabian StyleRen, Yijie, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei, and Shuang Song. 2025. "Detection of Maize Pathogenic Fungal Spores Based on Deep Learning" Agriculture 15, no. 15: 1689. https://doi.org/10.3390/agriculture15151689
APA StyleRen, Y., Xu, Y., Tian, H., Zhang, Q., Yang, M., Zhu, R., Xin, D., Chen, Q., Wei, Q., & Song, S. (2025). Detection of Maize Pathogenic Fungal Spores Based on Deep Learning. Agriculture, 15(15), 1689. https://doi.org/10.3390/agriculture15151689